1
|
Duraisamy P, Angusamy A, Ravi S, Krishnan M, Martin LC, Manikandan B, Sundaram J, Ramar M. Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization. 3 Biotech 2024; 14:80. [PMID: 38375513 PMCID: PMC10874368 DOI: 10.1007/s13205-024-03924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
Macrophages are primary immune cells that mediate a wide range of inflammatory diseases through their polarization potential. In this study, phytol isolated from Scoparia dulcis has been explored against 7-ketocholesterol and bacterial lipopolysaccharide-induced macrophage polarization in IC-21 cells. Isolated phytol has been characterized using GC-MS, TLC, HPTLC, FTIR, 1H-NMR, and HPLC analyses. The immunomodulatory effects of viable concentrations of phytol were tested on oxidative stress, arginase activity, nuclear and mitochondrial membrane potentials in IC-21 cells in addition to the modulation of calcium and lipids. Further, gene and protein expression of atherogenic markers were studied. Results showed that the isolated phytol at a viable concentration of 400 µg/ml effectively reduced the production of nitric oxide, superoxide anion (ROS generation), calcium and lipid accumulation, stabilized nuclear and mitochondrial membranes, and increased arginase activity. The atherogenic markers including iNOS, COX-2, IL-6, IL-1β, MMP-9, CD36, and NF-κB were significantly downregulated at the levels of gene and protein expression, while macrophage surface and nuclear receptor markers (CD206, CD163, and PPAR-γ) were significantly upregulated by phytol pre-treatment in macrophages. Therefore, the present pharmacognostic study supports the role of phytol isolated from Scoparia dulcis in preventing M2-M1 macrophage polarization under inflammatory conditions, making it a promising compound. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03924-9.
Collapse
Affiliation(s)
| | - Annapoorani Angusamy
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | | | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni’s College for Women, Chennai, 600015 India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025 India
| |
Collapse
|
2
|
Ketamine, benzoate, and sarcosine for treating depression. Neuropharmacology 2023; 223:109351. [PMID: 36423705 DOI: 10.1016/j.neuropharm.2022.109351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Studies have demonstrated the beneficial therapeutic effects of sarcosine, benzoate, and ketamine (including esketamine and arketamine) on depression. These drugs mainly act by modulating N-methyl-d-aspartate glutamate receptors (NMDARs) and reducing inflammation in the brain. Although ketamine, benzoate, and sarcosine act differently as the antagonists or coagonists of NMDARs, they all have demonstrated efficacy in animal models or human trials. In vitro and in vivo studies have indicated that sarcosine, benzoate, and ketamine exert their anti-inflammatory effects by inhibiting microglial activity. This review summarizes and compares the efficacy of the possible therapeutic mechanisms of sarcosine, benzoate, ketamine, esketamine, and arketamine. These compounds act as both NMDAR modulators and anti-inflammatory drugs and thus can be effective in the treatment of depression.
Collapse
|
3
|
Xiao S, Zhou Y, Wang Q, Yang D. Ketamine Attenuates Airway Inflammation via Inducing Inflammatory Cells Apoptosis and Activating Nrf2 Pathway in a Mixed-Granulocytic Murine Asthma Model. Drug Des Devel Ther 2022; 16:4411-4428. [PMID: 36597444 PMCID: PMC9805722 DOI: 10.2147/dddt.s391010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose The use of ketamine, an anesthetic, as a treatment for asthma has been investigated in numerous studies. However, how ketamine affects asthma is unclear. The present study examined the effects of ketamine on a murine model of mixed-granulocytic asthma, and the role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Methods The murine model of mixed-granulocytic asthma was established using ovalbumin (OVA) for sensitization and the combination of OVA and lipopolysaccharides (LPS) for challenge. The main characteristics of asthma, oxidative stress biomarkers, and the expression of the Nrf2 pathway were examined. ML385 was administered to verify the role of the Nrf2 pathway. Results Mice in the OVA +LPS group developed asthmatic characteristics, including airway hyperresponsiveness, mixed-granulocytic airway inflammation, mucus overproduction, as well as increased levels of oxidative stress and impaired apoptosis of inflammatory cells. Among the three concentrations, ketamine at 75mg/kg effectively attenuated these asthmatic symptoms, activated the Nrf2 pathway, decreased oxidative stress, and induced apoptosis of eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) with a reducing level of myeloid cell leukemia 1(Mcl-1). ML385 (an Nrf2 inhibitor) eliminated the protective effects of ketamine on the mixed-granulocytic asthma model. Conclusion The study concluded that ketamine reduced oxidative stress and attenuated asthmatic symptoms (neutrophilic airway inflammation) by activating the Nrf2-Keap1 pathway, with 75 mg/kg ketamine showing the best results. Ketamine administration also increased neutrophil and eosinophil apoptosis in BALF, which may contribute to the resolution of inflammation. The use of ketamine as a treatment for asthma may therefore be beneficial.
Collapse
Affiliation(s)
- Shilin Xiao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Zhou
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qianyu Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China,Correspondence: Dong Yang, Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan, Beijing, 100144, People’s Republic of China, Tel +86-13661267522, Email
| |
Collapse
|
4
|
Hirota K, Lambert DG. Ketamine; history and role in anesthetic pharmacology. Neuropharmacology 2022; 216:109171. [PMID: 35764129 DOI: 10.1016/j.neuropharm.2022.109171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
Abstract
Ketamine (Ket) was developed in 1962 as a less hallucinogenic and shorter acting agent than phencyclidine. It was given to humans for the first time in 1964. However, Ket produces several adverse reactions such as raised intracranial and blood pressures along with seizures, and patients still show low acceptance due to hallucinations. As new volatile and intravenous anesthetic agents with good emergence and favorable side effect profiles were developed, Ket use markedly decreased. In the 1990s, as the ultrashort-acting opioid remifentanil was developed, high dose opioid could be used to reduce surgical stress in highly invasive procedures. However, high dose opioids can produce hyperalgesia and acute tolerance. As Ket can exert anti-hyperalgesic actions, the clinical use of low dose Ket has been reconsidered. Other beneficial effects of Ket such as; analgesia, anti-shock in hemorrhagic and septic insults, anti-inflammatory effects, anti-tumor effects, brain and spinal cord neuroprotection, and bronchodilation, have all been reported. Moreover, this anesthetic agent at low dose has been recently recognized to possess anti-depressive actions. This diverse profile extends Ket far beyond anesthesia practice and the operating room.
Collapse
Affiliation(s)
- Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan.
| | - David G Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester, LE1 9HN, UK
| |
Collapse
|
5
|
Chen S, Hu Y, Zhang J, Zhang P. Anti‑inflammatory effect of salusin‑β knockdown on LPS‑activated alveolar macrophages via NF‑κB inhibition and HO‑1 activation. Mol Med Rep 2020; 23:127. [PMID: 33300078 PMCID: PMC7751479 DOI: 10.3892/mmr.2020.11766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation of alveolar macrophages is the primary pathological factor leading to acute lung injury (ALI), and NF-κB activation and HO-1 inhibition are widely involved in inflammation. Salusin-β has been reported to contribute to the progression of the inflammatory response, but whether salusin-β could regulate inflammation in lipopolysaccharide (LPS)-induced ALI remains unknown. The present study aimed to investigate the role of salusin-β in LPS-induced ALI and to uncover the potential underlying mechanisms. Sprague-Dawley rats were subjected to LPS administration, and then pathological manifestations of lung tissues, inflammatory cytokines levels in bronchoalveolar lavage fluid (BALF) and expression of salusin-β in macrophages of lung tissues were assessed. NR8383 cells with or without salusin-β knockdown were treated with LPS, and then the concentration of inflammatory cytokines, and the expression of high mobility group box-1 (HMGB1), NF-κB signaling molecules and heme oxygenase-1 (HO-1) levels were detected. The results showed that LPS caused injury of lung tissues, increased the levels of proinflammatory cytokines in BALF, and led to higher expression of salusin-β or macrophages in lung tissues of rats. In vitro experiments, LPS also upregulated salusin-β expression in NR8383 cells. Knockdown of salusin-β using short hairpin (sh)RNA inhibited the LPS-induced generation of inflammatory cytokines. LPS also enhanced HMGB1, phosphorylated (p)-IκB and p-p65 expression, but reduced HO-1 expression in both lung tissues and NR8383 cells, which were instead inhibited by the transfection of sh-salusin-β. In addition, knockdown of HO-1 using shRNA reversed the inhibitory effect of sh-salusin-β on the LPS-induced generation of inflammatory cytokines, activation of NF-κB signaling and inactivation of HO-1. In conclusion, this study suggested that knockdown of salusin-β may inhibit LPS-induced inflammation in alveolar macrophages by blocking NF-κB signaling and upregulating HO-1 expression.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yunnan Hu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jiaxin Zhang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Pengyu Zhang
- Department of Emergency, Jilin Central General Hospital, Jilin, Jilin 132011, P.R. China
| |
Collapse
|
6
|
Gentiopicroside protects neurons from astrocyte-mediated inflammatory injuries by inhibition of nuclear factor-κB and mitogen-activated protein kinase signaling pathways. Neuroreport 2018; 29:1114-1120. [DOI: 10.1097/wnr.0000000000001082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Kim YI, Choi KH, Kim SR, Goo TW, Park SW. Bombyx mori hemocyte extract has anti-inflammatory effects on human phorbol myristate acetate-differentiated THP‑1 cells via TLR4-mediated suppression of the NF-κB signaling pathway. Mol Med Rep 2017; 16:4001-4007. [PMID: 28765923 PMCID: PMC5646980 DOI: 10.3892/mmr.2017.7087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/11/2017] [Indexed: 01/01/2023] Open
Abstract
Hemolymph is the circulating fluid of insects and is a key component of their immune system. However, little is known concerning hemocyte identification, development, differentiation and related cellular immune responses. The present study aimed to determine whether a hemocyte extract prepared from Bombyx mori larvae had anti-inflammatory effects; THP-1 (a human monocytic leukemia cell line) cells that had been differentiated into macrophage-like cells by treatment with phorbol myristate acetate (PMA) were used. THP-1 cells were cultured with different concentrations of a B. mori hemocyte extract prior to exposure to lipopolysaccharide (LPS) to induce an inflammatory response. The effects of the B. mori hemocyte extract on anti-inflammatory pathways were determined using reverse transcription-quantitative polymerase chain reaction and western blotting to assess the expression of pro-inflammatory molecules. The B. mori hemocyte extract inhibited the LPS-induced mRNA expression of Toll-like receptor 4 in addition to LPS-induced interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α. Treatment of PMA-differentiated THP-1 cells with B. mori hemocyte extract also inhibited inducible nitric oxide synthase and cyclooxygenase-2 transcription and translation. Nuclear factor-κB activation and phosphorylation also decreased. Further in-depth functional studies are required to understand the mechanism underlying the anti-inflammatory effects of silkworm hemocyte extract.
Collapse
Affiliation(s)
- Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Kwang Ho Choi
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju, Jeollabuk 55365, Republic of Korea
| | - Seong Ryul Kim
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju, Jeollabuk 55365, Republic of Korea
| | - Tae-Won Goo
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju, Gyeongsangbuk 38066, Republic of Korea
| | - Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Gyeongsan, Gyeongsangbuk 38430, Republic of Korea
| |
Collapse
|
8
|
Regulatory effects of anesthetics on nitric oxide. Life Sci 2016; 151:76-85. [DOI: 10.1016/j.lfs.2016.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
9
|
Meng C, Liu Z, Liu GL, Fu LS, Zhang M, Zhang Z, Xia HM, Zhang SH, Xu YN. Ketamine promotes inflammation through increasing TLR4 expression in RAW264.7 cells. ACTA ACUST UNITED AC 2015; 35:419-425. [DOI: 10.1007/s11596-015-1447-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/19/2015] [Indexed: 10/23/2022]
|
10
|
Wang F, Meng Y, Zhang Y, Zhao G, Zheng X, Xiao Q, Yu Y. RETRACTED: Ketamine reduces lipopolysaccharide-induced high-mobility group box-1 through heme oxygenase-1 and nuclear factor erythroid 2-related factor 2/ p38 mitogen-activated protein kinase. J Surg Res 2015; 194:599-613. [DOI: 10.1016/j.jss.2014.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/02/2014] [Accepted: 11/21/2014] [Indexed: 01/07/2023]
|
11
|
Zhang Z, Zhang L, Zhou C, Wu H. Ketamine inhibits LPS-induced HGMB1 release in vitro and in vivo. Int Immunopharmacol 2014; 23:14-26. [DOI: 10.1016/j.intimp.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 11/26/2022]
|
12
|
Dragone T, Cianciulli A, Calvello R, Porro C, Trotta T, Panaro MA. Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway. Toxicol In Vitro 2014; 28:1126-35. [DOI: 10.1016/j.tiv.2014.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/31/2014] [Accepted: 05/05/2014] [Indexed: 12/26/2022]
|
13
|
Zhang X, Wang J, Qian W, Zhao J, Sun L, Qian Y, Xiao H. Dexmedetomidine inhibits tumor necrosis factor-alpha and interleukin 6 in lipopolysaccharide-stimulated astrocytes by suppression of c-Jun N-terminal kinases. Inflammation 2014; 37:942-9. [PMID: 24429914 DOI: 10.1007/s10753-014-9814-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Astrocytes play an important role in immune regulation in the central nervous system (CNS). Dexmedetomidine (DEX) has been reported to exert anti-inflammatory effects on astrocytes stimulated by lipopolysaccharide (LPS) both in vitro and in vivo studies. However, the underlying molecular mechanisms remain poorly understood. This study was designed to evaluate the effects of DEX on tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) gene expressions in LPS-challenged astrocytes. Moreover, c-Jun N-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK) pathways in LPS-challenged astrocytes were also investigated. In the present study, astrocytes were stimulated with LPS in the absence and presence of various concentrations of DEX. With real-time PCR assay, we found that LPS significantly increased expressions of TNF-α and IL-6 in mRNA level; however, these effects could be attenuated by DEX. Furthermore, JNK pathway might be involved in LPS-induced astrocyte activation because JNK phosphorylation was significantly increased, and the inhibition of this pathway mediated by DEX as well as SP600125 (JNK inhibitor) decreased TNF-α and IL-6 expressions. Moreover, p38 MAPK was also activated by LPS; however, this pathway seemed to have not participated in DEX-mediated LPS-induced inflammation. These results, taken together, suggest that JNK rather than p38 MAPK signal pathway, provides the potential target for the therapeutic effects of DEX for neuronal inflammatory reactions.
Collapse
Affiliation(s)
- Xiaobao Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Abdel-Salam OME, Youness ER, Mohammed NA, Omara EA, Sleem AA. Effect of ketamine on oxidative stress following lipopolysaccharide administration. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1854-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|