1
|
Ryba DM, Warren CM, Karam CN, Davis RT, Chowdhury SAK, Alvarez MG, McCann M, Liew CW, Wieczorek DF, Varga P, Solaro RJ, Wolska BM. Sphingosine-1-Phosphate Receptor Modulator, FTY720, Improves Diastolic Dysfunction and Partially Reverses Atrial Remodeling in a Tm-E180G Mouse Model Linked to Hypertrophic Cardiomyopathy. Circ Heart Fail 2019; 12:e005835. [PMID: 31684756 DOI: 10.1161/circheartfailure.118.005835] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a genetic cardiovascular disorder, primarily involving mutations in sarcomeric proteins. HCM patients present with hypertrophy, diastolic dysfunction, and fibrosis, but there is no specific treatment. The sphingosine-1-phosphate receptor modulator, FTY720/fingolimod, is approved for treatment of multiple sclerosis. We hypothesize that modulation of the sphingosine-1-phosphate receptor by FTY720 would be of therapeutic benefit in sarcomere-linked HCM. METHODS We treated mice with an HCM-linked mutation in tropomyosin (Tm-E180G) and nontransgenic littermates with FTY720 or vehicle for 6 weeks. Compared with vehicle-treated, FTY720-treated Tm-E180G mice had a significant reduction in left atrial size (1.99±0.19 [n=7] versus 2.70±0.44 [n=6] mm; P<0.001) and improvement in diastolic function (E/A ratio: 2.69±0.38 [n=7] versus 5.34±1.19 [n=6]; P=0.004) as assessed by echocardiography. RESULTS Pressure-volume relations revealed significant improvements in the end-diastolic pressure volume relationship, relaxation kinetics, preload recruitable stroke work, and ejection fraction. Detergent-extracted fiber bundles revealed a significant decrease in myofilament Ca2+-responsiveness (pCa50=6.15±0.11 [n=13] versus 6.24±0.06 [n=14]; P=0.041). We attributed these improvements to a downregulation of S-glutathionylation of cardiac myosin binding protein-C in FTY720-treated Tm-E180G mice and reduction in oxidative stress by downregulation of NADPH oxidases with no changes in fibrosis. CONCLUSIONS This is the first demonstration that modulation of S1PR results in decreased myofilament-Ca2+-responsiveness and improved diastolic function in HCM. We associated these changes with decreased oxidative modification of myofilament proteins via downregulation of NOX2. Our data support the hypothesis that modification of sphingolipid signaling may be a novel therapeutic approach in HCM.
Collapse
Affiliation(s)
- David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Chehade N Karam
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Robert T Davis
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Shamim A K Chowdhury
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Manuel G Alvarez
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Maximilian McCann
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Chong Wee Liew
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, OH (D.F.W.)
| | - Peter Varga
- Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago (P.V.)
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.)
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago (D.M.R., C.M.W., C.N.K., R.T.D., S.A.K.C., M.G.A., M.M., C.W.L., R.J.S., B.M.W.).,Department of Medicine, Division of Cardiology, University of Illinois at Chicago, IL (B.M.W.)
| |
Collapse
|
2
|
Bae HK, Lee H, Kim KC, Hong YM. The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure. KOREAN JOURNAL OF PEDIATRICS 2016; 59:262-70. [PMID: 27462355 PMCID: PMC4958704 DOI: 10.3345/kjp.2016.59.6.262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
Purpose Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function.
Collapse
Affiliation(s)
- Hyun Kyung Bae
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Köhler D, Arnold R, Loukanov T, Gorenflo M. Right ventricular failure and pathobiology in patients with congenital heart disease - implications for long-term follow-up. Front Pediatr 2013; 1:37. [PMID: 24400283 PMCID: PMC3864255 DOI: 10.3389/fped.2013.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 11/13/2022] Open
Abstract
Right ventricular dysfunction represents a common problem in patients with congenital heart defects, such as Tetralogy of Fallot or pulmonary arterial hypertension. Patients with congenital heart defects may present with a pressure or volume overloaded right ventricle (RV) in a bi-ventricular heart or in a single ventricular circulation in which the RV serves as systemic ventricle. Both subsets of patients are at risk of developing right ventricular failure. Obtaining functional and morphological imaging data of the right heart is technically more difficult than imaging of the left ventricle. In contrast to findings on mechanisms of left ventricular dysfunction, very little is known about the pathophysiologic alterations of the right heart. The two main causes of right ventricular dysfunction are pressure and/or volume overload of the RV. Until now, there are no appropriate models available analyzing the effects of pressure and/or volume overload on the RV. This review intends to summarize clinical aspects mainly focusing on the current research in this field. In future, there will be increasing attention to individual care of patients with right heart diseases. Hence, further investigations are essential for understanding the right ventricular pathobiology.
Collapse
Affiliation(s)
- Doreen Köhler
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| | - Raoul Arnold
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, Division of Congenital Cardiac Surgery, University of Heidelberg , Heidelberg , Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
4
|
Voelkel NF, Natarajan R, Drake JI, Bogaard HJ. Right ventricle in pulmonary hypertension. Compr Physiol 2013; 1:525-40. [PMID: 23737184 DOI: 10.1002/cphy.c090008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During heart development chamber specification is controlled and directed by a number of genes and a fetal heart gene expression pattern is revisited during heart failure. In the setting of chronic pulmonary hypertension the right ventricle undergoes hypertrophy, which is likely initially adaptive, but often followed by decompensation, dilatation and failure. Here we discuss differences between the right ventricle and the left ventricle of the heart and begin to describe the cellular and molecular changes which characterize right heart failure. A prevention and treatment of right ventricle failure becomes a treatment goal for patients with severe pulmonary hypertension it follows that we need to understand the pathobiology of right heart hypertrophy and the transition to right heart failure.
Collapse
Affiliation(s)
- Norbert F Voelkel
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, The Victoria Johnson Center for Pulmonary Obstructive Disease Research, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | |
Collapse
|
5
|
Wang H, Wang L, Song L, Zhang YW, Ye J, Xu RX, Shi N, Meng XM. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I. Braz J Med Biol Res 2013; 46:128-37. [PMID: 23369981 PMCID: PMC3854359 DOI: 10.1590/1414-431x20122515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function.
Collapse
Affiliation(s)
- Hui Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Core Laboratory, Fu Wai Hospital and Cardiovascular Institute, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Yuan C, Solaro RJ. Myofilament proteins: From cardiac disorders to proteomic changes. Proteomics Clin Appl 2012; 2:788-99. [PMID: 21136879 DOI: 10.1002/prca.200780076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myofilament proteins of the cardiac sarcomere house the molecular machinery responsible for generating tension and pressure. Release of intracellular Ca(2+) triggers myofilament tension generation and shortening, but the response to Ca(2+) is modulated by changes in key regulatory proteins. We review how these proteomic changes are essential to adaptive physiological regulation of cardiac output and become maladaptive in cardiac disorders. We also review the essentials of proteomic techniques used to study myofilament protein changes, including degradation, isoform expression, phosphorylation and oxidation. Selected proteomic studies illustrate the applications of these approaches.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
7
|
Ding W, Li Z, Shen X, Martin J, King SB, Sivakumaran V, Paolocci N, Gao WD. Reversal of isoflurane-induced depression of myocardial contraction by nitroxyl via myofilament sensitization to Ca2+. J Pharmacol Exp Ther 2011; 339:825-31. [PMID: 21865439 PMCID: PMC3226367 DOI: 10.1124/jpet.111.185272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/23/2011] [Indexed: 01/30/2023] Open
Abstract
Isoflurane (ISO) is known to depress cardiac contraction. Here, we hypothesized that decreasing myofilament Ca(2+) responsiveness is central to ISO-induced reduction in cardiac force development. Moreover, we also tested whether the nitroxyl (HNO) donor 1-nitrosocyclohexyl acetate (NCA), acting as a myofilament Ca(2+) sensitizer, restores force in the presence of ISO. Trabeculae from the right ventricles of LBN/F1 rats were superfused with Krebs-Henseleit solution at room temperature, and force and intracellular Ca(2+) ([Ca(2+)](i)) were measured. Steady-state activations were achieved by stimulating the muscles at 10 Hz in the presence of ryanodine. The same muscles were chemically skinned with 1% Triton X-100, and the force-Ca(2+) relation measurements were repeated. ISO depressed force in a dose-dependent manner without significantly altering [Ca(2+)](i). At 1.5%, force was reduced over 50%, whereas [Ca(2+)](i) remained unaffected. At 3%, contraction was decreased by ∼75% with [Ca(2+)](i) reduced by only 15%. During steady-state activation, 1.5% ISO depressed maximal Ca(2+)-activated force (F(max)) and increased the [Ca(2+)](i) required for 50% activation (Ca(50)) without affecting the Hill coefficient. After skinning, the same muscles showed similar decreases in F(max) and increases in Ca(50) in the presence of ISO. NCA restored force in the presence of ISO without affecting [Ca(2+)](i). These results show that 1) ISO depresses cardiac force development by decreasing myofilament Ca(2+) responsiveness, and 2) myofilament Ca(2+) sensitization by NCA can effectively restore force development without further increases in [Ca(2+)](i). The present findings have potential translational value because of the efficiency and efficacy of HNO on ISO-induced myocardial contractile dysfunction.
Collapse
Affiliation(s)
- Wengang Ding
- Department of Anesthesiology, 2nd Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dhalla NS, Müller AL. Protein Kinases as Drug Development Targets for Heart Disease Therapy. Pharmaceuticals (Basel) 2010; 3:2111-2145. [PMID: 27713345 PMCID: PMC4036665 DOI: 10.3390/ph3072111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are intimately integrated in different signal transduction pathways for the regulation of cardiac function in both health and disease. Protein kinase A (PKA), Ca²⁺-calmodulin-dependent protein kinase (CaMK), protein kinase C (PKC), phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) are not only involved in the control of subcellular activities for maintaining cardiac function, but also participate in the development of cardiac dysfunction in cardiac hypertrophy, diabetic cardiomyopathy, myocardial infarction, and heart failure. Although all these kinases serve as signal transducing proteins by phosphorylating different sites in cardiomyocytes, some of their effects are cardioprotective whereas others are detrimental. Such opposing effects of each signal transduction pathway seem to depend upon the duration and intensity of stimulus as well as the type of kinase isoform for each kinase. In view of the fact that most of these kinases are activated in heart disease and their inhibition has been shown to improve cardiac function, it is suggested that these kinases form excellent targets for drug development for therapy of heart disease.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| | - Alison L Müller
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
9
|
Modeling radial viscoelastic behavior of left ventricle based on MRI tissue phase mapping. Ann Biomed Eng 2010; 38:3102-11. [PMID: 20505993 DOI: 10.1007/s10439-010-0079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
The viscoelastic behavior of myocardial tissue is a measure that has recently found to be a deterministic factor in quality of contraction. Parameters imposing the viscoelastic behavior of the heart are influenced in part by sarcomere function and myocardial composition. Despite the overall agreement on significance of cardiac viscoelasticity, a practical model that can measure and characterize the viscoelastic behavior of the myocardial segments does not yet exist. Pressure-Volume (P-V) curves are currently the only measure for stiffness/compliance of the left ventricle. However, obtaining P-V curves requires invasive cardiac catheterization, and only provides qualitative information on how pressure and volume change with respect to each other. For accurate assessment of myocardial mechanical behavior, it is required to obtain quantitative measures for viscoelasticity. In this work, we have devised a model that yields myocardial elastic and viscous damping coefficient functions through the cardiac cycle. The required inputs for this model are kinematic information with respect to changes in LV short axes that were obtained by Magnetic Resonance Imaging (MRI) using a tissue phase mapping (TPM) pulse sequence. We evaluated viscoelastic coefficients of LV myocardium in two different age groups of 20-40 and greater than 60. We found that the magnitude of stiffness coefficients is noticeably greater in the older subjects. Additionally, we found that slope of viscous damping functions follow similar patterns for each individual age group. This method may shed light on dynamics of contraction through MRI in conditions where composition of myocardium is changed such as in aging, adverse remodeling, and cardiomyopathies.
Collapse
|
10
|
Sumandea MP, Vahebi S, Sumandea CA, Garcia-Cazarin ML, Staidle J, Homsher E. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Biochemistry 2009; 48:7722-31. [PMID: 19586048 DOI: 10.1021/bi900516n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cardiac troponin T (cTnT) is a phosphoprotein that modulates cardiac muscle contraction through its extensive and diverse interactions with neighboring thin filament proteins. Its N-terminal half is the "glue" that anchors the troponin complex to tropomyosin-actin. Until now, studies aimed at investigating the role of the N-terminal tail region have not considered the effects of phosphorylation. To understand better the regulatory role of the N-terminal tail region of phosphorylated cTnT, we investigated the functional effects of N-terminal deletion (amino acids 1-91) and phosphorylation on Ca(2+) dependence of myofilament isometric force production, isometric ATPase rate, and thin filament sliding speed. Chemomechanical profiles were assessed in detergent permeabilized fiber preparations where the native troponin (cTn) was exchanged with recombinant cTn engineered to contain modified cTnT (truncated, phosphorylated) in the presence of wild-type cTnI and cTnC. Removal of the cTnT N-terminal amino acids 1-91 (cTnT-del) enhances myofilament responsiveness to nonsaturating Ca(2+) levels (the physiological range in cardiac myocytes). However, at saturating Ca(2+) levels, there is a reduction in isometric tension and ATPase rate. On one hand, phosphorylation of cTnT-del attenuates the sensitizing effect induced by truncation of the N-terminal tail, "resetting" myofilament Ca(2+) responsiveness back to control levels. On the other hand, it impairs isometric tension development and ATPase rate. Interestingly, phosphorylation of cTnT (cTnT-P) differentially regulates tension cost (an index of cross-bridge cycling rate): increased by cTn-del-P and decreased by intact cTn-wt-P. Like the isometric fiber data, sliding speed of thin filaments regulated by cTn-del is more sensitive to Ca(2+) compared with cTn-wt. Phosphorylation of cTnT (whether cTnT-del or -wt) depresses sliding speed and is associated with Ca(2+) desensitization of thin filament sliding speed.
Collapse
Affiliation(s)
- Marius P Sumandea
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Moulik M, Vatta M, Witt SH, Arola AM, Murphy RT, McKenna WJ, Boriek AM, Oka K, Labeit S, Bowles NE, Arimura T, Kimura A, Towbin JA. ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 2009; 54:325-33. [PMID: 19608030 PMCID: PMC2915893 DOI: 10.1016/j.jacc.2009.02.076] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/05/2009] [Accepted: 02/16/2009] [Indexed: 01/04/2023]
Abstract
OBJECTIVES We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.
Collapse
Affiliation(s)
- Mousumi Moulik
- Department of Pediatrics, Division of Cardiology, University of Texas Medical School Houston, Houston, Texas
| | - Matteo Vatta
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Stephanie H. Witt
- Medical Faculty Mannnheim, University of Heidelberg, Heidelberg, Germany
| | - Anita M. Arola
- Department of Pediatrics, Section of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Ross T. Murphy
- Department of Cardiology, St. James Hospital, Dublin, Ireland
| | - William J. McKenna
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Aladin M. Boriek
- Department of Pulmonology, Baylor College of Medicine, Houston, Texas
| | - Kazuhiro Oka
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Siegfried Labeit
- Medical Faculty Mannnheim, University of Heidelberg, Heidelberg, Germany
| | - Neil E. Bowles
- Department of Pediatrics, Division of Cardiology, University of Utah, Salt Lake City, Utah
| | - Takuro Arimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo, Japan
- Laboratory of Genome Diversity, School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jeffrey A. Towbin
- Heart Institute, Department of Pediatrics and Pediatric Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The Right Ventricle Under Pressure. Chest 2009; 135:794-804. [DOI: 10.1378/chest.08-0492] [Citation(s) in RCA: 519] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
13
|
Berni R, Savi M, Bocchi L, Delucchi F, Musso E, Chaponnier C, Gabbiani G, Clement S, Stilli D. Modulation of actin isoform expression before the transition from experimental compensated pressure-overload cardiac hypertrophy to decompensation. Am J Physiol Heart Circ Physiol 2009; 296:H1625-32. [PMID: 19252091 DOI: 10.1152/ajpheart.01057.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a rat model of long-lasting pressure-overload hypertrophy, we investigated whether changes in the relative expression of myocardial actin isoforms are among the early signs of ventricular mechanical dysfunction before the transition toward decompensation. Forty-four rats with infrarenal aortic banding (AC rats) were studied. Hemodynamic parameters were measured 1 mo (AC(1) group; n = 20) or 2 mo (AC(2); n = 24) after aortic ligature. Then subgroups of AC(1) and AC(2) left ventricles (LV) were used to evaluate 1) LV anatomy and fibrosis (morphometry), 2) expression levels (immunoblotting) and spatial distribution (immunohistochemistry) of alpha-skeletal actin (alpha-SKA), alpha-cardiac actin (alpha-CA), and alpha-smooth muscle actin (alpha-SMA), and 3) cell mechanics and calcium transients in enzimatically isolated myocytes. Although the two AC groups exhibited a comparable degree of hypertrophy (+30% in LV mass; +20% in myocyte surface) and a similar increase in the amount of fibrosis compared with control animals (C group; n = 22), a worsening of LV mechanical performance was observed only in AC(2) rats at both organ and cellular levels. Conversely, AC(1) rats exhibited enhanced LV contractility and preserved cellular contractile behavior associated with increased calcium transients. Alpha-SKA expression was upregulated (+60%) in AC(1). In AC(2) ventricles, prolonged hypertension also induced a significant increase in alpha-SMA expression, mainly at the level of arterial vessels. No significant differences among groups were observed in alpha-CA expression. Our findings suggest that alpha-SKA expression regulation and wall remodeling of coronary arterioles participate in the development of impaired kinetics of contraction and relaxation in prolonged hypertension before the occurrence of marked histopathologic changes.
Collapse
Affiliation(s)
- Roberta Berni
- Dept. of Evolutionary and Functional Biology, Physiology Section, Univ. of Parma, V. le G. P. Usberti 11/A, I-43100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang J, Nagueh SF, Mathuria NS, Shih HT, Panescu D, Khoury DS. Left ventricular twist mechanics in a canine model of reversible congestive heart failure: a pilot study. J Am Soc Echocardiogr 2009; 22:95-8. [PMID: 19131008 PMCID: PMC2650082 DOI: 10.1016/j.echo.2008.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Indexed: 11/20/2022]
Abstract
BACKGROUND Left ventricular (LV) twist dynamics play an important role in LV systolic and diastolic function. The aim of this preliminary study was to investigate LV twist dynamics in a canine model of reversible congestive heart failure (CHF). METHODS Pacing systems were implanted in adult dogs, and continuous chronic right ventricular pacing (230-250 beats/min) was applied until CHF induction. Pacing was then stopped to allow the heart to recover. Echocardiography and LV catheterization were performed at baseline, during CHF while pacing was temporarily switched off, and during recovery. LV twist was computed as the difference between apical and basal rotation measured using 2-dimensional speckle tracking. Torsion was further calculated as LV twist divided by the LV long axis. The untwisting rate was computed as the peak diastolic time derivative of twist. RESULTS In 6 dogs that completed the study, we found that CHF developed after 2 to 4 weeks of pacing, with LV end-diastolic volume, end-systolic volume, end-diastolic pressure, and the time constant of relaxation during isovolumic relaxation period (tau) all increasing significantly compared with baseline and recovering to normal levels 2 to 4 weeks after pacing was stopped. LV twist, torsion, and untwisting rate decreased significantly with CHF compared with baseline and improved during recovery from CHF. CONCLUSION LV twist dynamics reflect pacing-induced CHF and its reversal as assessed by echocardiographic speckle tracking.
Collapse
Affiliation(s)
- Jianwen Wang
- Department of Cardiology, Methodist DeBakey Heart and Vascular Center, The Methodist Hospital Research Institute, Houston, Texas
| | - Sherif F. Nagueh
- Department of Cardiology, Methodist DeBakey Heart and Vascular Center, The Methodist Hospital Research Institute, Houston, Texas
| | - Nilesh S. Mathuria
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Dorin Panescu
- Cardiac Rhythm Management Division, St. Jude Medical, Sylmar, California
| | - Dirar S. Khoury
- Department of Cardiology, Methodist DeBakey Heart and Vascular Center, The Methodist Hospital Research Institute, Houston, Texas
| |
Collapse
|
15
|
Gaze DC, Collinson PO. Multiple molecular forms of circulating cardiac troponin: analytical and clinical significance. Ann Clin Biochem 2008; 45:349-55. [DOI: 10.1258/acb.2007.007229] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cardiac troponin T (cTnT) and I (cTnI) are highly specific and sensitive biomarkers of myocardial cell damage and are now accepted as the ‘gold standard’ diagnostic test for acute coronary syndrome and supersede the classical muscle enzyme biomarkers. While the understanding of the development and structure of the troponins has advanced, detailed biochemistry of the troponin molecules is complex and poorly understood. Many post-translational molecular forms of troponin are known to exist. The diversity of these circulating forms may have a clinical impact and the notion of a disease-specific troponin protein signature has been suggested. However, the effects of these multiple forms on commercial assay performance and their impact clinically are currently unknown and should be the focus of future research and assay design.
Collapse
Affiliation(s)
- David C Gaze
- Chemical Pathology, St George's Hospital, Blackshaw Road, Tooting, London SW17 0QT, UK
| | - Paul O Collinson
- Chemical Pathology, St George's Hospital, Blackshaw Road, Tooting, London SW17 0QT, UK
| |
Collapse
|
16
|
Westfall MV, Metzger JM. Single amino acid substitutions define isoform-specific effects of troponin I on myofilament Ca2+ and pH sensitivity. J Mol Cell Cardiol 2007; 43:107-18. [PMID: 17602701 PMCID: PMC2043486 DOI: 10.1016/j.yjmcc.2007.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/23/2007] [Accepted: 05/15/2007] [Indexed: 11/25/2022]
Abstract
Troponin I isoforms play a key role in determining myofilament Ca2+ sensitivity in cardiac muscle. The goal here was to identify domain clusters and residues that confer troponin I isoform-specific myofilament Ca2+ and pH sensitivities of contraction. Key domains/residues that contribute to troponin I isoform-specific Ca2+ and pH sensitivity were studied using gene transfer of a slow skeletal troponin I (ssTnI) template, with targeted cardiac troponin I (cTnI) residue substitutions. Substitutions in ssTnI with cognate cTnI residues R125Q, H132A, and V134E, studied both independently and together (ssTnIQAE), resulted in efficient stoichiometric replacement of endogenous myofilament cTnI in adult cardiac myocytes. In permeabilized myocytes, the pCa50 of tension ([Ca2+] required for half maximal force), and the acidosis-induced rightward shift of pCa50 were converted to the cTnI phenotype in myocytes expressing ssTnIQAE or ssTnIH132A, and there was no functionally additive effect of ssTnIQAE versus ssTnIH132A. Interestingly, only the acidosis-induced shift in Ca2+ sensitivity was comparable to cTnI in myocytes expressing ssTnIV134E, while ssTnIR125Q fully retained the ssTnI phenotype. An additional ssTnIN141H substitution, which lies within the same structural region of TnI as V134, produced a shift in myofilament Ca2+ sensitivity comparable to cTnI at physiological pH, while the acidic pH response was similar to the effect of wild-type ssTnI. Analysis of sarcomere shortening in intact adult cardiac myocytes was consistent with the force measurements. Targeted substitutions in the carboxyl portion of TnI produced residue-specific influences on myofilament Ca2+ and pH sensitivity of force and give new molecular insights into the TnI isoform dependence of myofilament function.
Collapse
Affiliation(s)
- Margaret V Westfall
- Department of Surgery, Cardiac Surgery Section, University of Michigan, 1150 W. Medical Center Drive, B560 MSRB II, Ann Arbor, MI 48109-0686, USA.
| | | |
Collapse
|
17
|
Day SM, Westfall MV, Metzger JM. Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. J Mol Med (Berl) 2007; 85:911-21. [PMID: 17396243 DOI: 10.1007/s00109-007-0181-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 02/20/2007] [Accepted: 03/01/2007] [Indexed: 12/31/2022]
Abstract
The cardiac myofilaments are composed of highly ordered arrays of proteins that coordinate cardiac contraction and relaxation in response to the rhythmic waves of [Ca(2+)] during the cardiac cycle. Several cardiac disease states are associated with altered myofilament protein interactions that contribute to cardiac dysfunction. During acute myocardial ischemia, the sensitivity of the myofilaments to activating Ca(2+) is drastically reduced, largely due to the effects of intracellular acidosis on the contractile machinery. Myofilament Ca(2+) sensitivity remains compromised in post-ischemic or "stunned" myocardium even after complete restoration of blood flow and intracellular pH, likely because of covalent modifications of or proteolytic injury to contractile proteins. In contrast, myofilament Ca(2+) sensitivity can be increased in chronic heart failure, owing in part to decreased phosphorylation of troponin I, the inhibitory subunit of the troponin regulatory complex. We highlight, in this paper, the central role of the myofilaments in the pathophysiology of each of these distinct disease entities, with a particular focus on the molecular switch protein troponin I. We also discuss the beneficial effects of a genetically engineered cardiac troponin I, with a histidine button substitution at C-terminal residue 164, for a variety of pathophysiologic conditions, including hypoxia, ischemia, ischemia-reperfusion and chronic heart failure.
Collapse
Affiliation(s)
- Sharlene M Day
- Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, 7301 MSRB III, Ann Arbor, MI 48109-0644, USA.
| | | | | |
Collapse
|