1
|
Rix AC, Störmann P, Vollrath JT, Hörauf JA, Eichler K, Marzi I, Schindler CR. THE NEURONAL BIOMARKER NEURON-SPECIFIC ENOLASE CORRELATES WITH THE VOLUME OF LUNG CONTUSION IN POLYTRAUMATIZED PATIENTS. Shock 2025; 63:428-434. [PMID: 39227358 DOI: 10.1097/shk.0000000000002475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Severe injuries caused by accidents, such as traumatic brain injury (TBI) or thoracic trauma (TT), continue to be the leading cause of death in younger people with relevant socioeconomic impact. Fast and targeted diagnostics is essential for further therapy decisions and prognosis. The following study investigates neuron-specific enolase (NSE) as a potential biomarker for lung injury after blunt TT. Methods: This is a retrospective analysis of prospectively collected data in a level 1 trauma center from 2014 to 2020. Serum levels of NSE and ILs (IL-6, IL-10) in injured patients (n = 41) with isolated TT (Abbreviated Injury Scale score of the thorax ≥3) compared with isolated TBI (Abbreviated Injury Scale score of the head ≥3) were assessed from days 0 to 5 after trauma. The extent of lung injury was quantified by Hounsfield scale in computed tomography scans. Results : Thirty patients with TT (median Injury Severity Score = 20, age 50 ± 17 years, 83.3% were male) and 11 patients with TBI (median Injury Severity Score = 25, age 54 ± 17 years, 27.3% were male) were included. After TT, NSE concentration increased initially after trauma with a peak value on the day of admission (8.51 ± 3.68 ng/mL) compared with healthy controls (4.51 ± 1.504 ng/mL, P < 0.001). Isolated TT and TBI lead to equally strong NSE release ad the day of admission. There is a significant linear relationship ( r = 0.636, P = 0.035) between serum NSE levels and severity of pulmonary contusion at the time of admission and after 24 h. Conclusion : A significant NSE release after isolated TT peaks on the day of admission. The extent of lung contusion volume (defined as alveolar parenchymal density) correlates with NSE serum concentration. Thus, NSE has predictive value for the extent of pulmonary contusion. However, according to these data, NSE seems to have no diagnostic value as a TBI biomarker in concomitant TT.
Collapse
Affiliation(s)
- Anna Carola Rix
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
2
|
Li T, Li M, Feng J, Liu T, Yang L, Yu L. Evaluation and clinical significance of serum neurospecific enolase in children with pneumonia: a case-control study. BMC Pediatr 2024; 24:379. [PMID: 38822291 PMCID: PMC11140899 DOI: 10.1186/s12887-024-04852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Neurospecific Enolase (NSE), a multifunctional protein, is present in various tissues of the body and plays an important role in many disease processes, such as infection, inflammation, tumours, injury, and immunity. In recent years, the application of NSE in respiratory diseases has become increasingly widespread and a research hotspot. OBJECTIVE This study aims to explore the relationship between NSE and childhood pneumonia, providing assistance for the diagnosis and assessment of pneumonia. METHODS Using prospective research and case-control methods, We selected 129 children with pneumonia hospitalised in Weifang People's Hospital from September 2020 to April 2022 as the case group. Among them were 67 cases of Mycoplasma pneumoniae pneumonia (MP+), 62 cases of non-Mycoplasma pneumoniae pneumonia (MP -), and 21 cases of severe pneumonia. At the same time, 136 children who underwent outpatient health examinations were selected as the control group. The levels of NSE, ESR, CRP in cases group and NSE in control group were measured separately. RESULT The NSE levels in the MP + group were 17.86 (14.29-22.54) ng/mL, while those in the MP- group were 17.89 (14.10-21.66) ng/mL, both of which were higher than the control group's NSE levels of 13.26(12.18,14.44) ng/mL (H = 46.92, P = 0.000). There was no statistically significant difference in NSE levels between the MP + and MP - groups (P > 0.05). The NSE level in the severe pneumonia group was 27.38 (13.95-34.06) ng/mL, higher than that in the mild pneumonia group, which was 17.68 (14.27-21.04) ng/mL, (P = 0.024). The AUC values for diagnosing pneumonia are NSE0.714, CRP0.539, and ESR0.535, with NSE having the highest diagnostic value. CONCLUSION Serum NSE can serve as an inflammatory indicator for paediatric pneumonia, which has important clinical guidance significance for the diagnosis, condition evaluation, and prognosis of paediatric pneumonia.
Collapse
Affiliation(s)
- Tianhua Li
- Department of Paediatrics, Weifang People's Hospital affiliated to Shandong Second Medical University, 151 Guangwen Road, Weifang, 261041, Shandong, China
| | - Minglei Li
- Department of Paediatrics, Weifang People's Hospital affiliated to Shandong Second Medical University, 151 Guangwen Road, Weifang, 261041, Shandong, China
| | - Jie Feng
- Department of Paediatrics, Weifang People's Hospital affiliated to Shandong Second Medical University, 151 Guangwen Road, Weifang, 261041, Shandong, China
| | - Tingting Liu
- Department of Ultrasound, Weifang People's Hospital affiliated to Shandong Second Medical University, 151 Guangwen Road, Weifang, 261041, Shandong, China
| | - Liu Yang
- Department of Paediatrics, Weifang People's Hospital affiliated to Shandong Second Medical University, 151 Guangwen Road, Weifang, 261041, Shandong, China
| | - Lexiang Yu
- Department of Paediatrics, Weifang People's Hospital affiliated to Shandong Second Medical University, 151 Guangwen Road, Weifang, 261041, Shandong, China.
| |
Collapse
|
3
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
4
|
Hu Q, Zhang S, Yang Y, Li J, Kang H, Tang W, Lyon CJ, Wan M. Extracellular Vesicle ITGAM and ITGB2 Mediate Severe Acute Pancreatitis-Related Acute Lung Injury. ACS NANO 2023; 17:7562-7575. [PMID: 37022097 PMCID: PMC10134486 DOI: 10.1021/acsnano.2c12722] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Integrins expressed on extracellular vesicles (EVs) secreted by various cancers are reported to mediate the organotropism of these EVs. Our previous experiment found that pancreatic tissue of mice with severe cases of acute pancreatitis (SAP) overexpresses several integrins and that serum EVs of these mice (SAP-EVs) can mediate acute lung injury (ALI). It is unclear if SAP-EV express integrins that can promote their accumulation in the lung to promote ALI. Here, we report that SAP-EV overexpress several integrins and that preincubation of SAP-EV with the integrin antagonist peptide HYD-1 markedly attenuates their pulmonary inflammation and disrupt the pulmonary microvascular endothelial cell (PMVEC) barrier. Further, we report that injecting SAP mice with EVs engineered to overexpress two of these integrins (ITGAM and ITGB2) can attenuate the pulmonary accumulation of pancreas-derived EVs and similarly decrease pulmonary inflammation and disruption of the endothelial cell barrier. Based on these findings, we propose that pancreatic EVs can mediate ALI in SAP patients and that this injury response could be attenuated by administering EVs that overexpress ITGAM and/or ITGB2, which is worthy of further study due to the lack of effective therapies for SAP-induced ALI.
Collapse
Affiliation(s)
- Qian Hu
- Department
of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shu Zhang
- Department
of Emergency Medicine, Emergency Medical Laboratory, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yue Yang
- Department
of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Juan Li
- Department
of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongxin Kang
- Department
of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wenfu Tang
- Department
of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Christopher J. Lyon
- Center
of Cellular and Molecular Diagnosis, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Meihua Wan
- Department
of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- West
China Hospital (Airport) of Sichuan University, Chengdu 610299, China
| |
Collapse
|
5
|
Yang Q, Luo Y, Lan B, Dong X, Wang Z, Ge P, Zhang G, Chen H. Fighting Fire with Fire: Exosomes and Acute Pancreatitis-Associated Acute Lung Injury. Bioengineering (Basel) 2022; 9:615. [PMID: 36354526 PMCID: PMC9687423 DOI: 10.3390/bioengineering9110615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a prevalent clinical condition of the digestive system, with a growing frequency each year. Approximately 20% of patients suffer from severe acute pancreatitis (SAP) with local consequences and multi-organ failure, putting a significant strain on patients' health insurance. According to reports, the lungs are particularly susceptible to SAP. Acute respiratory distress syndrome, a severe type of acute lung injury (ALI), is the primary cause of mortality among AP patients. Controlling the mortality associated with SAP requires an understanding of the etiology of AP-associated ALI, the discovery of biomarkers for the early detection of ALI, and the identification of potentially effective drug treatments. Exosomes are a class of extracellular vesicles with a diameter of 30-150 nm that are actively released into tissue fluids to mediate biological functions. Exosomes are laden with bioactive cargo, such as lipids, proteins, DNA, and RNA. During the initial stages of AP, acinar cell-derived exosomes suppress forkhead box protein O1 expression, resulting in M1 macrophage polarization. Similarly, macrophage-derived exosomes activate inflammatory pathways within endothelium or epithelial cells, promoting an inflammatory cascade response. On the other hand, a part of exosome cargo performs tissue repair and anti-inflammatory actions and inhibits the cytokine storm during AP. Other reviews have detailed the function of exosomes in the development of AP, chronic pancreatitis, and autoimmune pancreatitis. The discoveries involving exosomes at the intersection of AP and acute lung injury (ALI) are reviewed here. Furthermore, we discuss the therapeutic potential of exosomes in AP and associated ALI. With the continuous improvement of technological tools, the research on exosomes has gradually shifted from basic to clinical applications. Several exosome-specific non-coding RNAs and proteins can be used as novel molecular markers to assist in the diagnosis and prognosis of AP and associated ALI.
Collapse
Affiliation(s)
- Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Bowen Lan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xuanchi Dong
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Zhengjian Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
6
|
Multifunctional neuron-specific enolase: its role in lung diseases. Biosci Rep 2020; 39:220911. [PMID: 31642468 PMCID: PMC6859115 DOI: 10.1042/bsr20192732] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Neuron-specific enolase (NSE), also known as gamma (γ) enolase or enolase-2 (Eno2), is a form of glycolytic enolase isozyme and is considered a multifunctional protein. NSE is mainly expressed in the cytoplasm of neurons and neuroendocrine cells, especially in those of the amine precursor uptake and decarboxylation (APUD) lineage such as pituitary, thyroid, pancreas, intestine and lung. In addition to its well-established glycolysis function in the cytoplasm, changes in cell localization and differential expression of NSE are also associated with several pathologies such as infection, inflammation, autoimmune diseases and cancer. This article mainly discusses the role and diagnostic potential of NSE in some lung diseases.
Collapse
|