1
|
DI Gioia G, Segreti A, Celeski M, Crispino SP, Buzzelli L, Mango F, Ferrera A, Squeo MR, Vespasiano F, Ussia GP, Grigioni F. Female athletes: a state-of-the-art review of multiorgan influence of exercise training. J Sports Med Phys Fitness 2025; 65:681-700. [PMID: 39804335 DOI: 10.23736/s0022-4707.24.16265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Endurance sports have witnessed an increase in female participation, demanding a constant and evolving reassessment of the specific physiological and health implications of female athletes. In the present review, we analyze cardiovascular, hematological adaptations and anthropometry and hormonal fluctuations highlighting sex-specific differences in response to exercise, with estrogen playing a fundamental role in modulating body composition and metabolic processes. Nutritional aspects, in particular energy availability, macronutrient distribution and hydration, are fundamental in supporting training demands and menstrual function. Nevertheless, the repercussions of nutritional deficiencies, interacting in the female athlete triad - which also includes amenorrhea, osteoporosis and eating disorders - underline the importance of comprehensive management strategies. In addition, we comprehensively discuss the multiorgan effects of physical training, highlighting the intersections between sex-specific differences, nutritional needs, and cardiovascular adaptations. Cardiovascular remodeling in female endurance athletes reveals both morphological and functional adaptations, requiring a deep understanding of effective cardiovascular risk assessment and screening. The synthesis of current knowledge highlights the complexity of the physiological landscape of the female athlete practicing endurance sports, requiring ongoing exploration and tailored interventions. In conclusion, this review aims to support a gender-based approach to athletic training and health management and research, intending to optimize performance while safeguarding the well-being of female athletes.
Collapse
Affiliation(s)
- Giuseppe DI Gioia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Rome, Italy -
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy -
| | - Andrea Segreti
- Department of Movement, Human and Health Sciences, Foro Italico University of Rome, Rome, Italy
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Mihail Celeski
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simone P Crispino
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Lorenzo Buzzelli
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Federica Mango
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | - Armando Ferrera
- Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| | - Maria R Squeo
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Rome, Italy
| | - Francesca Vespasiano
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Gian P Ussia
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiovascular Sciences, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
2
|
Xie Q, Yi Q, Zhu J, Tan B, Xiang H, Wang R, Liu H, Chen T, Xu H. Protective role of triiodothyronine in sepsis‑induced cardiomyopathy through phospholamban downregulation. Int J Mol Med 2025; 55:47. [PMID: 39821325 PMCID: PMC11781518 DOI: 10.3892/ijmm.2025.5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Sepsis is often a cause of mortality in patients admitted to the intensive care unit. Notably, the heart is the organ most susceptible to the impact of sepsis and this condition is referred to as sepsis‑induced cardiomyopathy (SIC). Low triiodothyronine (T3) syndrome frequently occurs in patients with sepsis, and the heart is one of the most important target organs for the action of T3. Phospholamban (PLN) is a key protein associated with Ca2+‑pump‑mediated cardiac diastolic function in the myocardium of mice with SIC, and PLN is negatively regulated by T3. The present study aimed to explore whether T3 can protect cardiac function during sepsis and to investigate the specific molecular mechanism underlying the regulation of PLN by T3. C57BL/6J mice and H9C2 cells were used to establish in vivo and in vitro models, respectively. Myocardial damage was detected via pathological tissue sections, a Cell Counting Kit-8 assay, an apoptosis assay and crystal violet staining. Intracellular calcium levels and reactive oxygen species were detected by Fluo‑4AM and DHE fluorescence. The protein and mRNA expression levels of JNK and c‑Jun were measured by western blotting and reverse transcription‑quantitative PCR to investigate the molecular mechanisms involved. Subsequently, 100 clinical patients were recruited to verify the clinical application value of PLN in SIC. The results revealed a significant negative correlation between PLN and T3 in the animal disease model. Furthermore, the expression levels of genes and proteins in the JNK/c‑Jun signaling pathway and PLN expression levels were decreased, whereas the expression levels of sarcoplasmic reticulum calcium ATPase were increased after T3 treatment. These results indicated that T3 alleviated myocardial injury in SIC by inhibiting PLN expression and its phosphorylation, which may be related to the JNK/c‑Jun signaling pathway. Accordingly, PLN may have clinical diagnostic value in patients with SIC.
Collapse
Affiliation(s)
- Qiumin Xie
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiao Tong University, Clinical College of Southwest Jiao Tong University, Chengdu, Sichuan 610031, P.R. China
| | - Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| | - Han Xiang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| | - Rui Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| | - Huiwen Liu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| | - Tangtian Chen
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Hao Xu
- Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China
| |
Collapse
|
3
|
El Khayari A, Hakam SM, Malka G, Rochette L, El Fatimy R. New insights into the cardio-renal benefits of SGLT2 inhibitors and the coordinated role of miR-30 family. Genes Dis 2024; 11:101174. [PMID: 39224109 PMCID: PMC11367061 DOI: 10.1016/j.gendis.2023.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 09/04/2024] Open
Abstract
Sodium-glucose co-transporter inhibitors (SGLTis) are the latest class of anti-hyperglycemic agents. In addition to inhibiting the absorption of glucose by the kidney causing glycosuria, these drugs also demonstrate cardio-renal benefits in diabetic subjects. miR-30 family, one of the most abundant microRNAs in the heart, has recently been linked to a setting of cardiovascular diseases and has been proposed as novel biomarkers in kidney dysfunctions as well; their expression is consistently dysregulated in a variety of cardio-renal dysfunctions. The mechanistic involvement and the potential interplay between miR-30 and SGLT2i effects have yet to be thoroughly elucidated. Recent research has stressed the relevance of this cluster of microRNAs as modulators of several pathological processes in the heart and kidneys, raising the possibility of these small ncRNAs playing a central role in various cardiovascular complications, notably, endothelial dysfunction and pathological remodeling. Here, we review current evidence supporting the pleiotropic effects of SGLT2is in cardiovascular and renal outcomes and investigate the link and the coordinated implication of the miR-30 family in endothelial dysfunction and cardiac remodeling. We also discuss the emerging role of circulating miR-30 as non-invasive biomarkers and attractive therapeutic targets for cardiovascular diseases and kidney diseases. Clinical evidence, as well as metabolic, cellular, and molecular aspects, are comprehensively covered.
Collapse
Affiliation(s)
- Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Soukaina Miya Hakam
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Gabriel Malka
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| | - Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne – Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, Dijon 21000, France
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir 43150, Morocco
| |
Collapse
|
4
|
Di Gioia G, Squeo MR, Lemme E, Maestrini V, Monosilio S, Ferrera A, Buzzelli L, Valente D, Pelliccia A. Association between FT3 Levels and Exercise-Induced Cardiac Remodeling in Elite Athletes. Biomedicines 2024; 12:1530. [PMID: 39062103 PMCID: PMC11274392 DOI: 10.3390/biomedicines12071530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Previous studies demonstrated that variations of fT3, even within the euthyroid range, can influence cardiac function. Our aim was to investigate whether thyroid hormones, even within the euthyroid range, are associated with the magnitude of exercise-induced cardiac remodeling in Olympic athletes. METHODS We evaluated 1342 Olympic athletes (mean age 25.6 ± 5.1) practicing different sporting disciplines (power, skills, endurance, and mixed). Athletes underwent blood testing (thyroid stimulating hormone, fT3, and fT4), echocardiography, and exercise-stress testing. Athletes taking thyroid hormones, affected by thyroiditis, or presenting TSH out of ranges were excluded. RESULTS The level of thyroid hormones varied according to the type of sporting discipline practiced: endurance athletes presented the lowest TSH (p < 0.0001), fT3 (p = 0.007), and fT4 (p < 0.0001) in comparison to the remaining ones. Resting heart rate (HR) was positively correlated to fT3 in athletes of different disciplines (power: p = 0.0002, R2 = 0.04; skill: p = 0.0009, R2 = 0.05; endurance: p = 0.007, R2 = 0.03; and mixed: p = 0.04, R2 = 0.01). The same results were seen for peak HR in the exercise-stress test in athletes engaged in power, skill, and endurance (respectively, p < 0.0001, R2 = 0.04; p = 0.01, R2 = 0.04; and p = 0.005, R2 = 0.02). Moreover, a positive correlation was observed with cardiac dimensions, i.e., interventricular septum (power: p < 0.0001, R2 = 0.11; skill: p = 0.02, R2 = 0.03; endurance: p = 0.002, R2 = 0.03; mixed: p < 0.0001, R2 = 0.04). Furthermore, fT3 was directly correlated with the left ventricle (LV) end-diastolic volume in skills (p = 0.04, R2 = 0.03), endurance (p = 0.04, R2 = 0.01), and mixed (p = 0.04, R2 = 0.01). CONCLUSIONS Thyroid hormones, even within the euthyroid range, are associated with cardiac adaptive response to exercise and may contribute to exercise-induced cardiac remodeling.
Collapse
Affiliation(s)
- Giuseppe Di Gioia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosiis, 00135 Rome, Italy
| | - Maria Rosaria Squeo
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
| | - Erika Lemme
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
| | - Viviana Maestrini
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Sara Monosilio
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Armando Ferrera
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy
| | - Lorenzo Buzzelli
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.B.); (D.V.)
| | - Daniele Valente
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; (L.B.); (D.V.)
| | - Antonio Pelliccia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy; (M.R.S.); (E.L.); (V.M.); (S.M.); (A.F.); (A.P.)
| |
Collapse
|
5
|
Oliveira JM, Zenzeluk J, Bargi-Souza P, Szawka RE, Romano MA, Romano RM. The effects of glyphosate-based herbicide on the hypothalamic-pituitary thyroid axis are tissue-specific and dependent on age exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122216. [PMID: 37479171 DOI: 10.1016/j.envpol.2023.122216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
The significant increase in glyphosate-based herbicide (GBH) use raises concerns about residues in the environment and food, potentially jeopardizing human health. The involvement of GBHs in the increased incidence of thyroid disorders is speculated, since glyphosate has been linked to an increased risk of thyroid disease in farmers. In this sense, this study aims to investigate the potential effects of low levels of GBH exposure (0, 0.5 or 5 mg/kg) from weaning (postnatal day PND23) to adult life (PND60 and PND90) in male Wistar rats on hypothalamic-pituitary-thyroid (HPT) axis function. The serum levels of T4 were increased. The hypothalamus showed reduced expression of Dio2, Thra1, and Thra2. The pituitary showed reduced expression of Mct8 and Dio2 and increased expression of Thra1. The thyroid showed increased expression of Tshr and Thra1. The heart showed increased expression of Mct8 and Myh6. The liver showed reduced expression of Mct8 and Thra2 and increased expression of Thra1. In thyroid morphometry, a decrease in both follicular diameter and area and decreased follicular and colloid diameters and areas were observed. These results suggested that GBH may affect several steps of HPT axis regulation at the transcriptional level in an age-dependent manner and alter the morphometric parameters of the thyroid gland and TH synthesis, with potential repercussions in the TH-target organs.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Jamilli Zenzeluk
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Escorsim Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Aurelio Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil.
| |
Collapse
|
6
|
Peripubertal soy isoflavone consumption leads to subclinical hypothyroidism in male Wistar rats. J Dev Orig Health Dis 2023; 14:209-222. [PMID: 36017706 DOI: 10.1017/s2040174422000496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to endocrine-disrupting chemicals during critical windows of development may lead to functional abnormalities in adulthood. Isoflavones are a flavonoid group of phytoestrogens that are recognized by their estrogenic activity and are highly abundant in soybean. Since the thyroid gland presents estrogen receptors and infants, toddlers and teenagers may consume isoflavones from soy-based infant formula and beverages as alternatives to animal milk, we propose to investigate the potential effects of relevant concentrations of soy isoflavones in the regulation of the hypothalamic-pituitary (HP) thyroid axis using peripubertal male rats as an experimental model. Thirty-two 23-day-old male rats were exposed to 0.5, 5, or 50 mg of soy isoflavones/kg from weaning to 60 days of age, when they were euthanized, and the tissues were collected to evaluate the mRNA expression of genes involved in the regulation of the HP thyroid axis and dosages of thyroid hormones (THs). Serum TSH concentrations were increased, while alterations were not observed in serum concentrations of triiodothyronine and thyroxine. Regarding mRNA gene expression, Mct-8 was increased in the hypothalamus, Mct-8, Thra1, and Thrb2 were decreased in the pituitary, and Nis and Pds were reduced in the thyroid. In the heart, Mct8 and Thrb2 were increased, and Thra1 was decreased. In the liver, Mct8, Thra1, and Thrb2 were decreased. These results suggest that the consumption of relevant doses of soy isoflavones during the peripubertal period in males may induce subclinical hypothyroidism, with alterations in the regulation of the HP thyroid axis, modulation of TH synthesis, and peripheral alterations in TH target organs.
Collapse
|
7
|
Simonides W, Tijsma A, Boelen A, Jongejan R, de Rijke Y, Peeters R, Dentice M, Salvatore D, Muller A. Divergent Thyroid Hormone Levels in Plasma and Left Ventricle of the Heart in Compensated and Decompensated Cardiac Hypertrophy Induced by Chronic Adrenergic Stimulation in Mice. Metabolites 2023; 13:metabo13020308. [PMID: 36837927 PMCID: PMC9960204 DOI: 10.3390/metabo13020308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Chronic hemodynamic overload of the heart induces ventricular hypertrophy that may be either compensatory or progress to decompensation and heart failure. The gradual impairment of ventricular function is, at least in part, the result of a reduction of cardiac thyroid-hormone (TH) action. Here, we examined the proposed roles of increased cardiac expression of the TH-inactivating enzyme deiodinase type 3 (D3) and reduced plasma TH levels in diminishing cardiac TH levels. Using minipumps, mice were infused for one and two weeks with isoproterenol (ISO) alone or in combination with phenylephrine (PE). Remodeling of the heart induced by these adrenergic agonists was assessed by echocardiography. Left ventricular (LV) tissue and plasma TH levels (T4 and T3) were determined using liquid chromatography-tandem mass spectrometry. LV D3 activity was determined by conversion of radiolabeled substrate and quantification following HPLC. The results show that ISO induced compensated LV hypertrophy with maintained cardiac output. Plasma levels of T4 and T3 remained normal, but LV hormone levels were reduced by approximately 30% after two weeks, while LV D3 activity was not significantly increased. ISO + PE induced decompensated LV hypertrophy with diminished cardiac output. Plasma levels of T4 and T3 were substantially reduced after one and two weeks, together with a more than 50% reduction of hormone levels in the LV. D3 activity was increased after one week and returned to control levels after two weeks. These data show for the first time that relative to controls, decompensated LV hypertrophy with diminished cardiac output is associated with a greater reduction of cardiac TH levels than compensated hypertrophy with maintained cardiac output. LV D3 activity is unlikely to account for these reductions after two weeks in either condition. Whereas the mechanism of the mild reduction in compensated hypertrophy is unclear, changes in systemic TH homeostasis appear to determine the marked drop in LV TH levels and associated impairment of ventricular function in decompensated hypertrophy.
Collapse
Affiliation(s)
- Warner Simonides
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1081 HZ Amsterdam, The Netherlands
- Correspondence: (W.S.); (A.M.)
| | - Alice Tijsma
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1081 HZ Amsterdam, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rutchanna Jongejan
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA Rotterdam, The Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA Rotterdam, The Netherlands
| | - Robin Peeters
- Department of Internal Medicine, Erasmus MC University Medical Center, Dr. Molewaterplein 40, 3000 CA Rotterdam, The Netherlands
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| | - Alice Muller
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, 1081 HZ Amsterdam, The Netherlands
- Correspondence: (W.S.); (A.M.)
| |
Collapse
|
8
|
Effect of hypothyroidism on contractile performance of isolated end-stage failing human myocardium. PLoS One 2022; 17:e0265731. [PMID: 35404981 PMCID: PMC9000031 DOI: 10.1371/journal.pone.0265731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
The relationship between hypothyroidism and the occurrence and progression of heart failure (HF) has had increased interest over the past years. The low T3 syndrome, a reduced T3 in the presence of normal thyroid stimulating hormone (TSH), and free T4 concentration, is a strong predictor of all-cause mortality in HF patients. Still, the impact of hypothyroidism on the contractile properties of failing human myocardium is unknown. Our study aimed to investigate that impact using ex-vivo assessment of force and kinetics of contraction/relaxation in left ventricular intact human myocardial muscle preparations. Trabeculae were dissected from non-failing (NF; n = 9), failing with no hypothyroidism (FNH; n = 9), and failing with hypothyroidism (FH; n = 9) hearts. Isolated muscle preparations were transferred into a custom-made setup where baseline conditions as well as the three main physiological modulators that regulate the contractile strength, length-dependent and frequency-dependent activation, as well as β-adrenergic stimulation, were assessed under near-physiological conditions. Hypothyroidism did not show any additional significant impact on the contractile properties different from the recognized alterations usually detected in such parameters in any end-stage failing heart without thyroid dysfunction. Clinical information for FH patients in our study revealed they were all receiving levothyroxine. Absence of any difference between failing hearts with or without hypothyroidism, may possibly be due to the profound effects of the advanced stage of heart failure that concealed any changes between the groups. Still, we cannot exclude the possibility of differences that may have been present at earlier stages. The effects of THs supplementation such as levothyroxine on contractile force and kinetic parameters of failing human myocardium require further investigation to explore its full potential in improving cardiovascular performance and cardiovascular outcomes of HF associated with hypothyroidism.
Collapse
|
9
|
Fazio E, Lindner A, Cravana C, Wegener J, Medica P, Hart-Mann U, Ferlazzo A. Effects of standardized exercise tests on plasma thyroid hormones' kinetics in Standardbred racehorses. J Equine Vet Sci 2021; 110:103853. [PMID: 34968655 DOI: 10.1016/j.jevs.2021.103853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
This study examined how a standard exercise test (SET) affected (1) thyroid hormones (THs) of horses and (2) the relationship between the VLa4 of horses and TH responses to the exercise in trained Standardbred racehorses (VLa4 is the velocity run at defined conditions at which a blood lactate concentration of 4 mmol/L is determined). 12 trained Standardbred racehorses (six stallions and six mares) performed SETs until the horses' blood lactate concentration was at or above 4 mmol/L. The horses were divided into three age groups (2, 3 and 4 years old); each group consists of 4 horses respectively (2 male and 2 female), to evaluate the effects of age and sex on hormonal responses to SET. During each SET, blood samples were taken at rest and after each interval and at the end of SET. Blood was analysed for total and free triiodothyronine (T3, fT3) as well as total and free thyroxine (T4, fT4). The statistical model included three fixed factors (SET, sex and age) and their main interactions. ANOVA analysis revealed that T3 and fT3 were significantly influenced by SETs. Plasma T3 and fT3 concentrations were higher in 4-year-old horses compared to the other age groups. All plasma THs concentrations were higher in mares than in stallions. Correlations revealed that a higher VLa4 was negatively related to all THs responses in 2-year-old Standardbred mares only. The SET used to determine VLa4 increased selected THs (T3, fT3); these increases were inversely related to VLa4 and affected by age and sex of the horses. The correlation of VLa4 with thyroid exercise' response might provide some additional information for performance evaluation of Standardbred racehorses, especially for evaluating training adaptation, according to sex and age. Further studies are necessary to provide support on the value of measuring THs in Standardbred racehorses of different sex and age.
Collapse
Affiliation(s)
- Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Cristina Cravana
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy
| | | | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy.
| | - Ulrich Hart-Mann
- Institute of Movement and Training Science; Faculty of Sport Science, 04109 Leipzig, Germany
| | - Adriana Ferlazzo
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Viale Palatucci 13, 98168 Messina, Italy
| |
Collapse
|
10
|
Louzada RA, Padron AS, Marques-Neto SR, Maciel L, Werneck-de-Castro JP, Ferreira ACF, Nascimento JHM, Carvalho DP. 3,5-Diiodothyronine protects against cardiac ischaemia-reperfusion injury in male rats. Exp Physiol 2021; 106:2185-2197. [PMID: 34605090 DOI: 10.1113/ep089589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
NEW FINDINGS What is the central question of this study? 3,5-Diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models, and ameliorates insulin resistance: what are its effects on cardiac electrical and contractile properties and autonomic regulation? What is the main finding and its importance? Chronic 3,5-T2 administration has no adverse effects on cardiac function. Remarkably, 3,5-T2 improves the autonomous control of the rat heart and protects against ischaemia-reperfusion injury. ABSTRACT The use of 3,5,3'-triiodothyronine (T3) and thyroxine (T4) to treat metabolic diseases has been hindered by potential adverse effects on liver, lipid metabolism and cardiac electrical properties. It is recognized that 3,5-diiodothyronine (3,5-T2) administration increases resting metabolic rate, prevents or treats liver steatosis in rodent models and ameliorates insulin resistance, suggesting 3,5-T2 as a potential therapeutic tool. However, a comprehensive assessment of cardiac electrical and contractile properties has not been made so far. Three-month-old Wistar rats were daily administered vehicle, 3,5-T2 or 3,5-T2+T4 and no signs of atrial or ventricular arrhythmia were detected in non-anaesthetized rats during 90 days. Cardiac function was preserved as heart rate, left ventricle diameter and shortening fraction in 3,5-T2-treated rats compared to vehicle and 3,5-T2+T4 groups. Power spectral analysis indicated an amelioration of the heart rate variability only in 3,5-T2-treated rats. An increased baroreflex sensitivity at rest was observed in both 3,5-T2-treated groups. Finally, 3,5-T2 Langendorff-perfused hearts presented a significant recovery of left ventricular function and remarkably smaller infarction area after ischaemia-reperfusion injury. In conclusion, chronic 3,5-T2 administration ameliorates tonic cardiac autonomic control and confers cardioprotection against ischaemia-reperfusion injury in healthy male rats.
Collapse
Affiliation(s)
- Ruy Andrade Louzada
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alvaro Souto Padron
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvio Rodrigues Marques-Neto
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Ciências da Atividade Física, Niterói, RJ, Brazil.,Universidade Estácio de Sá (UNESA), Laboratório de Fisiologia do Exercício (LAFIEX), Curso de Educação Física, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Pedro Werneck-de-Castro
- Laboratório de Biologia do Exercício, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Andrea Claudia Freitas Ferreira
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,NUMPEX, Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Hamilton Matheus Nascimento
- Laboratório de Eletrofisiologia Cardíaca Antonio Paes de Carvalho, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Pires Carvalho
- Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Kerp H, Hönes GS, Tolstik E, Hönes-Wendland J, Gassen J, Moeller LC, Lorenz K, Führer D. Protective Effects of Thyroid Hormone Deprivation on Progression of Maladaptive Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2021; 8:683522. [PMID: 34395557 PMCID: PMC8363198 DOI: 10.3389/fcvm.2021.683522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose: Thyroid hormones (TH) play a central role for cardiac function. TH influence heart rate and cardiac contractility, and altered thyroid function is associated with increased cardiovascular morbidity and mortality. The precise role of TH in onset and progression of heart failure still requires clarification. Methods: Chronic left ventricular pressure overload was induced in mouse hearts by transverse aortic constriction (TAC). One week after TAC, alteration of TH status was induced and the impact on cardiac disease progression was studied longitudinally over 4 weeks in mice with hypo- or hyperthyroidism and was compared to euthyroid TAC controls. Serial assessment was performed for heart function (2D M-mode echocardiography), heart morphology (weight, fibrosis, and cardiomyocyte cross-sectional area), and molecular changes in heart tissues (TH target gene expression, apoptosis, and mTOR activation) at 2 and 4 weeks. Results: In diseased heart, subsequent TH restriction stopped progression of maladaptive cardiac hypertrophy and improved cardiac function. In contrast and compared to euthyroid TAC controls, increased TH availability after TAC propelled maladaptive cardiac growth and development of heart failure. This was accompanied by a rise in cardiomyocyte apoptosis and mTOR pathway activation. Conclusion: This study shows, for the first time, a protective effect of TH deprivation against progression of pathological cardiac hypertrophy and development of congestive heart failure in mice with left ventricular pressure overload. Whether this also applies to the human situation needs to be determined in clinical studies and would infer a critical re-thinking of management of TH status in patients with hypertensive heart disease.
Collapse
Affiliation(s)
- Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elen Tolstik
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Judith Hönes-Wendland
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Gassen
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Zhu WZ, Olson A, Portman M, Ledee D. Sex impacts cardiac function and the proteome response to thyroid hormone in aged mice. Proteome Sci 2020; 18:11. [PMID: 33372611 PMCID: PMC7722307 DOI: 10.1186/s12953-020-00167-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022] Open
Abstract
Background Sex and age have substantial influence on thyroid function. Sex influences the risk and clinical expression of thyroid disorders (TDs), with age a proposed trigger for the development of TDs. Cardiac function is affected by thyroid hormone levels with gender differences. Accordingly, we investigated the proteomic changes involved in sex based cardiac responses to thyroid dysfunction in elderly mice. Methods Aged (18–20 months) male and female C57BL/6 mice were fed diets to create euthyroid, hypothyroid, or hyperthyroid states. Serial echocardiographs were performed to assess heart function. Proteomic changes in cardiac protein profiles were assessed by 2-D DIGE and LC-MS/MS, and a subset confirmed by immunoblotting. Results Serial echocardiographs showed ventricular function remained unchanged regardless of treatment. Heart rate and size increased (hyperthyroid) or decreased (hypothyroid) independent of sex. Pairwise comparison between the six groups identified 55 proteins (≥ 1.5-fold difference and p < 0.1). Compared to same-sex controls 26/55 protein changes were in the female hypothyroid heart, whereas 15/55 protein changes were identified in the male hypothyroid, and male and female hyperthyroid heart. The proteins mapped to oxidative phosphorylation, tissue remodeling and inflammatory response pathways. Conclusion We identified both predicted and novel proteins with gender specific differential expression in response to thyroid hormone status, providing a catalogue of proteins associated with thyroid dysfunction. Pursuit of these proteins and their involvement in cardiac function will expand our understanding of mechanisms involved in sex-based cardiac response to thyroid dysfunction.
Collapse
Affiliation(s)
- Wei Zhong Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA
| | - Aaron Olson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Division of Cardiology, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, Washington, USA
| | - Michael Portman
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA.,Division of Cardiology, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, Washington, USA
| | - Dolena Ledee
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave, Seattle, WA, 98101, USA. .,Division of Cardiology, Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, Washington, USA.
| |
Collapse
|
13
|
T3 Critically Affects the Mhrt/Brg1 Axis to Regulate the Cardiac MHC Switch: Role of an Epigenetic Cross-Talk. Cells 2020; 9:cells9102155. [PMID: 32987653 PMCID: PMC7598656 DOI: 10.3390/cells9102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
The LncRNA my-heart (Mhrt) and the chromatin remodeler Brg1 inhibit each other to respectively prevent or favor the maladaptive α-myosin-heavy-chain (Myh6) to β-myosin-heavy-chain (Myh7) switch, so their balance crucially guides the outcome of cardiac remodeling under stress conditions. Even though triiodothyronine (T3) has long been recognized as a critical regulator of the cardiac Myh isoform composition, its role as a modulator of the Mhrt/Brg1 axis is still unexplored. Here the effect of T3 on the Mhrt/Brg1 regulatory circuit has been analyzed in relation with chromatin remodeling and previously identified T3-dependent miRNAs. The expression levels of Mhrt, Brg1 and Myh6/Myh7 have been assessed in rat models of hyperthyroidism or acute myocardial ischemia/reperfusion (IR) treated with T3 replacement therapy. To gain mechanistic insights, in silico analyses and site-directed mutagenesis have been adopted in combination with gene reporter assays and loss or gain of function strategies in cultured cardiomyocytes. Our results indicate a pivotal role of Mhrt over-expression in the T3-dependent regulation of Myh switch. Mechanistically, T3 activates the Mhrt promoter at two putative thyroid hormone responsive elements (TRE) located in a crucial region that is necessary for both Mhrt activation and Brg1-dependent Mhrt repression. This newly identified T3 mode of action requires DNA chromatinization and is critically involved in mitigating the repressive function of the Brg1 protein on Mhrt promoter. In addition, T3 is also able to prevent the Brg1 over-expression observed in the post-IR setting through a pathway that might entail the T3-mediated up-regulation of miR-208a. Taken together, our data evidence a novel T3-responsive network of cross-talking epigenetic factors that dictates the cardiac Myh composition and could be of great translational relevance.
Collapse
|
14
|
Ferlazzo A, Cravana C, Fazio E, Medica P. The different hormonal system during exercise stress coping in horses. Vet World 2020; 13:847-859. [PMID: 32636578 PMCID: PMC7311877 DOI: 10.14202/vetworld.2020.847-859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
The review discusses the hormonal changes during exercise stress. The exercise generally produces a rise of adrenaline (A), noradrenaline (NA), adrenocorticotropic hormone (ACTH), cortisol, glucagon, growth hormone, arginine vasopressine, etc., and a drop of insulin. The hormonal events during reestablishment of homeostasis due to exercise stress can be divided into a catabolic phase, with decreased tolerance of effort, and reversible biochemical, hormonal and immunological changes, and an anabolic phase, with a higher adaptive capacity, and enhanced performance. The two main hormonal axes activated in the catabolic phase are sympathetic–adrenal–medullary system and hypothalamic-pituitary-adrenal (HPA) axis, while in the anabolic phase, growth hormone-insulin-like factor I axis, and gonadal axes. The hormonal responses during exercise and recovery can be regarded as regulatory and integrated endocrine responses. The increase of catecholamines and ACTH is dependent on the intensity of exercise; a marked increase in plasma A occurs during exercises with high emotional content. The response of cortisol is correlated with the duration of exercise, while the effect of exercise duration on b-endorphin changes is highly dependent on the type of exercise performed. Cortisol and b-endorphin changes usually occur in phase, but not during exercises with high emotional content. Glucocorticoids and iodothyronines are involved in meeting immediate energy demands, and a model of functional interactions between HPA axis and hypothalamic-pituitary-thyroid axis during exercise stress is proposed. A modulation of coping responses to different energy demanding physical activities required for sport activities could be hypothesized. This review supports the proposed regulation of hypophysiotropic TRHergic neurons as metabolic integrators during exercise stress. Many hormonal systems (ghrelin, leptin, glucose, insulin, and cortisol) are activated to control substrate mobilizations and utilization. The cardiovascular homeostasis, the fluid and electrolyte balance during exercise are highly dependent on vasoactive hormones (antidiuretic hormone, atrial natriuretic peptide, renin–angiotensin–aldosterone, and prostaglandins) control.
Collapse
Affiliation(s)
- Adriana Ferlazzo
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| | - Cristina Cravana
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| | - Esterina Fazio
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Unit of Veterinary Physiology, Polo Universitario Annunziata, Messina University, 98168 Messina, Italy
| |
Collapse
|
15
|
Abstract
The cardiovascular system is one of the main targets of thyroid hormone action, and triiodothyronine deficiency has crucial consequences on cardiac structure and function. Patients with overt or subclinical hypothyroidism should be treated with levothyroxine to improve their cardiovascular function and the potential risk of heart failure. Even patients with thyroid hormone deficiency and heart failure should receive replacement doses of levothyroxine to improve their prognosis and worsening of the cardiovascular function. An innovative therapeutic multifactorial approach could improve the progression of heart failure. There is a potential beneficial effect of thyroid hormones and their analogs in patients with heart failure.
Collapse
|
16
|
Liu Z, Ma C, Gu J, Yu M. Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis. Biomed Eng Online 2019; 18:9. [PMID: 30683112 PMCID: PMC6347746 DOI: 10.1186/s12938-019-0625-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/01/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is the common cause of mortality in developed countries. The feasibility of whole-genome gene expression analysis to identify outcome-related genes and dysregulated pathways remains unknown. Molecular marker such as BNP, CRP and other serum inflammatory markers have got the notice at this point. However, these biomarkers exhibit elevated levels in patients with thyroid disease, renal failure and congestive heart failure. In this study, three groups of microarray data sets (GES66360, GSE48060, GSE29532) were collected from GEO, a total of 99, 52 and 55 samples, respectively. Weighted gene co-expression network analysis (WGCNA) was performed to obtain a classifier which composed of related genes that best characterize the AMI. RESULTS Here, this study obtained three groups of microarray data sets (GES66360, GSE48060, GSE29532) on AMI blood samples, a total of 99, 52 and 24 samples, respectively. In all, 4672 genes, 3185 genes, 3660 genes were identified in GSE66360, GSE48060, GSE60993 modules, respectively. We preformed WGCNA, GO and KEGG pathway enrichment analysis on these three data sets, finding function enrichment of the differential expression gene on inflammation and immune response. Transcriptome analysis were performed in AMI patients at four time points compared to CAD patients with no history of MI, to determine gene expression profiles and their possible changes during the recovery from myocardial infarction. CONCLUSIONS The results suggested that three overlapping genes (FGFBP2, GFOD1 and MLC1) between two modules could be a potential use of gene biomarkers for the diagnose of AMI.
Collapse
Affiliation(s)
- Zhihua Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. .,Beijing Yuqiu Medical Research Institute, Beijing, 100022, China. .,Shenzhen Yuqiu Biological Big Data Research Institute, Shenzhen, 518033, China. .,Nanjing Yuqiu Biotechnology Co., Ltd., Nanjing, 210009, China.
| | - Chenguang Ma
- Tsinghua University, Beijing, 100084, China.,Beijing Yuqiu Medical Research Institute, Beijing, 100022, China.,Shenzhen Yuqiu Biological Big Data Research Institute, Shenzhen, 518033, China.,Nanjing Yuqiu Biotechnology Co., Ltd., Nanjing, 210009, China
| | - Junhua Gu
- Shenzhen Yuqiu Biological Big Data Research Institute, Shenzhen, 518033, China.,Nanjing Yuqiu Biotechnology Co., Ltd., Nanjing, 210009, China.,Hebei University of Technology, Tianjin, 300130, China
| | - Ming Yu
- Shenzhen Yuqiu Biological Big Data Research Institute, Shenzhen, 518033, China.,Nanjing Yuqiu Biotechnology Co., Ltd., Nanjing, 210009, China.,Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
17
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
18
|
Louzada RA, Carvalho DP. Similarities and Differences in the Peripheral Actions of Thyroid Hormones and Their Metabolites. Front Endocrinol (Lausanne) 2018; 9:394. [PMID: 30072951 PMCID: PMC6060242 DOI: 10.3389/fendo.2018.00394] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023] Open
Abstract
Thyroxine (T4) and 3,5,3'-triiodothyronine (T3) are secreted by the thyroid gland, while T3 is also generated from the peripheral metabolism of T4 by iodothyronine deiodinases types I and II. Several conditions like stress, diseases, and physical exercise can promote changes in local TH metabolism, leading to different target tissue effects that depend on the presence of tissue-specific enzymatic activities. The newly discovered physiological and pharmacological actions of T4 and T3 metabolites, such as 3,5-diiodothyronine (3,5-T2), and 3-iodothyronamine (T1AM) are of great interest. A classical thyroid hormone effect is the ability of T3 to increase oxygen consumption in almost all cell types studied. Approximately 30 years ago, a seminal report has shown that 3,5-T2 increased oxygen consumption more rapidly than T3 in hepatocytes. Other studies demonstrated that exogenous 3,5-T2 administration was able to increase whole body energy expenditure in rodents and humans. In fact, 3,5-T2 treatment prevents diabetic nephropathy, hepatic steatosis induced by high fat diet, insulin resistance, and weight gain during aging in Wistar male rats. The regulation of mitochondria is likely one of the most important actions of T3 and its metabolite 3,5-T2, which was able to restore the thermogenic program of brown adipose tissue (BAT) in hypothyroid rats, just as T3 does, while T1AM administration induced rapid hypothermia. T3 increases heart rate and cardiac contractility, which are hallmark effects of hyperthyroidism involved in cardiac arrhythmia. These deleterious cardiac effects were not observed with the use of 3,5-T2 pharmacological doses, and in contrast T1AM was shown to promote a negative inotropic and chronotropic action at micromolar concentrations in isolated hearts. Furthermore, T1AM has a cardioprotective effect in a model of ischemic/reperfusion injury in isolated hearts, such as occurs with T3 administration. Despite the encouraging possible therapeutic use of TH metabolites, further studies are needed to better understand their peripheral effects, when compared to T3 itself, in order to establish their risk and benefit. On this basis, the main peripheral effects of thyroid hormones and their metabolites in tissues, such as heart, liver, skeletal muscle, and BAT are discussed herein.
Collapse
|
19
|
Janssen R, Muller A, Simonides WS. Cardiac Thyroid Hormone Metabolism and Heart Failure. Eur Thyroid J 2017; 6:130-137. [PMID: 28785539 PMCID: PMC5527173 DOI: 10.1159/000469708] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
The heart is a principal target of thyroid hormone, and a reduction of cardiac thyroid hormone signaling is thought to play a role in pathological ventricular remodeling and the development of heart failure. Studies in various rodent models of heart disease have identified increased activity of cardiac type III deiodinase as a possible cause of diminished levels and action of thyroid hormone. Recent data indicate novel mechanisms underlying the induction of this thyroid hormone-degrading enzyme in the heart as well as post-transcriptional regulation of its expression by microRNAs. In addition, the relevance of diminished thyroid hormone signaling for cardiac remodeling is suggested to include miRNA-mediated effects on pathological signaling pathways. These and other recent studies are reviewed and discussed in the context of other processes and factors that have been implicated in the reduction of cardiac thyroid hormone signaling in heart failure.
Collapse
Affiliation(s)
| | | | - Warner S. Simonides
- *Warner S. Simonides, PhD, Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, De Boelelaan 1118, NL–1081 HV Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
20
|
Widiapradja A, Chunduri P, Levick SP. The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 2017; 74:2019-2038. [PMID: 28097372 PMCID: PMC6339818 DOI: 10.1007/s00018-017-2452-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022]
Abstract
In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets.
Collapse
Affiliation(s)
- Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Prasad Chunduri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
21
|
Cokkinos DV. Another promise against ischemia reperfusion injury: every success raises new questions. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S3. [PMID: 27867971 DOI: 10.21037/atm.2016.08.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dennis V Cokkinos
- Heart and Vessel Department, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|