1
|
Li F, Wang T, Lin P, Wang Y, Chen Y, Feng J. SOCS6, an inhibitory factor in Japanese eel inhibits the type I IFN pathway and the MyD88-mediated NF-kB pathway. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109901. [PMID: 39276815 DOI: 10.1016/j.fsi.2024.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
SOCS family genes are a class of repressors in various signaling pathways of mammals involved in regulating immunity, growth, and development, but the information remains limited in teleost. The full-length cDNA sequence of the Japanese eel SOCS6 gene, named AjSOCS6, was first cloned and showed to encode 529 amino acids with a conserved SH2 structural domain and a typical structure of a C-terminal SOCS box. AjSOCS6 is evolutionarily close to that of rainbow trout and zebrafish. AjSOCS6 gene expression was observed across all tissues in Japanese eel, with the highest levels found in the intestine. In vivo studies showed that AjSOCS6 was significantly upregulated in the liver following exposure to LPS, poly I:C, and Aeromonas hydrophila infection. In vitro, stimulation with poly I:C, CpG, and A. hydrophila infection increased AjSOCS6 expression in Japanese eel liver cells. Subcellular localization revealed that AjSOCS6 was dispersed in the cytoplasm. Overexpressing AjSOCS6 significantly suppressed the expression of immune-related genes, such as c-Rel and p65 in the NF-κB pathway, IFN1, IFN2, and IFN4 in the type I IFN signaling pathway, and the downstream inflammatory factor IL-6 in Japanese eel liver cells. Conversely, knocking down AjSOCS6 in vitro in liver cells and in vivo in the liver, spleen, and kidney significantly upregulated these gene expressions. Co-transfection of AjSOCS6 with AjMyD88 into HEK293 cells significantly reduced NF-κB luciferase activities compared to AjMyD88 single-transfection groups, in a natural state and under LPS stimulation. These findings suggest that AjSOCS6 negatively regulates MyD88-dependent NF-κB and type I IFN signaling pathways, underscoring its role in the immune defense of fish against viral and bacterial infections.
Collapse
Affiliation(s)
- Fuyan Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Tianyu Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Peng Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Yun Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Jianjun Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, China; Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
2
|
Zhou J, Luo W, Xie Z, Xia C, Zhao J. KLF4-induced upregulation of SOCS1 ameliorates myocardial ischemia/reperfusion injury by attenuating AC16 cardiomyocyte damage and enhancing M2 macrophage polarization. J Biochem Mol Toxicol 2024; 38:e23816. [PMID: 39185902 DOI: 10.1002/jbt.23816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Reperfusion strategies, the standard therapy for acute myocardial infarction (AMI), may result in ischemia/reperfusion (I/R) damage. Suppressor of cytokine signaling1 (SOCS1) exerts a cardioprotective function in myocardial I/R damage. Here, we investigated epigenetic modulators that deregulate SOCS1 in cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. Human AC16 cardiomyocytes were exposed to H/R conditions to generate a cell model of myocardial I/R damage. Expression of mRNA and protein was detected by quantitative PCR and western blot analysis, respectively. Cell migratory and invasive abilities were evaluated by transwell assay. Cell apoptosis and M2 macrophage polarization were assessed by flow cytometry. TNF-α, IL-1β, and IL-6 levels were examined by ELISA. The interaction of KLF4 with SOCS1 was verified by chromatin immunoprecipitation and luciferase assays. SOCS1 and transcription factor KLF4 protein levels were underexpressed by 75% and 57%, respectively, in H/R-exposed AC16 cardiomyocytes versus control cells. Under H/R conditions, forced SOCS1 expression (2.7 times) induced cell migration (2.2 times) and invasion (1.9 times) and hindered cell apoptosis (by 45%) of AC16 cardiomyocytes as well as enhanced M2 macrophage polarization (4.6 times). Mechanistically, KLF4 upregulation promoted SOCS1 transcription (2.6 times) and expression (2.6 times) by binding to the SOCS1 promoter. Decrease of SOCS1 (by 51%) reversed the effects of KLF4 upregulation on cardiomyocyte migration, invasion and apoptosis, and M2 macrophage polarization under H/R conditions. Additionally, SOCS1 and KLF4 were underexpressed by 56% and 63%, respectively, in AMI serum. Our study indicates that KLF4-induced upregulation of SOCS1 can attenuate H/R-triggered apoptosis of AC16 cardiomyocytes and enhance M2 macrophage polarization.
Collapse
Affiliation(s)
- Jiming Zhou
- Department of Cardiology, The First Affiliated Hospital,Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Luo
- Department of Cardiology, The First Affiliated Hospital,Hengyang Medical School, University of South China, Hengyang, China
| | - Zhong Xie
- Department of Cardiology, The First Affiliated Hospital,Hengyang Medical School, University of South China, Hengyang, China
| | - Chunchen Xia
- Department of Cardiology, The First Affiliated Hospital,Hengyang Medical School, University of South China, Hengyang, China
| | - Junbi Zhao
- Department of Cardiology, The First Affiliated Hospital,Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
4
|
Chen X, Li P, Huang R, Zhang J, Ouyang X, Tan D. Ulinastatin affects focal cerebral ischemia-reperfusion injury via SOCS1-mediated JAK2/STAT3 signalling pathway. Clin Exp Pharmacol Physiol 2023; 50:107-116. [PMID: 36222378 DOI: 10.1111/1440-1681.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia results in loss of cerebral blood flow, which contributes to neuronal damage, neurocognitive impairment, as well as learning and memory difficulties. Although reperfusion is necessary to restore the blood supply to the brain, it also leads to several detrimental effects on the brain. The purpose of this study was to assess the effects of ulinastatin (UTI) on preventing focal cerebral ischemia/reperfusion-induced injury (FCIRI). First, a rat model of FCIRI was established and treated with UTI. The effects of UTI on FCIRI in rats were evaluated using Morris water maze assay, triphenyl tetrazolium chloride staining, TUNEL, western blot assay, and enzyme-linked immunosorbent assay analysis. UTI was found to improve the learning memory ability, reduce infarction area, inhibit apoptosis and decrease inflammation in FCIRI rats. Messenger RNA microarray analysis of hippocampal tissues revealed that suppressor of cytokine signalling-1 (SOCS1) was the downstream target of UTI in FCIRI. SOCS1 depletion impaired the protective effect of UTI on FCIRI in rats. SOCS1 blocked the activation of the JAK2/STAT3 pathway. JAK2 inhibitor caused the JAK2/STAT3 pathway deficit, hence reversing the effect of sh-SOCS1 on FCIRI in rats. Taken together, our results demonstrate that UTI alleviated FCIRI in rats, which was, to some extent, related to SOCS1-mediated JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang, China
| | - Peng Li
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang, China
| | - Renming Huang
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang, China
| | - Juan Zhang
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang, China
| | - Xingzhi Ouyang
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang, China
| | - Dianxiang Tan
- Department of Anesthesiology, Hengyang City Central Hospital, Hengyang, China
| |
Collapse
|
5
|
Xia N, Hua Y, Li J, Chen Y, Li X, Lin J, Xu H, Xie C, Wang X. 2-(2-Benzofuranyl)-2-Imidazoline Attenuates the Disruption of the Blood-Brain Barrier in EAE via NMDAR. Neurochem Res 2021; 46:1674-1685. [PMID: 33772673 DOI: 10.1007/s11064-021-03304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Blood-brain barrier (BBB) disruption has been recognized as an early hallmark of multiple sclerosis (MS) pathology. Our previous studies have shown that 2-(2-Benzofuranyl)-2-imidazoline (2-BFI) protected against experimental autoimmune encephalomyelitis (EAE), a classic animal model of MS. However, the potential effects of 2-BFI on BBB permeability have not yet been evaluated in the context of EAE. Herein, we aimed to investigate the effect of 2-BFI on BBB permeability in both an animal model and an in vitro BBB model using TNF-α to imitate the inflammatory damage to the BBB in MS. In the animal model, 2-BFI reduced neurological deficits and BBB permeability in EAE mice compared with saline treatment. The Western blot results indicated that 2-BFI not only alleviated the loss of the tight junction protein occludin caused by EAE but also inhibited the activation of the NR1-ERK signaling pathway. In an in vitro BBB model, 2-BFI (100 μM) alleviated the TNF-α-induced increase in permeability and reduction in expression of occludin in monolayer bEnd.3 cells. Similar protective effects were also observed after treatment with the NMDAR antagonist MK801. The Western blot results showed that the TNF-α-induced BBB breakdown and increase in NMDAR subunit 1 (NR1) levels and ERK phosphorylation could be blocked by pretreatment with 2-BFI or MK801. However, no additional effect was observed on BBB permeability or the expression of occludin and p-ERK after pretreatment with both 2-BFI and MK801. Our study indicates that 2-BFI alleviates the disruption of BBB in the context of inflammatory injury similar to that of MS by targeting NMDAR1, as well as by likely activating the subsequent ERK signaling pathway. These results provide further evidence for 2-BFI as a potential drug for the treatment of MS.
Collapse
Affiliation(s)
- Niange Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Yingjie Hua
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Jia Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Yanyan Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Xueying Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Jiahe Lin
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Huiqin Xu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Chenglong Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China
| | - Xinshi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Wenzhou, 325003, Zhejiang, China.
| |
Collapse
|
6
|
Zheng M, Kang L, Uchino T, Liu G, Wang Y, Ono K. Mitogen-activated protein kinase p38 modulates pacemaker ion channels differentiation in P19-derived pluripotent cells. J Physiol Sci 2020; 70:39. [PMID: 32895058 PMCID: PMC10717480 DOI: 10.1186/s12576-020-00766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022]
Abstract
Signal regulators during early cardiogenetic differentiation for the cellular automaticity are largely unknown. Our investigations were designed to clarify the role of transcription factors and their modulators in P19-derived cardiomyocytes to the expression of cardiac pacemaker ion channels. Transcription factors Csx/Nkx2.5 and GATA4 but not MEF2C were markedly inhibited by p38 MAP kinase inhibition in a distinct manner; expression but not phosphorylation of GATA4 was reduced by inhibition of p38 MAP kinase actions. In the presence of an ERK1/2,5 inhibitor PD98059 or a JNK MAP kinase inhibitor SP600125, P19 cells successfully differentiated into cardiomyocytes displaying spontaneous beatings with expression of three types of pacemaker ion channels. We demonstrate that acquisition of cellular automaticity and the expression of pacemaker ion channels are regulated by the transcription factors, Csx/Nkx2.5 and GATA4, through intracellular signals including p38 MAP kinase in the process of P19-derived pluripotent cells differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Mingqi Zheng
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Kang
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tomoko Uchino
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
- Department of Anesthesiology, Oita University School of Medicine, Oita, Japan
| | - Gang Liu
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Wang
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Oita, Japan.
| |
Collapse
|
7
|
Zhu C, Jiang Y, Zhu J, He Y, Yin H, Duan Q, Zhang L, Cao B, An X. CircRNA8220 Sponges MiR-8516 to Regulate Cell Viability and Milk Synthesis via Ras/MEK/ERK and PI3K/AKT/mTOR Pathways in Goat Mammary Epithelial Cells. Animals (Basel) 2020; 10:ani10081347. [PMID: 32759741 PMCID: PMC7459788 DOI: 10.3390/ani10081347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Yield and quality of goat milk are important indexes for screening dairy goat breeds. Therefore, it is necessary for us to improve the yield and quality of goat milk. In this study, we demonstrated that circRNA8220/miR-8516/STC2 could promote the synthesis of β-casein and triglyceride through PI3K/AKT/mTOR pathway. In addition, we found that circRNA8220/miR-8516/STC2 also promote proliferation via Ras/MEK/ERK pathway in goat mammary epithelial cells (GMECs). These findings contribute to a better understanding of circRNA-controlled breast development and lactation mechanisms and provide new potential insights into the regulation of breast development and milk composition in dairy goats. Abstract Circular RNAs (circRNAs), which are considered a large class of endogenous noncoding RNAs, function as regulators in various biological procedures. In this study, the function and molecular mechanisms of circRNA8220 in goat mammary epithelial cells (GMECs) were explored. CircRNA8220 could spong miR-8516 and block the function of miR-8516 by binding to the target site of miR-8516 a negative feedback relationship existed between circRNA8220 and miR-8516. Stanniocalcin 2 (STC2) was a target gene of miR-8516. circRNA8220 could up-regulate the expression of STC2 by sponging miR-8516 in GMECs. circRNA8220/miR-8516/STC2 could promote proliferation and enhance the synthesis of β-casein and triglycerides (TG) via Ras/MEK/ERK and PI3K/AKT/mTOR signaling pathways, respectively.
Collapse
|
8
|
Jiang X, He M, Bai J, Chan CB, Wong AOL. Signal Transduction for TNFα-Induced Type II SOCS Expression and Its Functional Implication in Growth Hormone Resistance in Carp Hepatocytes. Front Endocrinol (Lausanne) 2020; 11:20. [PMID: 32082258 PMCID: PMC7003395 DOI: 10.3389/fendo.2020.00020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
In mammals, local production of tumor necrosis factor α (TNFα) inhibits growth hormone (GH)-induced IGF-I expression at tissue level and contributes to GH resistance caused by sepsis/endotoxemia and inflammation. Although the loss of GH responsiveness can be mediated by a parallel rise in SOCS expression, the signaling mechanisms for TNFα-induced SOCS expression at the hepatic level have not been characterized and the comparative aspects of the phenomenon, especially in lower vertebrates, are still unknown. Recently, type II SOCS, including SOCS1-3 and CISH, have been cloned in grass carp and shown to act as the feedback repressors for GH signaling via JAK2/STAT5 pathway. To shed light on the mechanisms for TNFα-induced GH resistance in fish model, grass carp TNFα was cloned and confirmed to be a single-copy gene expressed in various tissues including the liver. In carp hepatocytes, incubation with the endotoxin LPS induced TNFα expression with parallel rises in SOCS1-3 and CISH mRNA levels. Similar to LPS, TNFα treatment could block GH-induced IGF-I/-II mRNA expression and elevate SOCS1, SOCS3, and CISH transcript levels. However, TNFα was not effective in altering SOCS2 expression. In parallel experiment, LPS blockade of IGF-I/-II signals caused by GH could be partially reverted by TNFα receptor antagonism. At hepatocyte level, TNFα induction also triggered rapid phosphorylation of IκBα, MEK1/2, ERK1/2, MKK3/6, P38MAPK, Akt, JAK2, and STAT1,3,5, and TNFα-induced SOCS1, SOCS3, and CISH mRNA expression could be negated by inhibiting the IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT cascades. Our findings, as a whole, suggest that local production of TNFα may interfere with IGF-I/-II induction by GH in the carp liver by up-regulation of SOCS1, SOCS3, and CISH via IKK/NFκB, MAPK, PI3K/Akt, and JAK/STAT-dependent mechanisms, which may contribute to GH resistance induced by endotoxin in carp species.
Collapse
|
9
|
Nie L, Cai SY, Sun J, Chen J. MicroRNA-155 promotes pro-inflammatory functions and augments apoptosis of monocytes/macrophages during Vibrio anguillarum infection in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:70-81. [PMID: 30447432 DOI: 10.1016/j.fsi.2018.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Upon recognition of pathogen-associated molecular patterns by pattern-recognition receptors, immune cells are recruited, and multiple antibacterial/viral signaling pathways are activated, leading to the production of immune-related cytokines, chemokines, and interferons along with further activation of the adaptive immune response. MicroRNAs (miRs) play essential roles in regulating such immune signaling pathways, as well as the biological activities of immune cells; however, knowledge regarding the roles of miRs in the immune-related function of monocytes/macrophages (MO/MΦ) remains limited in teleosts. In the present study, we addressed the effects of miR-155 on Vibrio anguillarum-infected MO/MΦ. Our results showed that miR-155 augmented MO/MΦ expression of proinflammatory cytokines and attenuated the expression of anti-inflammatory cytokines. Additionally, the phagocytosis and bacteria-killing abilities of these cells were boosted by miR-155 administration, which also promoted M1-type polarization but inhibited M2-type polarization. Furthermore, the V. anguillarum-infection-induced apoptosis was also enhanced by miR-155 mimic transfection, which might have been due to excessive inflammation or the accumulation of reactive oxygen species. These results represent the first report providing a detailed account of the regulatory roles of miR-155 on MO/MΦ functions in teleosts and offer insight into the evolutionary history of miR-155-mediated regulation of host immune responses.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiao Sun
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315800, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
10
|
Du G, Zhao Z, Chen Y, Li Z, Tian Y, Liu Z, Liu B, Song J. Quercetin protects rat cortical neurons against traumatic brain injury. Mol Med Rep 2018; 17:7859-7865. [DOI: 10.3892/mmr.2018.8801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Guoliang Du
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Zongmao Zhao
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 060000, P.R. China
| | - Yonghan Chen
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Zonghao Li
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Yaohui Tian
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Zhifeng Liu
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Bin Liu
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| | - Jianqiang Song
- Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
11
|
SOCS-1 ameliorates smoke inhalation-induced acute lung injury through inhibition of ASK-1 activity and DISC formation. Clin Immunol 2017; 191:94-99. [PMID: 29108854 DOI: 10.1016/j.clim.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/23/2017] [Accepted: 10/28/2017] [Indexed: 01/20/2023]
Abstract
Smoke inhalation leads to acute lung injury (ALI), a devastating clinical problem associated with high mortality. Suppressor of cytokine signaling-1 (SOCS-1) is a negative regulator of apoptosis and pro-inflammatory cytokine signaling, two major contributors to the pathogenesis of ALI. We have found that SOCS-1 protects lung epithelial cells from smoke-induced apoptosis through two mechanisms. One is that SOCS-1 enhances degradation of ASK-1 and diminishes cleavage of pro-caspase-3 to repress smoke-triggered apoptosis in lung epithelial cells. The other is that SOCS-1 represses smoke-triggered DISC formation through altering TRADD-caspase-8 interaction rather than TNFR-1-TRADD interaction or TNFR-1-TRAF-2 interaction. In conclusion, SOCS-1 relieves smoke inhalation-induced lung injury by repressing ASK-1 and DISC-mediated epithelium apoptosis.
Collapse
|
12
|
Du C, Yao F, Ren Y, Du Y, Wei J, Wu H, Duan H, Shi Y. SOCS-1 is involved in TNF-α-induced mitochondrial dysfunction and apoptosis in renal tubular epithelial cells. Tissue Cell 2017; 49:537-544. [PMID: 28732559 DOI: 10.1016/j.tice.2017.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Fang Yao
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jinying Wei
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| | - Yonghong Shi
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
13
|
Li S, Zhang L, Ni R, Cao T, Zheng D, Xiong S, Greer PA, Fan GC, Peng T. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2023-2033. [PMID: 27523632 DOI: 10.1016/j.bbadis.2016.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4weeks) were fed a high fat diet (HFD) or normal diet for 20weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity.
Collapse
Affiliation(s)
- Shengcun Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lulu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Ni
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada.
| |
Collapse
|
14
|
Yang J, Chen L, Ding J, Zhang J, Fan Z, Yang C, Yu Q, Yang J. Cardioprotective effect of miRNA-22 on hypoxia/reoxygenation induced cardiomyocyte injury in neonatal rats. Gene 2016; 579:17-22. [PMID: 26707060 DOI: 10.1016/j.gene.2015.12.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are implicated in the regulation of pathological and physiological processes in myocardial ischemia/reperfusion (MI/R). Recent studies have revealed that miR-22 might provide a potential cardioprotective effect on ischemic heart disease. However, the mechanism by which miR-22 prevents MI/R is still not fully clear. Here, we investigated the role of miR-22 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury. MI/R was simulated in neonatal rat cardiomyocytes with 2h hypoxia followed by 4h reoxygenation. Prior to H/R, cells were transfected by Ad-miR-22 or Ad-scramble. It was revealed that H/R dramatically increased the release of CK and LDH, accompanied by a downregulation of miR-22 expression. Overexpression of miR-22 attenuated cardiomyocyte apoptosis and miR-22 target gene CREB binding protein (CBP) protein level, as determined by flow cytometry analysis and Western blot respectively. We further identified that miR-22 significantly inhibited CBP-related transcriptional factor AP-1 DNA binding activity under H/R. In addition, miR-22 could efficiently change Bcl-2/Bax ratio, and suppress the production of pro-inflammatory cytokines (TNF-α and IL-6) induced by H/R. In conclusion, these results suggest that miR-22 plays an important cardioprotective role partly via regulating CBP/AP-1 pathway to reduce cell apoptosis and inflammatory damage during MI/R injury.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Lihua Chen
- Department of Optometry and Ophthalmology, Yichang Central People's Hospital, Yichang 443000, Hubei Province, China
| | - Jiawang Ding
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Zhixing Fan
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Chaojun Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Qinqin Yu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443000, Hubei Province, China.
| |
Collapse
|
15
|
Wang J, Hu X, Fu W, Xie J, Zhou X, Jiang H. Isoproterenol‑mediated heme oxygenase‑1 induction inhibits high mobility group box 1 protein release and protects against rat myocardial ischemia/reperfusion injury in vivo. Mol Med Rep 2014; 9:1863-8. [PMID: 24604346 DOI: 10.3892/mmr.2014.2026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 01/20/2014] [Indexed: 11/06/2022] Open
Abstract
Isoproterenol (ISO) has been reported to inhibit high mobility group box 1 (HMGB1) protein release via heme oxygenase-1 (HO-1) induction in lipopolysaccharide (LPS)-activated RAW 264.7 cells and increase the survival rate of cecal ligation and puncture (CLP)-induced septic mice. Therefore, it was examined whether ISO-mediated HO-1 induction inhibits HMGB1 release in cardiac myocytes and attenuates myocardial ischemia/reperfusion (I/R) injury in rats. Anesthetized male rats were pretreated with ISO [intraperitoneal (i.p.) injection of 10 mg/kg] prior to ischemia in the absence and/or presence of zinc protoporphyrin IX (ZnPPIX, i.p., 10 mg/kg), which is an inhibitor of HO-1, and then subjected to ischemia for 30 min followed by reperfusion for 24 h. The myocardial I/R injury and oxidative stress were assessed. In addition, the HO-1 protein and HMGB1 expression were measured by western blot analysis. ISO significantly attenuated the myocardial I/R injury, reduced oxidative stress, and induced HO-1 and reduced HMGB1 release. However, all these effects caused by ISO were significantly reversed in the presence of ZnPPIX. These results suggested that ISO has a pivotal role in the protective effects on myocardial I/R injury. This protection mechanism is possibly due to the inhibition of HMGB1 release via the induction of HO-1.
Collapse
Affiliation(s)
- Jichun Wang
- Department of Cardiology of Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaorong Hu
- Department of Cardiology of Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenwen Fu
- Department of Cardiology of Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Xie
- Department of Cardiology of Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaoya Zhou
- Department of Cardiology of Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology of Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
16
|
Metformin protects against hyperglycemia-induced cardiomyocytes injury by inhibiting the expressions of receptor for advanced glycation end products and high mobility group box 1 protein. Mol Biol Rep 2014; 41:1335-40. [PMID: 24420848 DOI: 10.1007/s11033-013-2979-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
Abstract
Metformin (MET), an anti-diabetic oral drug with antioxidant properties, has been proved to provide cardioprotective effects in patients with diabetic disease. However, the mechanism is unclear. This study aimd to investigate the effects of MET on the expressions of receptor for advanced glycation end products (RAGE) and high mobility group box 1 protein (HMGB1) in hyperglycemia-treated neonatal rat ventricular myocytes. Cardiocytes were prepared and cultured with high glucose and different concentrations of MET. The expressions of RAGE and HMGB1 were evaluated by Western blot analysis. The superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), lactate dehydrogenase (LDH) and creatine kinase (CK) were measured. After 12 h-incubation, MET significantly inhibited the increase of MDA, TNF-α, LDH and CK levels induced by high glucose, especially at the 5 × 10(-5) to 10(-4 )mol/L concentrations while inhibiting the decrease of SOD level. Meanwhile, RAGE and HMGB1 expression were significantly increased induced by hyperglycaemia for 24 h (P < 0.05). MET inhibited the expressions of RAGE and HMGB1 in a dose-dependent manner, especially at the 5 × 10(-5) to 10(-4 )mol/L concentrations (P < 0.05). In conclusion, our study suggested that MET could reduce hyperglycemia-induced cardiocytes injury by inhibiting the expressions of RAGE and HMGB1.
Collapse
|
17
|
Wang J, Yang H, Hu X, Fu W, Xie J, Zhou X, Xu W, Jiang H. Dobutamine-mediated heme oxygenase-1 induction via PI3K and p38 MAPK inhibits high mobility group box 1 protein release and attenuates rat myocardial ischemia/reperfusion injury in vivo. J Surg Res 2013; 183:509-16. [PMID: 23531454 DOI: 10.1016/j.jss.2013.02.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/30/2013] [Accepted: 02/22/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND It has been reported that the induction of heme oxygenase-1 (HO-1) mediated by β1-adrenergic receptor inhibits high mobility group box 1 protein (HMGB1) release and increases the survival rate in cecal ligation and puncture-induced septic mice. The present study aimed to investigate whether dobutamine, a selective β1-adrenergic receptor agonist, could inhibit HMGB1 release via β1-adrenergic receptor-mediated HO-1 induction and attenuate myocardial ischemia/reperfusion (I/R) injury in rats. MATERIALS AND METHODS Anesthetized male rats were pretreated with dobutamine (5 or 10 μg. Kg-1. min-1, intravenous) before ischemia in the absence and/or presence of LY294002 (0.3 mg/Kg), a phosphatidylinositol 3-kinase (PI3K)< inhibitor; SB203580 (1 mg/Kg), a p38 mitogen-activated-protein kinase (P38 mitogen-activated-protein kinase [p38 MAPK]) inhibitor, and zinc protoporphyrin IX ([ZnPPIX], 10 mg/Kg), a HO-1 inhibitor, respectively, and then subjected to ischemia for 30 min followed by reperfusion for 4 h. The myocardial I/R injury and oxidative stress were assessed. Likewise, the expressions of HO-1 protein, nuclear factor kappa B (NF-κB) p65, and HMGB1 were measured by Western blot analysis. RESULTS Dobutamine significantly and dose-dependently attenuated myocardial I/R injury, reduced oxidative stress, and caused the induction of HO-1, the reduction of NF-κB activation and HMGB1 over expression. However, all the effects caused by dobutamine were significantly reversed by the presence of LY294002, SB203580, and ZnPPIX, respectively. CONCLUSIONS The present study demonstrated that dobutamine mediated the induction of HO-1 by selectively stimulating β1-adrenergic receptor via PI3K and p38 MAPK, which inhibited HMGB1 release and attenuated rat myocardial I/R injury in vivo.
Collapse
Affiliation(s)
- Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuchang, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Collino M, Massimo C, Pini A, Alessandro P, Mastroianni R, Rosanna M, Benetti E, Elisa B, Lanzi C, Cecilia L, Bani D, Daniele B, Jacopo C, Manoni M, Marco M, Fantozzi R, Roberto F, Masini E, Emanuela M. The non-anticoagulant heparin-like K5 polysaccharide derivative K5-N,OSepi attenuates myocardial ischaemia/reperfusion injury. J Cell Mol Med 2013; 16:2196-207. [PMID: 22248092 PMCID: PMC3822989 DOI: 10.1111/j.1582-4934.2012.01530.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Heparin and low molecular weight heparins have been demonstrated to reduce myocardial ischaemia/reperfusion (I/R) injury, although their use is hampered by the risk of haemorrhagic and thrombotic complications. Chemical and enzymatic modifications of K5 polysaccharide have shown the possibility of producing heparin-like compounds with low anticoagulant activity and strong anti-inflammatory effects. Using a rat model of regional myocardial I/R, we investigated the effects of an epimerized N-,O-sulphated K5 polysaccharide derivative, K5-N,OSepi, on infarct size and histological signs of myocardial injury caused by 30 min. ligature of the left anterior descending coronary artery followed by 1 or 24 h reperfusion. K5-N,OSepi (0.1-1 mg/kg given i.v. 15 min. before reperfusion) significantly reduced the extent of myocardial damage in a dose-dependent manner. Furthermore, we investigated the potential mechanism(s) of the cardioprotective effect(s) afforded by K5-N,OSepi. In left ventricular samples, I/R induced mast cell degranulation and a robust increase in lipid peroxidation, free radical-induced DNA damage and calcium overload. Markers of neutrophil infiltration and activation were also induced by I/R in rat hearts, specifically myeloperoxidase activity, intercellular-adhesion-molecule-1 expression, prostaglandin-E(2) and tumour-necrosis-factor-α production. The robust increase in oxidative stress and inflammatory markers was blunted by K5-N,OSepi, in a dose-dependent manner, with maximum at 1 mg/kg. Furthermore, K5-N,OSepi administration attenuated the increase in caspase 3 activity, Bid and Bax activation and ameliorated the decrease in expression of Bcl-2 within the ischaemic myocardium. In conclusion, we demonstrate that the cardioprotective effect of the non-anticoagulant K5 derivative K5-N,OSepi is secondary to a combination of anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
| | - Collino Massimo
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Oh J, Kim SH, Ahn S, Lee CE. Suppressors of cytokine signaling promote Fas-induced apoptosis through downregulation of NF-κB and mitochondrial Bfl-1 in leukemic T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5561-71. [PMID: 23152563 DOI: 10.4049/jimmunol.1103415] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Suppressors of cytokine signaling (SOCS) are known as negative regulators of cytokine- and growth factor-induced signal transduction. Recently they have emerged as multifunctional proteins with regulatory roles in inflammation, autoimmunity, and cancer. We have recently reported that SOCS1 has antiapoptotic functions against the TNF-α- and the hydrogen peroxide-induced T cell apoptosis through the induction of thioredoxin, which protects protein tyrosine phosphatases and attenuates Jaks. In this study, we report that SOCS, on the contrary, promote death receptor Fas-mediated T cell apoptosis. The proapoptotic effect of SOCS1 was manifested with increases in Fas-induced caspase-8 activation, truncated Bid production, and mitochondrial dysfunctions. Both caspase-8 inhibitor c-Flip and mitochondrial antiapoptotic factor Bfl-1 were significantly reduced by SOCS1. These proapoptotic responses were not associated with changes in Jak or p38/Jnk activities but were accompanied with downregulation of NF-κB and NF-κB-dependent reporter gene expression. Indeed, p65 degradation via ubiquitination was accelerated in SOCS1 overexpressing cells, whereas it was attenuated in SOCS1 knockdown cells. With high NF-κB levels, the SOCS1-ablated cells displayed resistance against Fas-induced apoptosis, which was abrogated upon siBfl-1 transfection. The results indicate that the suppression of NF-κB-dependent induction of prosurvival factors, such as Bfl-1 and c-Flip, may serve as a mechanism for SOCS action to promote Fas-mediated T cell apoptosis. SOCS3 exhibited a similar proapoptotic function. Because both SOCS1 and SOCS3 are induced upon TCR stimulation, SOCS would play a role in activation-induced cell death by sensitizing activated T cells toward Fas-mediated apoptosis to maintain T cell homeostasis.
Collapse
Affiliation(s)
- Jiyoung Oh
- Laboratory of Immunology, Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
20
|
Boltzen U, Eisenreich A, Antoniak S, Weithaeuser A, Fechner H, Poller W, Schultheiss HP, Mackman N, Rauch U. Alternatively spliced tissue factor and full-length tissue factor protect cardiomyocytes against TNF-α-induced apoptosis. J Mol Cell Cardiol 2012; 52:1056-65. [PMID: 22326437 DOI: 10.1016/j.yjmcc.2012.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/21/2011] [Accepted: 01/23/2012] [Indexed: 01/04/2023]
Abstract
Tissue Factor (TF) is expressed in various cell types of the heart, such as cardiomyocytes. In addition to its role in the initiation of blood coagulation, the TF:FVIIa complex protects cells from apoptosis. There are two isoforms of Tissue Factor (TF): "full length" (fl)TF--an integral membrane protein, and alternatively spliced (as)TF--a protein that lacks a transmembrane domain and can thus be secreted in a soluble form. Whether asTF or flTF affects apoptosis of cardiomyocytes is unknown. In this study, we examined whether asTF or flTF protects murine cardiomyocytes from TNF-α-induced apoptosis. We used murine cardiomyocytic HL-1 cells and primary murine embryonic cardiomyocytes that overexpressed either murine asTF or murine flTF, and stimulated them with TNF-α to initiate cell death. Apoptosis was assessed by annexin-V assay, propidium iodide assay, as well as activation of caspase-3 and -9. In addition, signaling via integrins, Akt, NFκB and Erk1/2, and gene-expression of Bcl-2 family members were analyzed. We here report that overexpression of asTF reduced phosphatidylserine exposure upon TNF-α-stimulation. asTF overexpression led to an increased expression and phosphorylation of Akt, as well as up-regulation of the anti-apoptotic protein Bcl-x(L). The anti-apoptotic effects of asTF overexpression were mediated via α(V)β(3)/Akt/NFκB signaling and were dependent on Bcl-x(L) expression in HL-1 cells. The anti-apoptotic activity of asTF was also observed using primary cardiomyocytes. Analogous yet less pronounced anti-apoptotic sequelae were observed due to overexpression of flTF. Importantly, cardiomyocytes deficient in TF exhibited increased apoptosis compared to wild type cells. We propose that asTF and flTF protect cardiomyocytes against TNF-α-induced apoptosis via activation of specific signaling pathways, and up-regulation of anti-apoptotic members of the Bcl-2 protein family.
Collapse
Affiliation(s)
- U Boltzen
- Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Zentrum für Herz und Kreislaufmedizin, D-12200 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ko ML, Shi L, Grushin K, Nigussie F, Ko GYP. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 2011; 27:1673-96. [PMID: 20969517 DOI: 10.3109/07420528.2010.514631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
22
|
Zhang T, Feng Q. Nitric oxide and calcium signaling regulate myocardial tumor necrosis factor-α expression and cardiac function in sepsis. Can J Physiol Pharmacol 2010; 88:92-104. [PMID: 20237583 DOI: 10.1139/y09-097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myocardial tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine, is a critical inducer of myocardial dysfunction in sepsis. The purpose of this review is to summarize the mechanisms through which TNF-alpha production is regulated in cardiomyocytes in response to lipopolysaccharide (LPS), a key pathogen-associated molecular pattern (PAMP) in sepsis. These mechanisms include Nox2-containing NAD(P)H oxidase, phospholipase C (PLC)gamma1, and Ca2+ signaling pathways. Activation of these pathways increases TNF-alpha expression via activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK). Conversely, activation of c-Jun NH2-terminal kinase 1 (JNK1) negatively regulates TNF-alpha production through inhibition of ERK1/2 and p38 MAPK activity. Interestingly, endothelial nitric oxide synthase (eNOS) promotes TNF-alpha expression by enhancing p38 MAPK activation, whereas neuronal NOS (nNOS) inhibits TNF-alpha production by reducing Ca2+-dependent ERK1/2 activity. Therefore, the JNK1 and nNOS inhibitory pathways represent a "brake" that limits myocardial TNF-alpha expression in sepsis. Further understanding of these signal transduction mechanisms may lead to novel pharmacological therapies in sepsis.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, Lawson Health Research Institute, London, ON N6A 5C1, Canada
| | | |
Collapse
|
23
|
Sherwin JRA, Hastings JM, Jackson KS, Mavrogianis PA, Sharkey AM, Fazleabas AT. The endometrial response to chorionic gonadotropin is blunted in a baboon model of endometriosis. Endocrinology 2010; 151:4982-93. [PMID: 20668030 PMCID: PMC2946138 DOI: 10.1210/en.2010-0275] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endometriosis-associated infertility has a multifactorial etiology. We tested the hypothesis that the endometrial response to the early embryonic signal, human chorionic gonadotropin (hCG), alters over time in a nonhuman primate model of endometriosis. Animals with experimental or spontaneous endometriosis were treated with hCG (30 IU/d), from d 6 after ovulation for 5 d, via an oviductal cannula. Microarray analysis of endometrial transcripts from baboons treated with hCG at 3 and 6 months of disease (n=6) identified 22 and 165 genes, respectively, whose levels differed more than 2-fold compared with disease-free (DF) animals treated with hCG (P<0.01). Quantitative RT-PCR confirmed abnormal responses of known hCG-regulated genes. APOA1, SFRP4, and PAPPA, which are normally down-regulated by hCG were up-regulated by hCG in animals with endometriosis. In contrast, the ability of hCG to induce SERPINA3 was lost. Immunohistochemistry demonstrated dysregulation of C3 and superoxide dismutase 2 proteins. We demonstrate that this abnormal response to hCG persists for up to 15 months after disease induction and that the nature of the abnormal response changes as the disease progresses. Immunohistochemistry showed that this aberrant gene expression was not a consequence of altered LH/choriogonadotropin receptor distribution in the endometrium of animals with endometriosis. We have shown that endometriosis induces complex changes in the response of eutopic endometrium to hCG, which may prevent the acquisition of the full endometrial molecular repertoire necessary for decidualization and tolerance of the fetal allograft. This may in part explain endometriosis-associated implantation failure.
Collapse
Affiliation(s)
- J R A Sherwin
- Department of Obstetrics and Gynaecology, The Whittington Hospital National Health ServiceTrust, London N19 5NF, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Hu X, Zhou X, He B, Xu C, Wu L, Cui B, Wen H, Lu Z, Jiang H. Minocycline protects against myocardial ischemia and reperfusion injury by inhibiting high mobility group box 1 protein in rats. Eur J Pharmacol 2010; 638:84-9. [PMID: 20406632 DOI: 10.1016/j.ejphar.2010.03.059] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 03/07/2010] [Accepted: 03/31/2010] [Indexed: 01/25/2023]
Abstract
Minocycline has been shown to protect against myocardial ischemia and reperfusion injury. However, the mechanism remains unclear. This study was to investigate the role of high mobility group box 1 protein (HMGB1) in the cardioprotection of minocycline during myocardial ischemia and reperfusion in rats. Anesthetized male rats were once treated with minocycline (45 mg/kg, i.p.) 1h before ischemia, and then subjected to ischemia for 30 min followed by reperfusion for 4h. The lactate dehydrogenase (LDH), creatine kinase (CK) and infarct size were measured and the myocardial tissue apoptosis was assessed by TUNNEL assay. Neonatal rat ventricular myocytes were prepared and then cultured with recombinant HMGB1. Cell apoptosis was measured using an annexin V-FITC apoptosis detection kit. HMGB1 expression was assessed by immunoblotting. After 4h of reperfusion, minocycline could significantly decrease the infarct size, myocardium apoptosis and the levels of LDH and CK (all P<0.05). Meanwhile, minocycline could also significantly inhibit the HMGB1 expression during myocardial ischemia and reperfusion compared to that in ischemia and reperfusion group (P<0.05). In vitro, HMGB1 could significantly decrease the cell viability and promote the apoptosis of neonatal myocytes in a dose-dependent manner. The present study suggested that minocycline could protect against myocardial ischemia and reperfusion injury by inhibiting HMGB1 expression.
Collapse
Affiliation(s)
- Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shalaby A, Rinne T, Järvinen O, Latva-Hirvelä J, Nuutila K, Saraste A, Laurikka J, Porkkala H, Saukko P, Tarkka M. The Impact of Adenosine Fast Induction of Myocardial Arrest during CABG on Myocardial Expression of Apoptosis-Regulating Genes Bax and Bcl-2. Cardiol Res Pract 2010; 2009:658965. [PMID: 20069048 PMCID: PMC2801008 DOI: 10.4061/2009/658965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 08/11/2009] [Accepted: 10/19/2009] [Indexed: 12/04/2022] Open
Abstract
Background. We studied the effect of fast induction of cardiac arrest with denosine on myocardial bax and bcl-2 expression. Methods and Results. 40 elective CABG patients were allocated into two groups. The adenosine group (n = 20) received 250 μg/kg adenosine into the aortic root followed by blood potassium cardioplegia. The control group received potassium cardioplegia in blood. Bcl-2 and bax were measured. Bax was reduced in the postoperative biopsies (1.38 versus 0.47, P = .002) in the control group. Bcl-2 showed a reducing tendency (0.14 versus 0.085, P = .07). After the adenosine treatment, the expression of both bax (0.52 versus 0.59, P = .4) and bcl-2 (0.104 versus 0.107, P = .4) remained unaltered after the operation. Conclusion. Open heart surgery is associated with rapid reduction in the expression of apoptosis regulating genes bax and bcl-2. Fast Adenosine induction abolished changes in their expression.
Collapse
Affiliation(s)
- Ahmed Shalaby
- Division of Cardiothoracic Surgery, Heart Center, Pirkanmaa Hospital District, P.O. Box 2000, 33521 Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Myocardium and microvessel endothelium apoptosis at day 7 following reperfused acute myocardial infarction. Microvasc Res 2009; 79:70-9. [PMID: 19913038 DOI: 10.1016/j.mvr.2009.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/05/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVES This study was to investigate the salvaged myocardial and microvascular endothelial cells apoptosis at the first week of reperfused acute myocardial infarction (AMI). METHODS Sixteen mini swines (20-30 kg) were randomly assigned to the sham-operated group and the AMI group. The acute myocardial infarction and reperfusion model was created, and pathologic myocardial tissue was collected at day 7 following left anterior descending coronary artery reperfusion, and detected by transmission electron microscope, in situ cell apoptosis detection (TUNEL method), Real-time Quantitative Polymerase Chain Reaction and Western blot. RESULTS In the AMI group, the infarcted area showed the myolysis, fibroblast and injuried endothelial cells under transmission electron microscope. The infarcted area had higher apoptotic index of microvascular endothelial cells than the marginal area, the normal area, and the sham-operated area (all P<0.05). Fas and Bax mRNA expressions in the infarcted area were higher than those in the marginal area, the normal area, and the sham-operated area (all P<0.05), and both protein overexpressions and Bcl-2 low expression in the infarcted and marginal areas compared with the normal area and the sham-operated area. CONCLUSIONS The overexpressions of Fas and Bax or the low expression of Bcl-2 in the infarcted and marginal heart tissue may play an important role in the acceleration of myocardial and endothelial apoptosis at 7th day following reperfused acute myocardial infarction.
Collapse
|
27
|
Wang W, Peng Y, Wang Y, Zhao X, Yuan Z. ANTI-APOPTOTIC EFFECT OF HEAT SHOCK PROTEIN 90 ON HYPOXIA-MEDIATED CARDIOMYOCYTE DAMAGE IS MEDIATED VIA THE PHOSPHATIDYLINOSITOL 3-KINASE/AKT PATHWAY. Clin Exp Pharmacol Physiol 2009; 36:899-903. [DOI: 10.1111/j.1440-1681.2009.05167.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|