1
|
Atalay M, Uslu MÖ, İçen MS, Üremiş N, Türköz Y. Preventive effects of systemic Pistacia eurycarpa Yalt. administration on alveolar bone loss and oxidative stress in rats with experimental periodontitis. J Appl Oral Sci 2024; 32:e20230344. [PMID: 38359268 PMCID: PMC10984577 DOI: 10.1590/1678-7757-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of systemic administration of P. eurycarpa Yalt. plant extract on alveolar bone loss and oxidative stress biomarkers in gingival tissue in a rat model of experimental periodontitis. METHODOLOGY 32 male Wistar albino rats, weighing 200-250 g, were divided into four groups (n=8): Healthy control (HC), Experimental periodontitis control (EPC), Experimental periodontitis 400 mg/kg (EP400), Experimental periodontitis 800 mg/kg (EP800). Experimental periodontitis was induced using the ligating method. Distilled water was administered to the HC and EPC groups and the plant extract was administered to the EP400 and EP800 groups by oral gavage at doses of 400 mg/kg and 800 mg/kg, respectively. The rats were sacrificed on the 15th day. The values of glutathione peroxidase GSH-Px, malondialdehyde (MDA), superoxide dismustase (SOD), interleukin-1β (IL-1β), interleukin-10 (IL-10), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) in the gingival tissues were analyzed by ELISA tests. Alveolar bone loss was assessed using micro-CT images of the maxilla. RESULTS Although the IL-1β, TOS, OSI results of the healthy control group were lower than those of the other groups, the TAS values were higher (p<0.05). No significant difference was found in the biochemical parameters among the EPC, EP400, and EP800 groups (p>0.05). Alveolar bone loss was significantly reduced in the extract groups compared to the EPC group (p<0.001). CONCLUSION Within the limitations of this study, it was observed that the systemic P. eurycarpa extract application reduced alveolar bone loss in a rat model of experimental periodontitis. Further studies are needed to elucidate the beneficial effects of P. eurycarpa.
Collapse
Affiliation(s)
- Mustafa Atalay
- 75th Year Oral and Dental Health HospitalMinistry of HealthAnkaraTurkeyMinistry of Health, 75 Year Oral and Dental Health Hospital, Ankara, Turkey
| | - Mustafa Özay Uslu
- Alanya Alaaddin Keykubat UniversityFaculty of DentistryDepartment of PeriodontologyAntalyaTurkeyAlanya Alaaddin Keykubat University, Faculty of Dentistry, Department of Periodontology, Antalya, Turkey.
| | - Mehmet Sina İçen
- Inonu UniversityFaculty of PharmacyDepartment of PharmacognosyMalatyaTurkeyAssistant Prof. Dr. Mehmet Sina İçen, Inonu University, Faculty of Pharmacy, Department of Pharmacognosy, Malatya, Turkey.
| | - Nuray Üremiş
- Inonu UniversityFaculty of MedicineDepartment of Medical BiochemistryMalatyaTurkeyPh.D Nuray Üremiş, Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey.
| | - Yusuf Türköz
- Inonu UniversityFaculty of MedicineDepartment of Medical BiochemistryMalatyaTurkeyProf. Dr. Yusuf Türköz, Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey.
| |
Collapse
|
2
|
Furutama D, Matsuda S, Yamawaki Y, Hatano S, Okanobu A, Memida T, Oue H, Fujita T, Ouhara K, Kajiya M, Mizuno N, Kanematsu T, Tsuga K, Kurihara H. IL-6 Induced by Periodontal Inflammation Causes Neuroinflammation and Disrupts the Blood-Brain Barrier. Brain Sci 2020; 10:brainsci10100679. [PMID: 32992470 PMCID: PMC7599694 DOI: 10.3390/brainsci10100679] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Periodontal disease (PD) is a risk factor for systemic diseases, including neurodegenerative diseases. The role of the local and systemic inflammation induced by PD in neuroinflammation currently remains unclear. The present study investigated the involvement of periodontal inflammation in neuroinflammation and blood–brain barrier (BBB) disruption. Methods: To induce PD in mice (c57/BL6), a ligature was placed around the second maxillary molar. Periodontal, systemic, and neuroinflammation were assessed based on the inflammatory cytokine mRNA or protein levels using qPCR and ELISA. The BBB permeability was evaluated by the mRNA levels and protein levels of tight junction-related proteins in the hippocampus using qPCR and immunofluorescence. Dextran tracing in the hippocampus was also conducted to examine the role of periodontal inflammation in BBB disruption. Results: The TNF-α, IL-1β, and IL-6 levels markedly increased in gingival tissue 1 week after ligation. The IL-6 serum levels were also increased by ligature-induced PD. In the hippocampus, the IL-1β mRNA expression levels were significantly increased by ligature-induced PD through serum IL-6. The ligature-induced PD decreased the claudin 5 expression levels in the hippocampus, and the neutralization of IL-6 restored its levels. The extravascular 3-kDa dextran levels were increased by ligature-induced PD. Conclusions: These results suggest that the periodontal inflammation-induced expression of IL-6 is related to neuroinflammation and BBB disruption in the hippocampus, ultimately leading to cognitive impairment. Periodontal therapy may protect against neurodegenerative diseases.
Collapse
Affiliation(s)
- Daisuke Furutama
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
- Correspondence: ; Tel.: +81-082-257-5663
| | - Yosuke Yamawaki
- Department of Advanced Pharmacology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka 815-8511, Japan;
| | - Saki Hatano
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Ai Okanobu
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Takumi Memida
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Hiroshi Oue
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (H.O.); (K.T.)
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| | - Takashi Kanematsu
- Laboratory of Cell Biology and Pharmacology, Kyushu University Faculty of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan;
| | - Kazuhiro Tsuga
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (H.O.); (K.T.)
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (D.F.); (S.H.); (A.O.); (T.M.); (T.F.); (K.O.); (M.K.); (N.M.); (H.K.)
| |
Collapse
|
3
|
Prestes AP, Machado WM, Oliveira JG, Olchanheski LR, Santos FA, Alves GF, Prudente AS, Otuki MF, Paludo KS, Sordi R, Fernandes D. Experimental periodontitis in rats potentiates inflammation at a distant site: Role of B 1 kinin receptor. Life Sci 2018; 194:40-48. [DOI: 10.1016/j.lfs.2017.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
|
4
|
Kırzıoğlu FY, Tözüm Bulut M, Doğan B, Fentoğlu Ö, Özmen Ö, Çarsancaklı SA, Ergün AG, Özdem M, Orhan H. Anti-inflammatory effect of rosuvastatin decreases alveolar bone loss in experimental periodontitis. J Oral Sci 2017. [DOI: 10.2334/josnusd.16-0398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Fatma Y. Kırzıoğlu
- Periodontology Department, Faculty of Dentistry, University of Süleyman Demirel
| | - Memduha Tözüm Bulut
- Periodontology Department, Faculty of Dentistry, University of Süleyman Demirel
| | - Burak Doğan
- Periodontology Department, Faculty of Dentistry, University of Mustafa Kemal
| | - Özlem Fentoğlu
- Periodontology Department, Faculty of Dentistry, University of Süleyman Demirel
| | - Özlem Özmen
- Pathology Department, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy
| | | | - Ayşe G. Ergün
- Microbiology Department, Konya Numune Training and Research Hospital
| | - Muhsin Özdem
- Periodontology Department, Faculty of Dentistry, University of Abant Izzet Baysal
| | - Hikmet Orhan
- Biostatistics and Medical Informatics Department, Faculty of Medicine, University of Süleyman Demirel
| |
Collapse
|
5
|
Cui D, Li H, Lei L, Chen C, Yan F. Nonsurgical periodontal treatment reduced aortic inflammation in ApoE(-/-) mice with periodontitis. SPRINGERPLUS 2016; 5:940. [PMID: 27386384 PMCID: PMC4929118 DOI: 10.1186/s40064-016-2637-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/21/2016] [Indexed: 01/07/2023]
Abstract
Background Although the correlation between periodontal infection and atherosclerotic lesions has been well recognized, whether and how the nonsurgical periodontal treatment (NSPT) can improve the vascular inflammation has not been investigated clearly. Methods Thirty-two apolipoprotein E−/− (apoE−/−) mice were randomly divided into four groups: (1) Con group: no treatment, blank control group; (2) Lig group: ligature-induced-periodontitis group; (3) Lig-N group: ligatures were removed on the 7th day; (4) Lig-SRP group: ligatures were removed on the 7th day, and scaling and root planing (SRP) were performed on the 9th day. All the animals were euthanized on the 30th day. Alveolar bone loss (ABL) was assessed under microcomputed tomography. Systemic inflammatory status and lipid contents in the plasma were detected. Expression of several surrogate markers for vascular inflammation was evaluated by immunohistology and quantitative real time PCR. Results NSPT reduced ABL, improved lipid profile, and inhibited systemic inflammation with reduced plasma interleukin-6 (IL-6) level in apoE−/− mice; in addition, reduced inflammation in arterial wall was observed in NSPT treated mice, showing less vascular cell adhesion molecule-1 expression and less macrophage adhesion; furthermore, NSPT improved elastic fiber fragmentation disorder in the aortic wall, thus preserved elasticity of aortic artery. Conclusion Ligature-induced periodontitis can lead to inflammatory response in the vascular wall and NSPT has beneficial effect on the early stage of atherosclerosis process in the articular wall by reducing systemic inflammation and improving lipid profile.
Collapse
Affiliation(s)
- Di Cui
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhong Yang Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhong Yang Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhong Yang Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Changxing Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhong Yang Road, Nanjing, 210008 Jiangsu People's Republic of China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhong Yang Road, Nanjing, 210008 Jiangsu People's Republic of China
| |
Collapse
|
6
|
Campi P, Herrera BS, de Jesus FN, Napolitano M, Teixeira SA, Maia-Dantas A, Spolidorio LC, Akamine EH, Mayer MPA, de Carvalho MHC, Costa SKP, Muscara MN. Endothelial dysfunction in rats with ligature-induced periodontitis: Participation of nitric oxide and cycloxygenase-2-derived products. Arch Oral Biol 2015; 63:66-74. [PMID: 26691575 DOI: 10.1016/j.archoralbio.2015.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/06/2015] [Accepted: 11/29/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Considering the evident relationship between periodontitis and cardiovascular diseases in humans, we aimed to study the in vitro vascular reactivity of aorta rings prepared from rats with ligature-induced periodontitis. METHODS Seven days after the induction of unilateral periodontitis, the animals were euthanised; rings were prepared from the descending abdominal aortas and mounted in tissue baths for the in vitro measurement of the isometric force responses to norepinephrine (NE) and acetylcholine (ACh), as well as in the presence of inhibitors of nitric oxide synthase (NOS) and cycloxygenase (COX) isoenzymes. Aortic COX and NOS gene expressions were analysed by RT-PCR, as well as protein COX-2 expression by Western blot. RESULTS Periodontitis resulted in significant alveolar bone loss and did not affect arterial pressure. However, both NE-induced contraction and ACh-induced relaxation were significantly decreased and related to the presence of endothelium. Diminished eNOS and augmented COX-2 and iNOS expressions were found in the aortas from rats with periodontitis, and the pharmacological inhibition of COX-2 or iNOS improved the observed vasomotor deficiencies. CONCLUSIONS We can thus conclude that periodontitis induces significant endothelial dysfunction in rat aorta which is characterized by decreased eNOS expression and mediated by upregulated iNOS and COX-2 products.
Collapse
Affiliation(s)
- Paula Campi
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Schneider Herrera
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Department of Physiology and Pathology, Araraquara School of Dentistry, Sao Paulo State University, Araraquara, SP, Brazil
| | - Flavia Neto de Jesus
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mauro Napolitano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Simone Aparecida Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Aline Maia-Dantas
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luis Carlos Spolidorio
- Department of Physiology and Pathology, Araraquara School of Dentistry, Sao Paulo State University, Araraquara, SP, Brazil
| | - Eliana Hiromi Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Rosiglitazone impedes Porphyromonas gingivalis-accelerated atherosclerosis by downregulating the TLR/NF-κB signaling pathway in atherosclerotic mice. Int Immunopharmacol 2015; 23:701-8. [PMID: 25445963 DOI: 10.1016/j.intimp.2014.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/20/2022]
Abstract
Porphyromonas gingivalis,a predominant periodontal pathogen, is known to accelerate atherosclerosis in hyperlipidemic animals via aberrant inflammatory responses. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to exert anti-inflammatory effects in vitro. The purpose of the present study was to investigate the potential protective role of the PPARγ agonist rosiglitazone in pathogen accelerated atherosclerosis in an apolipoprotein E-deficient (ApoE-/-) mouse model. ApoE-/- mice were inoculated intravenously with live P. gingivalis (strain 33277) or the buffer vehicle and treated with rosiglitazone or saline over a 10-week period. Their atherosclerotic status in aortic artery was assessed through histomorphometric analysis, inflammatory agent and lipid profiles in blood was determined by ELISA, and levels of relevant cytokines and Toll-like receptors (TLRs) in aortic tissues were evaluated using immunohistochemistry and quantitative PCR. P. gingivalis inoculation was associated with increased atherosclerotic plaque formation in the aorta and higher levels of serum pro-inflammatory cytokines (tumor necrosis factor-α, monocyte chemotactic protein-1 and interleukin-1β), but the serum lipid profile was not affected by P. gingivalis infection. Levels of tumor necrosis factor-α, monocyte chemotactic protein-1 intercellular cell adhesion molecule-1 and TLRs were higher in the aortic tissues of mice exposed to P. gingivalis, and activation of nuclear factor-κB was also observed. In both P. gingivalis-treated and -untreated ApoE-/- mice, rosiglitazone treatment was associated with less atherosclerotic plaque formation; lower serum inflammatory cytokines, total cholesterol, and low density lipoprotein cholesterol; higher levels of PPARγ, lower amounts of TLR2/4 and downregulated nuclear factor-κB activity in aortic tissues. These findings suggest that rosiglitazone mitigates or prevents P. gingivalis-accelerated atherosclerosis by inhibiting the inflammatory response via downregulation of the TLR/ nuclear factor-κB signaling pathway.
Collapse
|
8
|
The adaptive nature of the bone-periodontal ligament-cementum complex in a ligature-induced periodontitis rat model. BIOMED RESEARCH INTERNATIONAL 2013; 2013:876316. [PMID: 23936854 PMCID: PMC3713652 DOI: 10.1155/2013/876316] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/18/2013] [Accepted: 03/24/2013] [Indexed: 01/12/2023]
Abstract
The novel aspect of this study involves illustrating significant adaptation of a functionally loaded bone-PDL-cementum complex in a ligature-induced periodontitis rat model. Following 4, 8, and 15 days of ligation, proinflammatory cytokines (TNF-α and RANKL), a mineral resorption indicator (TRAP), and a cell migration and adhesion molecule for tissue regeneration (fibronectin) within the complex were localized and correlated with changes in PDL-space (functional space). At 4 days of ligation, the functional space of the distal complex was widened compared to controls and was positively correlated with an increased expression of TNF-α. At 8 and 15 days, the number of RANKL(+) cells decreased near the mesial alveolar bone crest (ABC) but increased at the distal ABC. TRAP(+) cells on both sides of the complex significantly increased at 8 days. A gradual change in fibronectin expression from the distal PDL-secondary cementum interfaces through precementum layers was observed when compared to increased and abrupt changes at the mesial PDL-cementum and PDL-bone interfaces in ligated and control groups. Based on our results, we hypothesize that compromised strain fields can be created in a diseased periodontium, which in response to prolonged function can significantly alter the original bone and apical cementum formations.
Collapse
|
9
|
Brito LCW, DalBó S, Striechen TM, Farias JM, Olchanheski LR, Mendes RT, Vellosa JCR, Fávero GM, Sordi R, Assreuy J, Santos FA, Fernandes D. Experimental periodontitis promotes transient vascular inflammation and endothelial dysfunction. Arch Oral Biol 2013; 58:1187-98. [PMID: 23583017 DOI: 10.1016/j.archoralbio.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/05/2013] [Accepted: 03/17/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVES This study aimed to evaluate the systemic inflammatory response and cardiovascular changes induced by experimental periodontitis in rats. DESIGN Experimental periodontitis was induced by placing a cotton ligature around the cervix of both sides of mandibular first molars and maxillary second molars in each male rat. Sham-operated rats had the ligature removed immediately after the procedure. Seven, 14 or 28 days after procedure, the effects of acetylcholine, sodium nitroprusside and phenylephrine were evaluated on blood pressure, aortic rings and isolated and perfused mesenteric bed. The blood was obtained for plasma Interleukin-6 (IL-6), C-reactive protein (CRP) and lipid evaluation. The mesenteric vessels were obtained to evaluate superoxide production and nitric oxide synthase 3 (NOS-3) expression. RESULTS Ligature induced periodontitis reduced endothelium-dependent vasodilatation, a hallmark of endothelial dysfunction. This effect was associated with an increase in systemic inflammatory markers (IL-6 and CRP), worsens on lipid profile, increased vascular superoxide production and reduced NOS-3 expression. It is interesting to note that many of these effects were transitory. CONCLUSION Periodontitis induced a transient systemic and vascular inflammation which leads to endothelial dysfunction, an initial step for cardiovascular diseases. Moreover, the animal model of periodontitis used here may represent a valuable tool for studying the relationship between periodontitis and endothelial dysfunction.
Collapse
Affiliation(s)
- Lorena C W Brito
- Department of Pharmaceutical Sciences, Universidade Estadual de Ponta Grossa, PR, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|