1
|
Ghasemi Pour Afshar N, Arab HA, Vatannejad A, Ashabi G, Golabchifar AA. The Role of the JAK-STAT Signaling Pathway in the Protective Effects of Hepatic Ischemia Post-conditioning Against the Injury Induced by Ischemia/Reperfusion in the Rat Liver. Adv Pharm Bull 2024; 14:224-230. [PMID: 38585457 PMCID: PMC10997924 DOI: 10.34172/apb.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Hepatic ischemic post-conditioning (IPOC) is shown to protect the liver from injury induced by ischemia/reperfusion (IR). However, the mechanism underlying this protection has remained elusive. The present study aimed to investigate the role of the interleukin 6-Janus kinase-signal transducers and activators of transcription (IL-6-JAK-STAT) pathway in the protective effect of hepatic IPOC against the IR-induced injury in the liver. Methods Twenty-five rats were randomly divided into 5 groups of (1) sham-operated, (2) IR, (3) IR+hepatic IPOC, (4) IR+tofacitinib (TOFA), and (5) IR+TOFA+hepatic IPOC. The changes induced by IR and the effects of different treatments were assessed by enzyme release, histopathological observations, the serum level of IL-6, and the occurrence of apoptosis detected via the expression of the Bax/Bcl-2 ratio. Results The hepatic IPOC improved the liver injury induced by IR as shown by histological changes, reduction of IL-6 level, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) compared to the IR group (P<0.001, P<0.05, P<0.05, respectively). There was also downregulation of the Bax/Bcl2 ratio in the rats exposed to IR+hepatic IPOC compared with those in the IR group (P<0.05). However, TOFA, an inhibitor of JAK-STAT activity, inhibited the protective effect of hepatic IPOC. Conclusion It suggests that the protective effect of hepatic IPOC against IR-induced injury may be mediated by activating the IL-6-JAK-STAT pathway.
Collapse
Affiliation(s)
- Neda Ghasemi Pour Afshar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Ali Arab
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali akbar Golabchifar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Yuan X, Liu K, Dong P, Han H. Protective effect and mechanism of different proportions of " Danggui-Kushen" herb pair on ischemic heart disease. Heliyon 2023; 9:e22150. [PMID: 38034717 PMCID: PMC10685368 DOI: 10.1016/j.heliyon.2023.e22150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
This study aims to investigate the protective effect and mechanism of "Danggui-Kushen" herb pair (DKHP) on ischemic heart disease (IHD). The rat model of myocardial reperfusion injury (MIRI) was established by ligation of the left anterior descending coronary artery. Rats were randomly divided into seven groups and administered orally for 7 days: control group, IHD group, DKHP1:1 group, DKHP1:2 group, DKHP2:1 group, DKHP1:3 group, DKHP3:1 group, the dosage was 2.7 g/kg. Measure electrocardiogram (ECG), myocardial infarction and injury assessment, Hematoxylin and eosin (HE) staining to evaluate myocardial injury and the protective effect of DKHP. Lactate dehydrogenase (LDH), Reactive oxygen species (ROS), IL-1β and IL-6 kit detection, immunohistochemical analysis, establishment of H9c2 cardiomyocyte hypoxia (Hypoxia) model, DKHP pretreatment for 3 h, MTT method to detect cell survival rate, cell immunofluorescence to observe NF- The expression of TLR-4, NF-κB, p-NF-κB, IKβα, p-IKβα, HIF-1α, VEGF and other genes and proteins were detected by κB nuclear translocation, mitochondrial membrane potential measurement, Western blot and Polymerase Chain Reaction (PCR). Compared with the model group, DKHP can reduce the size of myocardial infarction, reduce the levels of factors such as LDH, ROS, IL-1β and IL-6, and improve the cell survival rate; Compared with the model group, DKHP can inhibit the nuclear transfer of NF-κB and reduce mitochondrial damage; the results of immunohistochemical analysis, PCR and Western blot showed that compared with the model group, DKHP can reduce TLR-4, p-NF-κB, Expression levels of p-IKβα, HIF-1α, VEGF and other proteins. Reveal that DKHP may play a protective role in ischemic heart disease by reducing inflammation and oxidative stress damage. DKHP may have protective effect on ischemic heart disease, and its mechanism may be through reducing inflammatory response and oxidative stress damage to achieve this protective effect.
Collapse
Affiliation(s)
- Xu Yuan
- College of Medicine, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| | - Kemeng Liu
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, China
| |
Collapse
|
3
|
Banjac N, Vasović V, Stilinović N, Tomas A, Vasović L, Martić N, Prodanović D, Jakovljević V. The Effects of Different Doses of Sildenafil on Coronary Blood Flow and Oxidative Stress in Isolated Rat Hearts. Pharmaceuticals (Basel) 2023; 16:118. [PMID: 36678615 PMCID: PMC9864553 DOI: 10.3390/ph16010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/15/2023] Open
Abstract
The dose-response relationship of sildenafil effects on cardiac function is not completely elucidated. The aim of this study was to assess the effects of different doses of sildenafil on coronary flow and oxidative stress in isolated rat hearts. Coronary flow and markers of oxidative stress, including nitrite outflow, and superoxide anion production in coronary effluent, were determined for isolated rat hearts. The experiments were performed during control conditions and in the presence of sildenafil (10, 20, 50, 200 nM) alone or with Nω-nitro-L-arginine monomethyl ester (L-NAME) (30 μM). Sildenafil was shown to result in a significant increase in coronary flow at lower coronary perfusion pressure (CPP) values at all administered doses, whereas, with an increase in CPP, a reduction in coronary flow was observed. An increase in nitric oxide (NO) was most pronounced in the group treated with the lowest dose of sildenafil at the highest CPP value. After the inhibition of the NO-cyclic guanosine monophosphate (cGMP) signaling (NOS) system by L-NAME, only a dose of 200 nM sildenafil was high enough to overcome the inhibition and to boost release of O2-. That effect was CPP-dependent, with statistical significance reached at 80, 100 and 120 mmHg. Our findings indicate that sildenafil causes changes in heart vasculature in a dose-dependent manner, with a shift from a vasodilatation effect to vasoconstriction with a pressure increase. The highest dose administered is capable of producing superoxide anion radicals in terms of NOS system inhibition.
Collapse
Affiliation(s)
- Nada Banjac
- Medical Faculty, University of Banja Luka, 78000 Republika Srpska, Bosnia and Herzegovina;
| | - Velibor Vasović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Ana Tomas
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Lucija Vasović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nikola Martić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Dušan Prodanović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.V.); (N.S.); (A.T.); (N.M.)
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
4
|
Cheng X, Hu J, Liu X, Tibenda JJ, Wang X, Zhao Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front Pharmacol 2022; 13:934256. [PMID: 36060007 PMCID: PMC9437626 DOI: 10.3389/fphar.2022.934256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a significant role in treating and preventing human diseases. Ischemic heart and cerebrovascular injuries are two types of diseases with different clinical manifestations with high prevalence and incidence. In recent years, it has been reported that many TCM has beneficial effects on ischemic diseases through the inhibition of apoptosis, which is the key target to treat myocardial and cerebral ischemia. This review provides a comprehensive summary of the mechanisms of various TCMs in treating ischemic cardiovascular and cerebrovascular diseases through anti-apoptotic targets and pathways. However, clinical investigations into elucidating the pharmacodynamic ingredients of TCM are still lacking, which should be further demystified in the future. Overall, the inhibition of apoptosis by TCM may be an effective strategy for treating ischemic cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiuli Cheng
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Hu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Liu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| |
Collapse
|
5
|
Microglia polarization in ischemic stroke: complex mechanisms and therapeutic interventions. Chin Med J (Engl) 2021; 134:2415-2417. [PMID: 34669634 PMCID: PMC8654435 DOI: 10.1097/cm9.0000000000001711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
6
|
Gao T, Yang P, Fu D, Liu M, Deng X, Shao M, Liao J, Jiang H, Li X. The protective effect of allicin on myocardial ischemia-reperfusion by inhibition of Ca 2+ overload-induced cardiomyocyte apoptosis via the PI3K/GRK2/PLC-γ/IP3R signaling pathway. Aging (Albany NY) 2021; 13:19643-19656. [PMID: 34343971 PMCID: PMC8386544 DOI: 10.18632/aging.203375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Purpose: To investigate the protective effect and mechanism of allicin on myocardial ischemia-reperfusion (MI/R) injury. Methods: We investigated the mechanisms by which allicin attenuated the MI/R injury by focusing on phosphoinositide 3-kinase, G protein coupled receptor kinases 2, phospholipase Cγ and cardiomyocyte apoptosis. Sixty male mice were randomly assigned into three groups: repeated MI/R (model), sham-operated (control), and MI/R+ allicin group (allicin). Ultrasound examination was used to examine the cardiac function. Masson staining was used to evaluate the myocardial infarct area. TUNEL assay was performed to examine the anti-apoptotic effect of allicin. Differentially expressed genes (DEGs) and pathways were analyzed by mRNA microarray analysis. Immunofluorescence staining and western blot were carried out to detect the effect of allicin on the PI3K. A pan-PLC activator, m-3M3FBS, was applied to investigate whether allicin induced cardiomyocyte apoptosis was via the GRK2/PLC/IP3R signaling pathway. Results: Masson staining and the TUNEL assay revealed that allicin reduced infarct size and played an anti-apoptotic role in M/IR. Ultrasound examination revealed that allicin improved cardiac function after M/IR injury. Gene ontology analysis indicated that the calcium signaling pathway and PI3KCA(PI3K) were selected. Immunofluorescence staining and western blot exposed that PI3K was activated by allicin during MI/R injury. Fura-2AM staining revealed that the PI3K -mediated GRK2/PLC-γ/IP3R pathway may be involved in the protective effect of allicin on MI/R injury. Conclusions: Allicin has a protective effect on MI/R injury. This effect might be associated with the inhibition of Ca2+ overload-induced apoptosis and the inhibition of the PI3K -mediated GRK2/PLC-γ/IP3R signaling pathway.
Collapse
Affiliation(s)
- Tong Gao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Peng Yang
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dongliang Fu
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengru Liu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xinyi Deng
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Mingjing Shao
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jiangquan Liao
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hong Jiang
- Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xianlun Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Integrative Medicine Cardiology, China-Japan Friendship Hospital, Beijing 100029, China.,Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| |
Collapse
|
7
|
Han X, Jiang HL, Yang SJ, Liu WT, Niu J. 1D/2D Co(II) coordination polymers: magnetic properties and application values on the ischemic myocardial infarction by regulating the JAK signaling pathway. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Hu XM, Zhang Q, Zhou RX, Wu YL, Li ZX, Zhang DY, Yang YC, Yang RH, Hu YJ, Xiong K. Programmed cell death in stem cell-based therapy: Mechanisms and clinical applications. World J Stem Cells 2021; 13:386-415. [PMID: 34136072 PMCID: PMC8176847 DOI: 10.4252/wjsc.v13.i5.386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue repair and functional recovery. However, transplanted stem cells show a high death percentage, creating challenges to successful transplantation and prognosis. Thus, it is necessary to investigate the mechanisms underlying stem cell death, such as apoptotic cascade activation, excessive autophagy, inflammatory response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. Targeting the molecular pathways involved may be an efficient strategy to enhance stem cell viability and maximize transplantation success. Notably, a more complex network of cell death receives more attention than one crucial pathway in determining stem cell fate, highlighting the challenges in exploring mechanisms and therapeutic targets. In this review, we focus on programmed cell death in transplanted stem cells. We also discuss some promising strategies and challenges in promoting survival for further study.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rui-Xin Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yan-Lin Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China
| | - Rong-Hua Yang
- Department of Burns, Fo Shan Hospital of Sun Yat-Sen University, Foshan 528000, Guangdong Province, China
| | - Yong-Jun Hu
- Department of Cardiovascular Medicine, Hunan People's Hospital (the First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
9
|
H 2S Pretreatment Is Promigratory and Decreases Ischemia/Reperfusion Injury in Human Microvascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8886666. [PMID: 33953839 PMCID: PMC8068530 DOI: 10.1155/2021/8886666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022]
Abstract
Endothelial cell injury and vascular function strongly correlate with cardiac function following ischemia/reperfusion injury. Several studies indicate that endothelial cells are more sensitive to ischemia/reperfusion compared to cardiomyocytes and are critical mediators of cardiac ischemia/reperfusion injury. H2S is involved in the regulation of cardiovascular system homeostasis and can act as a cytoprotectant during ischemia/reperfusion. Activation of ERK1/2 in endothelial cells after H2S stimulation exerts an enhancement of angiogenesis while its inhibition significantly decreases H2S cardioprotective effects. In this work, we investigated how H2S pretreatment for 24 hours prevents the ischemia/reperfusion injury and promotes angiogenesis on microvascular endothelial cells following an ischemia/reperfusion protocol in vitro, using a hypoxic chamber and ischemic buffer to simulate the ischemic event. H2S preconditioning positively affected cell viability and significantly increased endothelial cell migration when treated with 1 μM H2S. Furthermore, mitochondrial function was preserved when cells were preconditioned. Since ERK1/2 phosphorylation was extremely enhanced in ischemia/reperfusion condition, we inhibited ERK both directly and indirectly to verify how H2S triggers this pathway in endothelial cells. Taken together, our data suggest that H2S treatment 24 hours before the ischemic insult protects endothelial cells from ischemia/reperfusion injury and eventually decreases myocardial injury.
Collapse
|
10
|
Hazafa A, Batool A, Ahmad S, Amjad M, Chaudhry SN, Asad J, Ghuman HF, Khan HM, Naeem M, Ghani U. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases. Life Sci 2021; 264:118679. [PMID: 33130077 DOI: 10.1016/j.lfs.2020.118679] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Humanin (HN) is a small mitochondrial-derived cytoprotective polypeptide encoded by mtDNA. HN exhibits protective effects in several cell types, including leukocytes, germ cells, neurons, tissues against cellular stress conditions and apoptosis through regulating various signaling mechanisms, such as JAK/STAT pathway and interaction of BCL-2 family of protein. HN is an essential cytoprotective peptide in the human body that regulates mitochondrial functions under stress conditions. The present review aims to evaluate HN peptide's antiapoptotic activities as a potential therapeutic target in the treatment of cancer, diabetes mellitus, male infertility, bone-related diseases, cardiac diseases, and brain diseases. Based on in vitro and in vivo studies, HN significantly suppressed the apoptosis during the treatment of bone osteoporosis, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. According to accumulated data, it is concluded that HN exerts the proapoptotic activity of TNF-α in cancer, which makes HN as a novel therapeutic agent in the treatment of cancer and suggested that along with HN, the development of another mitochondrial-derived peptide could be a viable therapeutic option against different oxidative stress and apoptosis-related diseases.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saeed Ahmad
- Centre of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Muhammad Amjad
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sundas Nasir Chaudhry
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jamal Asad
- Department of Biochemistry, University of Health Sciences Lahore, Pakistan
| | - Hasham Feroz Ghuman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | | | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Usman Ghani
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
11
|
ATP-Sensitive Potassium Channels Mediate the Cardioprotective Effect of Panax notoginseng Saponins against Myocardial Ischaemia-Reperfusion Injury and Inflammatory Reaction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3039184. [PMID: 33134375 PMCID: PMC7593753 DOI: 10.1155/2020/3039184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 01/22/2023]
Abstract
Inflammatory response during myocardial ischemia reperfusion injury (MIRI) is essential for cardiac healing, while excessive inflammation extends the infarction and promotes adverse cardiac remodeling. Understanding the mechanism of these uncontrolled inflammatory processes has a significant impact during the MIRI therapy. Here, we found a critical role of ATP-sensitive potassium channels (KATP) in the inflammatory response of MIRI and its potential mechanism and explored the effects of Panax Notoginseng Saponins (PNS) during this possess. Rats underwent 40 min ischemia by occlusion of the left anterior descending (LAD) coronary artery and 60 min of reperfusion. PNS was treated at the corresponding time point before operation; 5-hydroxydecanoate (5-HD) and glybenclamide (Gly) (or Nicorandil (Nic)) were used as pharmacological blocker (or nonselective opener) of KATP. Cardiac function and pathomorphology were evaluated and a set of molecular signaling experiments was tested. KATP current density was measured by patch-clamp. Results revealed that in MIRI, PNS pretreatment restored cardiac function, reduced infarct size, and ameliorated inflammation through KATP. However, inhibiting KATP by 5-HD and Gly significantly reversed the effects, including NLRP3 inflammasome and inflammatory mediators IL-6, MPO, TNF-α, and MCP-1. Moreover, PNS inhibited the phosphorylation and nuclear translocation of NF-κB in I/R myocardium when the KATP was activated. Importantly, PNS promoted the expression of subunits and activation of KATP. The study uncovered KATP served as a new potential mechanism during PNS modulating MIRI-induced inflammation and promoting injured heart recovery. The manipulation of KATP could be a potential therapeutic approach for MIRI and other inflammatory diseases.
Collapse
|