1
|
Batista ANR, Garcia T, Prudente R, Barbosa MF, Modesto P, Franco E, de Godoy I, Paiva S, Azevedo P, Tanni SE. Cardiac function, myocardial fat deposition, and lipid profile in young smokers: a cross-sectional study. Front Cardiovasc Med 2023; 10:1225621. [PMID: 38034384 PMCID: PMC10682099 DOI: 10.3389/fcvm.2023.1225621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Background There is a possibility that cardiac morphometric characteristics are associated with the lipid profile, that is, the composition and concentration of triglycerides, total cholesterol, HDL, LDL, and others lipoproteins in young smokers without comorbidities. Thus, this study aimed to evaluate the association of cardiac morphometric characteristics, myocardial fat deposition, and smoking cessation with the lipid profile of young smokers. Methods A clinical and laboratory evaluation of lipids and the smoking status was performed on 57 individuals, including both a smoker group and a control group. Cardiac magnetic resonance imaging (MRI) with proton spectroscopy was performed to identify cardiac changes and triglyceride (TG) deposition in myocardial tissue. Results No differences were observed between the groups (control vs. smokers) in relation to the amount of myocardial TG deposition (p = 0.47); however, when TG deposition was correlated with cardiac MRI variables, a positive correlation was identified between smoking history and myocardial TG deposition [hazard ratio (95% CI), 0.07 (0.03-0.12); p = 0.002]. Furthermore, it was observed that the smoking group had lower high-density lipoprotein cholesterol [51 (45.5-59.5) mg/dl vs. 43 (36-49.5) mg/dl, p = 0.003] and higher TG [73 (58-110) mg/dl vs. 122 (73.5-133) mg/dl, p = 0.01] and very-low-density lipoprotein cholesterol [14.6 (11.6-22.2) mg/dl vs. 24.4 (14.7-26.6) mg/dl, p = 0.01] values. In the control and smoking groups, a negative correlation between TGs and the diameter of the aortic root lumen and positive correlation with the thickness of the interventricular septum and end-diastolic volume (EDV) of both the right ventricle (RV) and left ventricle (LV) were noted. Moreover, in the RV, positive correlations with the end-systolic volume (ESV) index (ESVI), stroke volume (SV), ESV, and EDV were observed. Regarding serum free fatty acids, we found a negative correlation between their values and the diameter of the lumen of the ascending aortic vessel. Lipoprotein lipase showed a positive correlation with the SV index of the RV and negative correlation with the diameter of the lumen of the ascending aortic vessel. Conclusion Several associations were observed regarding cardiac morphometric characteristics, myocardial fat deposition, and smoking cessation with the lipid profile of young smokers.
Collapse
Affiliation(s)
- Ana Natália Ribeiro Batista
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Thaís Garcia
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Robson Prudente
- Pulmonary Function Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Maurício F. Barbosa
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Pamela Modesto
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Estefânia Franco
- Pulmonary Function Laboratory, Clinical Hospital of Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | - Irma de Godoy
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Sergio Paiva
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Paula Azevedo
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| | - Suzana Erico Tanni
- Pneumology Area, Department of Internal Medicine, Botucatu School of Medicine, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
2
|
Rochitte CE, Silva DC, Otaduy MC, Chaim KT, Nomura CH, Caramelli B. Cardiac Magnetic Resonance Imaging in a 7 Tesla Magnetic Field: Initial Experience with Hydrogen and Sodium Nuclei. Arq Bras Cardiol 2023; 120:e20220762. [PMID: 37556655 PMCID: PMC10382146 DOI: 10.36660/abc.20220762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/19/2023] [Accepted: 05/10/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Carlos E. Rochitte
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do, São Paulo, SP – Brasil
| | - Douglas C. Silva
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do, São Paulo, SP – Brasil
| | - Maria C. Otaduy
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilHospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Departamento de Radiologia e Oncologia do, São Paulo, SP – Brasil
| | - Khallil T. Chaim
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilHospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Departamento de Radiologia e Oncologia do, São Paulo, SP – Brasil
| | - Cesar H. Nomura
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular do, São Paulo, SP – Brasil
| | - Bruno Caramelli
- Hospital das ClínicasFaculdade de MedicinaUniversidade de São PauloSão PauloSPBrasilInstituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP) – Unidade de Medicina Interdisciplinar em Cardiologia, São Paulo, SP – Brasil
| |
Collapse
|
3
|
In Vivo Magnetic Resonance Spectroscopy Methods for Investigating Cardiac Metabolism. Metabolites 2022; 12:metabo12020189. [PMID: 35208262 PMCID: PMC8877606 DOI: 10.3390/metabo12020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive and non-ionizing technique, enabling in vivo investigation of cardiac metabolism in normal and diseased hearts. In vivo measurement tools are critical for studying mechanisms that regulate cardiac energy metabolism in disease developments and to assist in early response assessments to novel therapies. For cardiac MRS, proton (1H), phosphorus (31P), and hyperpolarized 13-carbon (13C) provide valuable metabolic information for diagnosis and treatment assessment purposes. Currently, low sensitivity and some technical limitations limit the utility of MRS. An essential step in translating MRS for clinical use involves further technological improvements, particularly in coil design, improving the signal-to-noise ratios, field homogeneity, and optimizing radiofrequency sequences. This review addresses the recent advances in metabolic imaging by MRS from primarily the literature published since 2015.
Collapse
|
4
|
Chen S, Huang L, Zhang Q, Wang J, Chen Y. T2-weighted cardiac magnetic resonance image and myocardial biomarker in hypertrophic cardiomyopathy. Medicine (Baltimore) 2020; 99:e20134. [PMID: 32501969 PMCID: PMC7306317 DOI: 10.1097/md.0000000000020134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phenomenon of high signal intensity on T2-weighted imaging of cardiac magnetic resonance in hypertrophic cardiomyopathy (HCM) has been previously studied. However, the underlying histopathologic mechanism remains unclear. Elevated cardiac troponin can be detected in some HCM patients. A reasonable hypothesis is that high myocardial T2 signal is a potential marker of myocardial injury in HCM. We sought to investigate the association between cardiac troponin and the extent of high T2 signals in HCM patients.Forty-four HCM patients underwent 3.0T cardiac magnetic resonance scanning. On T2-weighted images, the number of segments with high-signal intensity (myocardium-to-skeletal muscle signal intensity ratio >2) and the percentage of high-signal area (>2 standard deviation above the remote tissue) were measured in 16 myocardial segments along the LV mid-myocardial circumference on 3 short-axis images. The level of high-sensitivity cardiac troponin T (hs-cTnT) was also assessed.Myocardial high T2 signals were identified in 33 (75%) patients and 144 (20.5%) segments. Elevated hs-cTnT was observed in 28 (63.6%) patients. The Cochran-Armitage test showed a statistically significant trend of increasing levels of hs-cTnT with elevated number of segments with myocardial high T2 signal (P = .002). Further, the percentage of myocardium with high T2 signal was significantly associated with the hs-cTnT level (Pearson correlation: r = 0.388, P = .009).Myocardium with high T2 signals was very common in patients with HCM.Its extent is related with the level of plasma hs-cTnT.
Collapse
Affiliation(s)
- Shi Chen
- Department of Cardiology, West China Hospital, Sichuan University
| | - Liwei Huang
- Department of Cardiovascular Ultrasound and Noninvasive Cardiology, Sichuan Academy of Medical Sciences and Sichuan People's Hospital, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University
| | - Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University
| |
Collapse
|
5
|
Tong D, Zaha VG. Metabolic Imaging in Cardio-oncology. J Cardiovasc Transl Res 2019; 13:357-366. [PMID: 31696405 DOI: 10.1007/s12265-019-09927-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Tremendous progress in cancer detection and therapy has improved survival. However, cardiovascular complications are a major source of morbidity in cancer survivors. Cardiotoxicity is currently defined by structural myocardial changes and cardiac injury biomarkers. In many instances, such changes are late and irreversible. Therefore, diagnostic modalities that can identify early alterations in potentially reversible biochemical and molecular signaling processes are of interest. This review is focused on emerging translational metabolic imaging modalities. We present in context relevant mitochondrial biology aspects that ground the development and application of these technologies for detection of cancer therapy-related cardiac dysfunction (CTRCD). The application of these modalities may improve the assessment of cardiovascular risk when anticancer treatments with a defined cardiometabolic toxic mechanism are to be used. Also, they may serve as screening tools for cardiotoxicity when novel lines of cancer therapies are applied.
Collapse
Affiliation(s)
- Dan Tong
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Vlad G Zaha
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA. .,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, USA. .,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA.
| |
Collapse
|
6
|
Dellegrottaglie S, Scatteia A, Pascale CE, Renga F, Perrone-Filardi P. Evaluation of Cardiac Metabolism by Magnetic Resonance Spectroscopy in Heart Failure. Heart Fail Clin 2019; 15:421-433. [DOI: 10.1016/j.hfc.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
|
8
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
9
|
Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol 2018; 113:10. [PMID: 29344827 PMCID: PMC5772148 DOI: 10.1007/s00395-018-0668-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction and subsequent heart failure is a major health burden associated with significant mortality and morbidity in western societies. The ability of cardiac tissue to recover after myocardial infarction is affected by numerous complex cellular and molecular pathways. Unbalance or failure of these pathways can lead to adverse remodelling of the heart and poor prognosis. Current clinical cardiac imaging modalities assess anatomy, perfusion, function, and viability of the myocardium, yet do not offer any insight into the specific molecular pathways involved in the repair process. Novel imaging techniques allow visualisation of these molecular processes and may have significant diagnostic and prognostic values, which could aid clinical management. Single photon-emission tomography, positron-emission tomography, and magnetic resonance imaging are used to visualise various aspects of these molecular processes. Imaging probes are usually attached to radioisotopes or paramagnetic nanoparticles to specifically target biological processes such as: apoptosis, necrosis, inflammation, angiogenesis, and scar formation. Although the results from preclinical studies are promising, translating this work to a clinical environment in a valuable and cost-effective way is extremely challenging. Extensive evaluation evidence of diagnostic and prognostic values in multi-centre clinical trials is still required.
Collapse
|