1
|
Siddiqui R, Muhammad JS, Khan NA. Locust as an in Vivo Model. ACS Chem Neurosci 2021; 12:1469-1471. [PMID: 33877824 DOI: 10.1021/acschemneuro.1c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The combination of newly available genome sequence information on locusts together with high throughput genomics capabilities, novel approaches for genetic traceability, and their large size for easier handling makes locusts a valuable in vivo tool to study brain formation, functional adaptations, and neuropathogenesis during embryonic development in various environmental niches.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | | | - Naveed Ahmed Khan
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
2
|
Wajsenzon IJR, de Carvalho LA, Biancalana A, da Silva WAB, dos Santos Mermelstein C, de Araujo EG, Allodi S. Culture of neural cells of the eyestalk of a mangrove crab is optimized on poly-L-ornithine substrate. Cytotechnology 2016; 68:2193-206. [PMID: 26779908 PMCID: PMC5023563 DOI: 10.1007/s10616-015-9942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022] Open
Abstract
Although there is a considerable demand for cell culture protocols from invertebrates for both basic and applied research, few attempts have been made to culture neural cells of crustaceans. We describe an in vitro method that permits the proliferation, growth and characterization of neural cells from the visual system of an adult decapod crustacean. We explain the coating of the culture plates with different adhesive substrates, and the adaptation of the medium to maintain viable neural cells for up to 7 days. Scanning electron microscopy allowed us to monitor the conditioned culture medium to assess cell morphology and cell damage. We quantified cells in the different substrates and performed statistical analyses. Of the most commonly used substrates, poly-L-ornithine was found to be the best for maintaining neural cells for 7 days. We characterized glial cells and neurons, and observed cell proliferation using immunocytochemical reactions with specific markers. This protocol was designed to aid in conducting investigations of adult crustacean neural cells in culture. We believe that an advantage of this method is the potential for adaptation to neural cells from other arthropods and even other groups of invertebrates.
Collapse
Affiliation(s)
- Inês Júlia Ribas Wajsenzon
- Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco G2-001, Ilha do Fundão, Rio de Janeiro, RJ 21949-902 Brazil
| | - Litia Alves de Carvalho
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco G2-001, Ilha do Fundão, Rio de Janeiro, RJ 21949-902 Brazil
- Neurology Department of Masssachusetts General Hospital, Harvard NeuroDiscovery Center Harvard Medical School, Boston, MA USA
| | - Adriano Biancalana
- Universidade Federal do Pará, Campus Universitário do Marajó/Soure, Ilha de Marajó, PA Brazil
| | - Wagner Antönio Barbosa da Silva
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco G2-001, Ilha do Fundão, Rio de Janeiro, RJ 21949-902 Brazil
| | | | | | - Silvana Allodi
- Programa de Pós Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Programa de Pós Graduação em Ciências Biológicas-Fisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco G2-001, Ilha do Fundão, Rio de Janeiro, RJ 21949-902 Brazil
| |
Collapse
|
3
|
Sukiban J, Bräunig P, Mey J, Bui-Göbbels K. Retinoic acid as a survival factor in neuronal development of the grasshopper, Locusta migratoria. Cell Tissue Res 2014; 358:303-12. [PMID: 25107605 DOI: 10.1007/s00441-014-1957-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 07/03/2014] [Indexed: 12/23/2022]
Abstract
Based on experience with cell cultures of adult insect neurons, we develop a serum-free culture system for embryonic locust neurons. Influences of trophic substances on survival and neurite outgrowth of developing neurons are investigated. For the first time, a positive trophic effect of 9-cis retinoic acid (9-cis RA) was shown in vitro on embryonic neurons of an insect. We observed longer cell survival of 50 % developmental stage neurons in cultures supplemented with 0.3 nM 9-cis RA. Furthermore, an influence on neuron morphology was revealed, as the addition of 9-cis RA to cell culture medium led to an increase in the number of neurites per cell. Although an RA receptor gene, LmRXR (Locusta migratoria retinoid X receptor), was expressed in the central nervous system throughout development, the influence of 9-cis RA on neuronal survival and outgrowth was restricted to 50 % stage embryonic cells.
Collapse
Affiliation(s)
- Jeyathevy Sukiban
- Institut für Biologie II (Zoologie), RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | | | | | | |
Collapse
|
4
|
Crepaldi CR, Merighe GKF, Laure HJ, Rosa JC, Meirelles FV, César MDC. Isolamento e cultivo de neurônios e neuroesferas de córtex cerebral aviar. PESQUISA VETERINÁRIA BRASILEIRA 2013. [DOI: 10.1590/s0100-736x2013001300008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Métodos de cultivo celular são convenientes na realização de análises funcionais de alterações/interações protéicas das células neuronais, auxiliando a decifrar o interactoma de proteínas chaves na neurogênese de doenças do Sistema Nervoso Central. Por esse motivo, culturas de neurônios e neuroesferas isolados do córtex cerebral aviar representam um modelo acessível para o estudo de diversas doenças neurológicas, tal como a epilepsia. A espécie aviar apresenta peculiaridades em seu proteoma neuronal, visto a presença de uma expressão diferenciada de proteínas chaves no metabolismo energético cerebral, algumas destas (VDAC1 e VDAC2) desempenham papel importante na compreensão do mecanismo da epilepsia refratária. A metodologia estabelecida no presente estudo obteve cultivo de neuroeferas, onde as células cresceram tipicamente em aglomerados atingindo, dentro de 7 dias, o diâmetro ideal de 100-200 µm. A diferenciação celular das neuroesferas foi obtida após a aderência destas às placas tratadas com poli-D-lisina, evidenciada pela migração de fibras do interior da neuroesfera. Ao contrário das neuroesferas, os neurônios em cultivo extenderam seus neuritos após 11 dias de isolamento. Tal modelo in vitro pode ser utilizado com sucesso na identificação das variáveis neuroproteômicas, propiciando uma avaliação global das alterações dinâmicas e suas interações protéicas. Tal modelo pode ter aplicações em estudos dos efeitos de indutores da morte celular e bloqueadores de canais de membrana mitocondriais em proteínas chaves do metabolismo energético cerebral.
Collapse
|
5
|
Anava S, Saad Y, Ayali A. The role of gap junction proteins in the development of neural network functional topology. INSECT MOLECULAR BIOLOGY 2013; 22:457-472. [PMID: 23782271 DOI: 10.1111/imb.12036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gap junctions (GJs) provide a common form of intercellular communication in most animal cells and tissues, from Hydra to human, including electrical synaptic signalling. Cell coupling via GJs has an important role in development in general, and in neural network development in particular. However, quantitative studies monitoring GJ proteins throughout nervous system development are few. Direct investigations demonstrating a role for GJ proteins by way of experimental manipulation of their expression are also rare. In the current work we focused on the role of invertebrate GJ proteins (innexins) in the in vitro development of neural network functional topology, using two-dimensional neural culture preparations derived from the frontal ganglion of the desert locust, Schistocerca gregaria. Immunocytochemistry and quantitative real-time PCR revealed a dynamic expression pattern of the innexins during development of the cultured networks. Changes were observed both in the levels and in the localization of expression. Down-regulating the expression of innexins, by using double-strand RNA for the first time in locust neural cultures, induced clear changes in network morphology, as well as inhibition of synaptogenesis, thus suggesting a role for GJs during the development of the functional topology of neuronal networks.
Collapse
Affiliation(s)
- S Anava
- Department of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|