1
|
Nazir MM, Farzeen I, Fasial S, Ashraf A. Berberine in rheumatoid arthritis: a comprehensive review and meta-analysis of its anti-inflammatory and immunomodulatory mechanisms in animal models. Inflammopharmacology 2025; 33:215-229. [PMID: 39710763 DOI: 10.1007/s10787-024-01612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Berberine (BBR), an alkaloid derivative mostly found in Oregon grapes and barberry shoots, has several medical properties, including anti-microbial, anti-tumorigenic, and anti-inflammatory properties. As such, it is a superior alternative to presently recommended medications. From previous researches, which showed that BBR has anti-arthritic qualities by blocking a number of inflammatory signalling pathways. Furthermore, it has been demonstrated that BBR attenuates Beclin-1, which reduces autophagy-mediated survival of mature adipocytes. BBR has also been identified as an AhR inducer and a promoter of Treg differentiation. Berberine has been shown in earlier studies to be useful in treating rheumatoid arthritis (RA) in animal models. The pharmacological effects and possible action pathway of Berberine were evaluated in this study. We looked through three databases-PubMed, Web of Science, and Google Scholar-for pertinent research published from the time the databases were created and August 2024. This risk-of-bias measure was used to evaluate the methodological quality. Utilising RevMan 5.4, the statistical analysis was conducted. There were 12 studies in this research with 175 animals. The findings showed that Berberine lowers the levels of IL-1β, IL-17, IL-6, IL-10, and TNF-α), paw swelling, and histopathological scores. These connected to the anti-inflammatory, anti-oxidative stress, and osteoprotective qualities of berberine. Nonetheless, further superior animal research is required to evaluate berberine impact on rheumatoid arthritis (RA). Additionally, more research is needed to validate berberine safety. Considering the significance of the active component, further research is needed to determine the best dose and increase berberine bioavailability.
Collapse
Affiliation(s)
| | - Iqra Farzeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Shahla Fasial
- Department of Statistics, Government College University, Faisalabad, 38000, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Hareeri RH, Hofni A. Berberine Alleviates Uterine Inflammation in Rats via Modulating the TLR-2/p-PI3K/p-AKT Axis. Int Immunopharmacol 2024; 141:112931. [PMID: 39146781 DOI: 10.1016/j.intimp.2024.112931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Uterine inflammation affects 8% of women in the United States and 32% in developing nations, often caused by uncontrolled inflammation and oxidative stress. This condition significantly impacts women's health, productivity, and quality of life, and increases the risk of related morbidities leading to higher healthcare costs. Research now focuses on natural antioxidants and anti-inflammatory, particularly berberine (BBR), an isoquinoline alkaloid known for its antioxidant, anti-inflammatory, and antiapoptotic activities. The present study sought to examine the potential therapeutic efficacy of BBR against uterine inflammation induced by the intrauterine infusion of an iodine (I2) mixture in an experimental setting. Female Sprague Dawley rats (n = 6) were divided into five groups, control, sham, I2, I2 and BBR 10 mg/kg, and I2 and BBR 25 mg/kg-treated groups. Compared to I2 infusion, BBR treatment effectively restored normal uterine histopathology and reduced inflammatory markers such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), nuclear factor- kappa B (NF-κB), monocyte chemoattractant protein 1 (MCP1), and myeloperoxidase (MPO). It lowered oxidative markers like malondialdehyde (MDA), and increased antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). It balanced apoptotic genes by upregulating B-cell lymphoma 2 (Bcl-2) and downregulating Bcl-2-associated X protein (Bax). Furthermore, BBR reduced the expression of Toll-like receptor 2 (TLR-2), phosphorylated phosphatidylinositol 3‑kinase (p-PI3K), and phosphorylated protein kinase B (p-AKT) in the rats treated with intrauterine I2. Ultimately, the therapeutic benefits of BBR can be attributed, to some extent, to its antioxidant, anti-inflammatory, and antiapoptotic properties, in addition to its ability to modulate the TLR-2/p-PI3K/p-AKT axis.
Collapse
Affiliation(s)
- Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
3
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Bashir U, Singh G, Bhatia A. Rheumatoid arthritis-recent advances in pathogenesis and the anti-inflammatory effect of plant-derived COX inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5363-5385. [PMID: 38358467 DOI: 10.1007/s00210-024-02982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The majority of people with autoimmune disorders, including those with rheumatoid arthritis, osteoarthritis, and tendonitis report pain, stiffness, and inflammation as major contributors to their worse quality of life in terms of overall health. Of all the available treatment options, COX inhibitors are the ones that are utilized most frequently to ease the symptoms. Various signaling cascades have been reported to be involved in the pathogenesis of rheumatoid arthritis which includes JAK/STAT, MAPK, and NF-kB signaling pathways, and several allopathic inhibitors (tofacitinib and baricitinib) have been reported to target the components of these cascades and have received approval for RA treatment. However, the prolonged use of these COX inhibitors and other allopathic drugs can pose serious health challenges due to their significant side effects. Therefore, searching for a more effective and side effect-free treatment for rheumatoid arthritis has unveiled phytochemicals as both productive and promising. Their therapeutic ability helps develop potent and safe drugs targeting immune-inflammatory diseases including RA. Various scientific databases were used for searching articles such as NCBI, SpringerLink, BioMed Central, ResearchGate, Google Scholar, Scopus, Nature, Wiley Online Library, and ScienceDirect. This review lists various phytochemicals and discusses their potential molecular targets in RA treatment, as demonstrated by various in vitro, in vivo (pre-clinical), and clinical studies. Several pre-clinical and clinical studies suggest that various phytochemicals can be an alternative promising intervention for attenuating and managing inflammation-associated pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ubaid Bashir
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurjant Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
5
|
Jiang Y, Han C, Gong H, Chen J, Tang B, Yang M, Qin Q, Wei S. Berberine inhibits SGIV replication by suppressing inflammatory response and oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109522. [PMID: 38548190 DOI: 10.1016/j.fsi.2024.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
Singapore grouper iridovirus (SGIV) is one of the major infectious diseases responsible for high mortality and huge economic losses in the grouper aquaculture industry. Berberine (BBR), a naturally occurring plant alkaloid, is a phytochemical having a variety of biological properties, such as antiviral, antioxidant, and anti-inflammatory effects. In this work, we used an in vitro model based on Western blot, ROS fluorescence probe, and real-time quantitative PCR (qRT-PCR) to examine the antiviral qualities of BBR against SGIV. The outcomes demonstrated that varying BBR concentrations could significantly inhibit the replication of SGIV. In addition, BBR greatly inhibited the production of genes associated with pro-inflammatory cytokines in SGIV-infected or SGIV-uninfected GS cells based on qRT-PCR data. Subsequent investigations demonstrated that BBR suppressed the expression of the promoter activity of NF-κB and NF-κB-p65 protein. Additionally, BBR reduced the phosphorylation of ERK 1/2, JNK, and p38. Furthermore, BBR also inhibits SGIV-induced ROS production by upregulating the expression of antioxidant-related genes. In conclusion, BBR is a viable therapy option for SGIV infection due to its antiviral properties.
Collapse
Affiliation(s)
- Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chengzong Han
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hannan Gong
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jiatao Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Biao Tang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
6
|
Gad HA, Abbas H, El Sayed NS, Khattab MA, El Hassab MA, Mansour M. Berberine loaded thermosensitive lipid nanoparticles: in vitro characterization, in silico study, and in vivo anti-arthritic effect. J Liposome Res 2024; 34:303-315. [PMID: 37856332 DOI: 10.1080/08982104.2023.2273390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, viz., rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. In vitro characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed in vivo on rats with adjuvant-induced arthritis. In vitro characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. In silico studies revealed the affinity of BER to different formula components and to the measured biomarkers. In vivo assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.
Collapse
Affiliation(s)
- Heba A Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Egypt
| | - Mai Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
8
|
Soltani L, Ghaneialvar H, Abbasi N, Bayat P, Nazari M. Chitosan/alginate scaffold enhanced with Berberis vulgaris extract for osteocyte differentiation of ovine fetal stem cells. Cell Biochem Funct 2024; 42:e3924. [PMID: 38269507 DOI: 10.1002/cbf.3924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Designing biocompatible polymers using plant derivatives can be extremely useful in tissue engineering, nanomedicine, and many other fields of medicine. In this study, it was first looked into how chitosan/alginate scaffolds were made and characterized in the presence of berberine and barberry fruit extract. Second, the process of proliferation and differentiation of ovine fetal BM-MSCs (bone marrow-mesenchymal stem cells) was assessed on these scaffolds after BM-MSCs were extracted and confirmed by developing into osteocyte and adipose cells. To investigate the differentiation, treatment groups include (1) ovine fetal BM-MSCs were plated in Dulbecco's modified eagle medium culture medium with high glucose containing 10% fetal bovine serum and antibiotics (negative control), (2) ovine fetal BM-MSCs were plated in osteogenic differentiation medium (positive control group), (3) positive control group + barberry fruit extract, (4) positive control group + berberine, (5) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate scaffold (hydrogel group), (6) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/barberry fruit extract scaffold (hydrogel group containing barberry fruit extract), and (7) ovine fetal BM-MSCs were plated in osteogenic differentiation medium on chitosan/alginate/berberine scaffold (hydrogel group containing berberine). Alkaline phosphatase (ALP) enzyme concentrations, mineralization rate using a calcium kit, and mineralization measurement by alizarin staining quantification were all found after 21 days of culture. In addition, real-time quantitative reverse transcription polymerase chain reaction was used to assess the expression of the ALP, COL1A2, and Runx2 genes. Days 5 and 7 had the lowest water absorption by the hydrogel scaffold containing barberry extract, which was significant in comparison to other groups (p < .05). Among the hydrogel scaffolds under study, the one containing barberry extract exhibited the lowest tensile strength, and this difference was statistically significant (p < .05). The chitosan/alginate hydrogel has the highest tensile strength of all of them. In comparison to the control and other treatment groups, the inclusion of berberine in the chitosan/alginate hydrogel significantly increased the expression of the ALP, Runx2, and COL1A2 genes (p < .05). The osteocyte differentiation of mesenchymal stem cells in in vitro settings appears to have been enhanced by the inclusion of berberine in the chitosan/alginate scaffold.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Clinical Biochemistry, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Parvaneh Bayat
- Department of Chemistry, Isfahan University of Technology, Ilam, Iran
| | - Maryam Nazari
- Applied Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
9
|
Shekh MR, Ahmed N, Kumar V. A Review of the Occurrence of Rheumatoid Arthritis and Potential Treatments through Medicinal Plants from an Indian Perspective. Curr Rheumatol Rev 2024; 20:241-269. [PMID: 38018201 DOI: 10.2174/0115733971268416231116184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/30/2023]
Abstract
Arthritis is a medical condition that affects the joints and causes inflammation, pain, and stiffness. There are different types of arthritis, and it can affect people of all ages, even infants and the elderly. Recent studies have found that individuals with diabetes, heart disease, and obesity are more likely to experience arthritis symptoms. According to the World Health Organization, over 21% of people worldwide suffer from musculoskeletal problems. Roughly 42.19 million individuals in India, constituting around 0.31% of the populace, have been documented as having Rheumatic Arthritis (RA). Compared to other common diseases like diabetes, cancer, and AIDS, arthritis is more prevalent in the general population. Unfortunately, there is no specific cure for arthritis, and treatment plans usually involve non-pharmacological methods, surgeries, and medications that target specific symptoms. Plant-based remedies have also been shown to be effective in managing inflammation and related complications. In addition to therapies, maintaining a healthy diet, exercise, and weight management are essential for managing arthritis. This review discusses the causes, prevalence, diagnostic methods, current and prospective future treatments, and potential medicinal plants that may act as anti-inflammatory or anti-rheumatic agents. However, more research is necessary to identify the underlying mechanisms and active molecules that could improve arthritis treatment.
Collapse
Affiliation(s)
- Mohammad Raeesh Shekh
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| | - Nasir Ahmed
- Forensic Anthropology-1, Department of Forensic Medicine, YMC, Yenepoya Deemed to be University, University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vivek Kumar
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| |
Collapse
|
10
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Wang S, Li C, Zhang C, Liu G, Zheng A, Qiu K, Chang W, Chen Z. Effects of Sihuang Zhili Granules on the Diarrhea Symptoms, Immunity, and Antioxidant Capacity of Poultry Challenged with Lipopolysaccharide (LPS). Antioxidants (Basel) 2023; 12:1372. [PMID: 37507912 PMCID: PMC10376454 DOI: 10.3390/antiox12071372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
A growing interest has been focused on Chinese herbs as alternatives to antimicrobial growth promoters, which are characterized by non-toxic side effects and drug resistance. The purpose of this study was to evaluate the effects of the Sihuang Zhili granule (abbreviated as Sihuang) on diarrhea, immunity, and antioxidation in poultry. Thirty male Leghorn chickens, aged 21 days, were randomly assigned to one of three groups with ten animals each. The control group (CON) received intraperitoneal saline injections, while the LPS-challenged group (LPS) and Sihuang intervention group (SH) received intraperitoneal injections of LPS (0.5 mg/kg of BW) and Sihuang (5 g/kg) at d 31, d 33, d 35, respectively. The control and LPS groups were fed a basal diet, while the SH group was fed a diet supplemented with Sihuang from d 21 to d 35. Analysis of the diarrhea index showed that the addition of Sihuang inhibited the increase in the diarrhea grade and the fecal water content caused by LPS, effectively alleviating poultry diarrhea symptoms. The results of the immune and antioxidant indexes showed that Sihuang significantly reduced the contents of the pro-inflammatory factors TNF- α and IL-1 β, as well as the oxidative stress markers ROS and MDA. Conversely, it increased the contents of the anti-inflammatory factors IL-4 and IL-10, along with the activities of antioxidant enzymes GSH-Px and CAT, thereby enhancing the immune and antioxidant abilities of chickens. Furthermore, Sihuang protected the chicken's ileum, liver, and immune organs from LPS invasion and maintained their normal development. In conclusion, this study confirmed the antidiarrheal effect of Sihuang in poultry farming and demonstrated its ability to improve poultry immunity and antioxidant capacity by modulating antioxidant enzyme activity and inflammatory cytokine levels.
Collapse
Affiliation(s)
- Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| |
Collapse
|
13
|
Del Gaudio MP, Kraus SI, Melzer TM, Bustos PS, Ortega MG. Antinociceptive effect and identification of berberine alkaloid in Berberis ruscifolia extracts. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116066. [PMID: 36577491 DOI: 10.1016/j.jep.2022.116066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aerial parts (leaves and stems) of Berberis ruscifolia Lam. are a usual preparation as an analgesic, anti-inflammatory, antimalarial, antibacterial, and digestive in folk medicine. However, there were no previous studies of its chemical composition and biological activity related to analgesic effects. THE OBJECTIVE OF THE STUDY The evaluation of the anti-nociception of the infusion (I), the decoction (D), and the ethanolic extract (EE) obtained from aerial parts of B. ruscifolia and its main chemical constituent in them, in mouse models. MATERIAL AND METHODS The chemical constituent of B. ruscifolia extracts was evaluated and quantified by LC-MS and HPLC methodology. The inhibition of nociception in mice was analyzed by formalin and acetic acid-induced contortions tests. Also, when the formalin test was performed to evaluate the antinociceptive activity, the inhibition of edema formation and the antipyretic effect of each extract were simultaneously evaluated in the same experiment. For the oral administration in the in vivo assays, doses ranging from 10 to 1000 mg/kg and 10-30 mg/kg were used for extract and the chemical compound, respectively. RESULTS The presence of berberine (Berb) was identified in the three evaluated extracts where the EE showed the highest content of this compound getting a yield of 2%, while in the I and D, Berb is present at 0.2%. The three extracts promoted a reduction of the contortions induced by acetic acid, being observed in EE the highest activity with 63 ± 6% of significant inhibition of the nociceptive behavior at a dose of 300 mg/kg, while D significantly inhibited 32 ± 12% at the same dose and for I at a dose of 1000 mg/kg an inhibition of 44 ± 8% was observed. Likewise, in the formalin trial, I and EE reduced nociception at a dose of 1000 (31 ± 5%) and 300 (35 ± 3%) mg/kg, respectively in the neurogenic phase, while in the second phase of the experiment, all the extracts evaluated showed an antinociceptive effect, with significant inhibition of I of 54 ± 6% and D of 44 ± 5% at a dose of 1000 mg/kg and for EE showed a 63 ± 2% inhibition at a dose of 300 mg/kg being the one with the highest antinociceptive activity. These extracts showed no inhibition in temperature and formalin-injected paw edema formation when compared to the control. As for Berb, at a 30 mg/kg dose, it showed significant inhibition of 70 ± 5% in the acetic acid-induced contortion test. CONCLUSION Altogether, the present results evidenced the analgesic properties of B. ruscifolia, scientific information presented for the first time, and also provided important knowledge not reported so far about the chemical composition of its extracts, by identifying the presence of Berb in them. Finally, we were able to conclude that the analgesic effect demonstrated by this medicinal plant is partly due to the presence of Berb.
Collapse
Affiliation(s)
- Micaela Paula Del Gaudio
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - Scheila Iria Kraus
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Tayza Martins Melzer
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center for Biological Sciences, Federal University of Santa Catarina, University Campus, Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Pamela Soledad Bustos
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina
| | - María Gabriela Ortega
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende, Córdoba, 5000, Argentina; Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, Córdoba, 5000, Argentina.
| |
Collapse
|
14
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
15
|
Carbonized π-conjugated polymer-coated porous silica: preparation and evaluating its extraction ability for berberine. Mikrochim Acta 2022; 189:401. [PMID: 36190563 DOI: 10.1007/s00604-022-05496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 10/10/2022]
Abstract
In view of the limitations of existing berberine solid-phase extraction adsorbents, this paper proposes a novel carbonized π-conjugated polymer-coated porous silica (SiO2@C-π-CP) adsorbent with simple process and low cost for efficient extraction of berberine by multiple interactions. Characterization methods, including Brunner-Emmet-Teller measurement, thermogravimetric analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques, were used to verify the successful modification of carbonized π-conjugated polymer on the surface of porous silica. The berberine was selected as target molecule, and the adsorption mechanism and process were investigated through adsorption kinetics, adsorption isotherms, and thermodynamic studies. The fitting results show that the adsorption of berberine by SiO2@C-π-CP well conforms to the pseudo-second-order and Langmuir models. By optimizing the main SPE parameters, the SPE method based on SiO2@C-π-CP was developed. Excellent results were obtained, including low limit of detection (0.75 ng mL-1) and limit of quantification (2 ng mL-1), wide linearity (2-13,000 ng mL-1), and satisfactory relative standard deviations (RSD) of inter-day (1.5%) and intra-day (6.2%). Finally, the SiO2@C-π-CP also has been successfully used to the enrichment of berberine in real urine samples. This research makes clear that SiO2@C-π-CP has outstanding potential for trace enrichment of berberine alkaloids.
Collapse
|
16
|
Vita AA, Pullen NA. Exploring the mechanism of berberine-mediated T fh cell immunosuppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154343. [PMID: 35901597 PMCID: PMC9948547 DOI: 10.1016/j.phymed.2022.154343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Our previous research revealed a novel function of berberine (BBR), a clinically relevant plant-derived alkaloid, as a suppressor of follicular T helper (Tfh) cell proliferation in secondary lymphoid organs of BBR-treated mice that underwent immunization for collagen-induced arthritis (CIA) in DBA1/J mice. Due to the importance of Tfh cell and B cell interactions in the generation of T cell-dependent humoral responses, the suppression of Tfh cell activity may have implications for the general safety of BBR as a prophylactic dietary supplement, and its potential use in antibody-driven autoimmune and hypersensitivity disorders. PURPOSE This research aims to characterize BBR's impact on the activation, differentiation, and proliferation of Tfh cells by examining the expression of key extracellular signaling molecules, as well as the activity of intracellular signaling molecules involved in the Ca2+-calcineurin-NFAT pathway and STAT3 phosphorylation, following activation. STUDY DESIGN In vitro experimental study using primary tissues. METHODS To explore the direct effects of BBR on the proliferation and differentiation of Tfh cells, isolated naïve CD4+ T cells (>95% pure) were activated and differentiated into pre- Tfh cells in the presence or absence of BBR. The resulting Tfh cell populations and the expression of the key extracellular molecules CXCR5, ICOS, and PD-1 were measured. In addition, we examined the impact of BBR treatment on the activity of key intracellular signaling molecules involved in Tfh cell activation and differentiation following TCR ligation and/or CD28 signaling (p-ZAP-70, p-Lck, p-PLCγ1, NFATc1 and intracellular calcium, Ca2+, concentrations), as well as IL-6 signaling (p-STAT3). RESULTS Treatment with BBR significantly reduced the expression of both CXCR5 (p < 0.01) and ICOS (p < 0.005), but not PD-1, and reduced the percentage of Tfh cells within the total CD4+ T cell population. BBR treatment also led to a reduction in intracellular Ca2+ flux, activation of p-STAT3, and IL-21 production. CONCLUSION Our observations provide insight into the mechanism of BBR-mediated Tfh cell suppression and suggest that BBR treatment can directly inhibit Tfh cell activity, perhaps through interfering with cytokine receptor or downstream signaling.
Collapse
Affiliation(s)
- Alexandra A Vita
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Campus Box 92, Greeley, CO 80639, United States; Helfgott Research Institute, National University of Natural Medicine, Portland, OR, United States
| | - Nicholas A Pullen
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Campus Box 92, Greeley, CO 80639, United States.
| |
Collapse
|
17
|
Lan Y, Wang H, Wu J, Meng X. Cytokine storm-calming property of the isoquinoline alkaloids in Coptis chinensis Franch. Front Pharmacol 2022; 13:973587. [PMID: 36147356 PMCID: PMC9485943 DOI: 10.3389/fphar.2022.973587] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Coronavirus disease (COVID-19) has spread worldwide and its effects have been more devastating than any other infectious disease. Importantly, patients with severe COVID-19 show conspicuous increases in cytokines, including interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-8, tumor necrosis factor (TNF)-α, IL-1, IL-18, and IL-17, with characteristics of the cytokine storm (CS). Although recently studied cytokine inhibitors are considered as potent and targeted approaches, once an immunological complication like CS happens, anti-viral or anti-inflammation based monotherapy alone is not enough. Interestingly, certain isoquinoline alkaloids in Coptis chinensis Franch. (CCFIAs) exerted a multitude of biological activities such as anti-inflammatory, antioxidant, antibacterial, and immunomodulatory etc, revealing a great potential for calming CS. Therefore, in this timeline review, we report and compare the effects of CCFIAs to attenuate the exacerbation of inflammatory responses by modulating signaling pathways like NF-ĸB, mitogen-activated protein kinase, JAK/STAT, and NLRP3. In addition, we also discuss the role of berberine (BBR) in two different triggers of CS, namely sepsis and viral infections, as well as its clinical applications. These evidence provide a rationale for considering CCFIAs as therapeutic agents against inflammatory CS and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jiasi Wu, ; Xianli Meng,
| |
Collapse
|
18
|
Pharmacological Mechanism of Zuojin Pill for Gastroesophageal Reflux Disease: A Network Pharmacology Study. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5933348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. Although Zuojin Pill (ZJP) is widely used in China as a traditional prescription to treat gastroesophageal reflux disease (GERD), its exact mechanism of action is still unknown. Therefore, we employed network pharmacology (NP), molecular docking (MD), and molecular dynamics simulation (MDS) to investigate the pharmacological mechanisms of ZJP against GERD. Methods. Active compounds and target genes corresponding to ZJP and target genes related to GERD were identified through analysis of publicly available datasets. Subsequently, the obtained data were subjected to further network pharmacological analysis to explore the potential key active compounds, core target genes, and biological processes (BPs) associated with the effect of ZJP against GERD. Finally, the prediction results of NP were validated by MD, and MDS of the optimal core protein-ligand for each component obtained by MD were performed using Gromacs 2020 software. Results. Twelve active components of ZJP were identified to act on 82 target genes associated with GERD, and ZJP might exert an anti-GERD effect through the regulation of BPs such as reactive oxygen species (ROS) metabolism, response to oxidative stress (OS), and ROS, as well as the activation of signaling pathways such as apoptosis, p53 signaling, chemical carcinogenesis-ROS, and HIF-1 signaling pathways. Furthermore, quercetin, kaempferol, and coptisine, the three key components of ZJP were shown to stably bond with the 14 core target genes, including AKT1, MMP2, TP53, EGFR, JUN, CASP3, CXCL8, HIF1α, IL-1β, MYC, PPARG, MMP9, PTGS2, and FOS. Results from MDS showed that PPARG-quercetin and MMP2-quercetin bound more stably. Conclusions. The findings suggest that ZJP alleviates the symptoms of GERD and improves the prognosis by regulating ROS metabolism, thereby reducing the secretion of proinflammatory cytokines like IL-1β, COX-2, CXCL8, and MMPs, regulating the expression of oncogenes such as JUN and FOS, and maintaining the normal expression of tumor suppressor genes such as TP53 and MYC. However, whether the effect of this modulation of ROS metabolism is positive or negative needs to be further verified by pharmacological experiments.
Collapse
|
19
|
Sandenon Seteyen AL, Girard-Valenciennes E, Septembre-Malaterre A, Gasque P, Guiraud P, Sélambarom J. Anti-Alphaviral Alkaloids: Focus on Some Isoquinolines, Indoles and Quinolizidines. Molecules 2022; 27:molecules27165080. [PMID: 36014321 PMCID: PMC9416297 DOI: 10.3390/molecules27165080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery and the development of safe and efficient therapeutics against arthritogenic alphaviruses (e.g., chikungunya virus) remain a continuous challenge. Alkaloids are structurally diverse and naturally occurring compounds in plants, with a wide range of biological activities including beneficial effects against prominent pathogenic viruses and inflammation. In this short review, we discuss the effects of some alkaloids of three biologically relevant structural classes (isoquinolines, indoles and quinolizidines). Based on various experimental models (viral infections and chronic diseases), we highlight the immunomodulatory effects of these alkaloids. The data established the capacity of these alkaloids to interfere in host antiviral and inflammatory responses through key components (antiviral interferon response, ROS production, inflammatory signaling pathways and pro- and anti-inflammatory cytokines production) also involved in alphavirus infection and resulting inflammation. Thus, these data may provide a convincing perspective of research for the use of alkaloids as immunomodulators against arthritogenic alphavirus infection and induced inflammation.
Collapse
Affiliation(s)
- Anne-Laure Sandenon Seteyen
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, 97400 Saint-Denis, France
| | - Axelle Septembre-Malaterre
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
| | - Jimmy Sélambarom
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
20
|
Xiao J, Lu H, Ma T, Ni X, Chang T, Liu M, Li N, Lu P, Ke C, Tian Q, Zou L, Wang F, Wang W, Zhang L, Yuan P, Liu L, Zhang J, Shi F, Duan Q, Zhu F. Worenine Prevents Solar Ultraviolet–Induced Sunburn by Inhibiting JNK2. Front Pharmacol 2022; 13:881042. [PMID: 35979232 PMCID: PMC9377457 DOI: 10.3389/fphar.2022.881042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive solar ultraviolet (SUV) radiation often causes dermatitis, photoaging, and even skin cancer. In the pathological processes of SUV-induced sunburn, JNK is activated by phosphorylation, and it in turn phosphorylates its downstream transcription factors, such as ATF2 and c-jun. The transcription factors further regulate the expression of pro-inflammatory genes, such as IL-6 and TNF-α, which ultimately leads to dermatitis. Therefore, inhibiting JNK may be a strategy to prevent dermatitis. In this study, we screened for worenine as a potential drug candidate for inhibiting sunburn. We determined that worenine inhibited the JNK-ATF2/c-jun signaling pathway and the secretion of IL-6 and TNF-α in cell culture and in vivo, confirming the role of worenine in inhibiting sunburn. Furthermore, we determined that worenine bound and inhibited JNK2 activity in vitro through the MST, kinase, and in vitro kinase assays. Therefore, worenine might be a promising drug candidate for the prevention and treatment of SUV-induced sunburn.
Collapse
Affiliation(s)
- Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Novel Onco-Kinases in Target Therapy, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Hui Lu, ; Juanjuan Xiao, ; Qiuhong Duan, ; Feng Zhu, , orcid.org/0000-0003-1172-0102
| | - Hui Lu
- Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Lu, ; Juanjuan Xiao, ; Qiuhong Duan, ; Feng Zhu, , orcid.org/0000-0003-1172-0102
| | - Tengfei Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Ni
- Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Liu
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nijie Li
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peijiang Lu
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changshu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Tian
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Shi
- Department of Dermatology, The General Hospital of Air Force, Beijing, China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Lu, ; Juanjuan Xiao, ; Qiuhong Duan, ; Feng Zhu, , orcid.org/0000-0003-1172-0102
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Novel Onco-Kinases in Target Therapy, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Hui Lu, ; Juanjuan Xiao, ; Qiuhong Duan, ; Feng Zhu, , orcid.org/0000-0003-1172-0102
| |
Collapse
|
21
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Berberine Loaded Tragacanth-Acacia Gum Nanocomplexes: Synthesis, Characterization and Evaluation of In Vitro Anti-inflammatory and Antioxidant Activity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Haftcheshmeh SM, Abedi M, Mashayekhi K, Mousavi MJ, Navashenaq JG, Mohammadi A, Momtazi-Borojeni AA. Berberine as a natural modulator of inflammatory signaling pathways in the immune system: Focus on NF-κB, JAK/STAT, and MAPK signaling pathways. Phytother Res 2022; 36:1216-1230. [PMID: 35142403 DOI: 10.1002/ptr.7407] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Three main inflammatory signaling pathways include nuclear factor-κB (NF-κB), Janus kinases/Signal transducer and activator of transcriptions (JAKs/STATs), and mitogen-activated protein kinases (MAPKs) play crucial roles in inducing, promoting, and regulating inflammatory responses in the immune system. Importantly, the breakdown of mechanisms that tightly regulate inflammatory signaling pathways can be the underlying cause of uncontrolled inflammatory responses and be associated with the generation and development of several inflammatory diseases. Hence, therapeutic strategies targeting inflammatory signaling pathways and their downstream components may promise to treat inflammatory diseases. Studies over the past two decades have provided important information on the polytrophic pharmacological and biochemical properties of berberine (BBR) as a naturally occurring compound, such as antioxidant, antitumor, antimicrobial, and antiinflammatory activates. Interestingly, the modulatory effects of BBR on inflammatory signaling cascades, which lead to the inhibition of inflammation, have been widely investigated in several in vitro and in vivo studies. For the first time, herein, this comprehensive review attempts to put together these studies and provide important insight into the modulatory effects of BBR on NF-κB, JAKs/STATs, and MAPKs signaling pathways in vitro in various types of immune cells and in vivo in several experimental inflammatory diseases. As the second achievement of this review, we also explore the therapeutic efficacy and antiinflammatory effects of BBR regarding its modulatory action.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.,Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Maliheh Abedi
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Javad Mousavi
- Department of Immunology and Allergy, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Gandhi GR, Jothi G, Mohana T, Vasconcelos ABS, Montalvão MM, Hariharan G, Sridharan G, Kumar PM, Gurgel RQ, Li HB, Zhang J, Gan RY. Anti-inflammatory natural products as potential therapeutic agents of rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153766. [PMID: 34624807 DOI: 10.1016/j.phymed.2021.153766] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/23/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease causing severe locomotor disability and deterioration in the quality of life. Existing treatments for RA mainly focus on the use of immunomodulators and the suppression of synovial inflammation, and many have significant side effects. Medicinal plants are regarded as important alternative sources for treating RA. PURPOSE This review summarizes the bioactive compounds of medicinal plants, which have been shown to modulate the immune response by regulating interleukins in vitro and in vivo experimental models, and that may be promising substances for use in the treatment of RA. METHODS Articles on natural products used for the management of arthritis were retrieved from PubMed, Embase, Scopus, and Web of Science through electronic and manual search in English. In total, 576 publications were identified, and 34 were included in this systematic review. RESULTS Two articles presented findings on the role of natural components in the treatment of arthritis in both in vitro and in vivo studies. Nine reports defined the role of plant-derived natural molecules in the treatment of arthritis using cell lines, and 27 in vivo studies assessed the anti-arthritic efficacy and immunomodulation effects of phytoconstituents on interleukin production and inflammatory responses. CONCLUSION This systematic review broadly reports that, in contrast to other classes of phytochemicals, flavonoids have the greatest therapeutic potential against arthritis by modulating the expression of pro-inflammatory TNF-α, IL-1β, IL-6, IL-8, and IL-17, as well as anti-inflammatory IL-2 and IL-10 cytokines, through the suppression of dynamic inflammatory biomarkers.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China; Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 620005, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Madha Dental College and Hospital, Kundrathur, Chennai 600069, India
| | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), Campus São Cristóvão, São Cristóvão, Sergipe 49100-000, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), Campus São Cristóvão, São Cristóvão, Sergipe 49100-000, Brazil
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 620005, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 620005, India
| | - Perumal Madan Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570020, India
| | - Ricardo Querioz Gurgel
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil
| | - Hua-Bin Li
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
25
|
Ma Q, Bai J, Xu J, Dai H, Fan Q, Fei Z, Chu J, Yao C, Shi H, Zhou X, Bo L, Wang C. Reshaping the Inflammatory Environment in Rheumatoid Arthritis Joints by Targeting Delivery of Berberine with Platelet‐Derived Extracellular Vesicles. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Jinyu Bai
- Department of Rheumatology The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
- Department of Orthopedics The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Qin Fan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Jiacheng Chu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Chenlu Yao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Haoliang Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| | - Xiaozhong Zhou
- Department of Orthopedics The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Lin Bo
- Department of Rheumatology The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
26
|
Khorshidi-Sedehi S, Aryaeian N, Shahram F, Akhlaghi M, Mahmoudi M, Motevalian M, Asgari -Taee F, Hosseini A. Effects of hydroalcoholic extract of Berberis integerrima on the clinical signs, hs-CRP, TNFα, and ESR in active rheumatoid arthritis patients. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Sivasakthi P, Sanmuga Priya E, Senthamil Selvan P. Molecular insights into phytochemicals exhibiting anti-arthritic activity: systematic review : John Di Battista. Inflamm Res 2021; 70:665-685. [PMID: 34031706 DOI: 10.1007/s00011-021-01471-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease with an unclear etiology causing severe inflammation, joint pain, and destruction that increases the chance of disability over time. Dysregulation of various immune signaling cascades regulates the formation of synovial hyperplasia and pannus formation. Imbalance in cytokine levels, predominantly proinflammatory cytokines like TNF-α, IL-1, IL-6, IL-17, and IL-12p70 profoundly influences the disease's pathogenesis. Even though various strategies are adopted to treat arthritis, their side effects and cost limit their usage. This review discusses the multiple pathways involved in the pathogenesis of rheumatoid arthritis, provides a systematic analysis of various phytochemicals, and discusses their potential molecular targets in RA treatment. METHODS The literature mining was done from scientific databases such as PubMed, Europe PMC, Web of Science, Scopus, etc. The terminologies used for literature mining were Rheumatoid arthritis, phytochemicals, cell signaling pathways, molecular mechanism, etc. RESULTS: NF-κB, MAPKs, and JAK-STAT are the key pathways potentially targeted for RA treatment. However, specific susceptible pathways and potential targets remain unexplored. Besides, the phytochemicals remain an immense source to be exploited for the effective treatment of RA, overcoming the demerits of the conventional strategies. Various in vitro and in vivo findings suggest that polyphenols and flavonoids effectively treat RA conditions overcoming the demerits, such as limitations in usage and toxicity. The phytochemicals should be explored in par with the pathological mechanisms with all the available targets to determine their therapeutic efficacy. Through the established therapeutic efficacy, phytochemicals can help developing therapeutics that are safe and efficacious for RA treatment.
Collapse
Affiliation(s)
- P Sivasakthi
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - E Sanmuga Priya
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - P Senthamil Selvan
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
28
|
Huang DN, Wu FF, Zhang AH, Sun H, Wang XJ. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169:105667. [PMID: 33989762 DOI: 10.1016/j.phrs.2021.105667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder involved in persistent synovial inflammation. Berberine is a nature-derived alkaloid compound with multiple pharmacological activities in different pathologies, including RA. Recent experimental studies have clarified several determinant cellular and molecular targets of BBR in RA, and provided novel evidence supporting the promising therapeutic potential of BBR to combat RA. In this review, we recapitulate the therapeutic potential of BBR and its mechanism of action in ameliorating RA, and discuss the modulation of gut microbiota by BBR during RA. Collectively, BBR might be a promising lead drug with multi-functional activities for the therapeutic strategy of RA.
Collapse
Affiliation(s)
- Dan-Na Huang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China.
| |
Collapse
|
29
|
Berberine Delays Onset of Collagen-Induced Arthritis through T Cell Suppression. Int J Mol Sci 2021; 22:ijms22073522. [PMID: 33805383 PMCID: PMC8037694 DOI: 10.3390/ijms22073522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
There is evidence that berberine (BBR), a clinically relevant plant compound, ameliorates clinically apparent collagen-induced arthritis (CIA) in vivo. However, to date, there are no studies involving the use of BBR which explore its prophylactic potential in this model of rheumatoid arthritis (RA). The aim of this study was to determine if prophylactic BBR use during the preclinical phase of collagen-induced arthritis would delay arthritic symptom onset, and to characterize the cellular mechanism underlying such an effect. DBA/1J mice were injected with an emulsion of bovine type II collagen (CII) and complete Freund’s adjuvant (day 0) and a booster injection of CII in incomplete Freund’s adjuvant (day 18) to induce arthritis. Mice were then given i.p. injections of 1 mg/kg/day of BBR or PBS (vehicle with 0.01% DMSO) from days 0 to 28, were left untreated (CIA control), or were in a non-arthritic control group (n = 15 per group). Incidence of arthritis in BBR-treated mice was 50%, compared to 90% in both the CIA and PBS controls. Populations of B and T cells from the spleens and draining lymph nodes of mice were examined on day 14 (n = 5 per group) and day 28 (n = 10 per group). BBR-treated mice had significantly reduced populations of CD4+Th and CD4+CXCR5+ Tfh cells, and an increased proportion of Foxp3+ Treg at days 14 and 28, as well as reduced expression of co-stimulatory molecules CD28 and CD154 at both endpoints. The effect seen on T cell populations and co-stimulatory molecule expression in BBR-treated mice was not mirrored in CD19+ B cells. Additionally, BBR-treated mice experienced reduced anti-CII IgG2a and anti-CII total IgG serum concentrations. These results indicate a potential role for BBR as a prophylactic supplement for RA, and that its effect may be mediated specifically through T cell suppression. However, the cellular effector involved raises concern for BBR prophylactic use in the context of vaccine efficacy and other primary adaptive immune responses.
Collapse
|
30
|
Zhang L, Li M, Zhang G, Gao C, Wang S, Zhang T, Ma C, Wang L, Zhu Q. Micro- and Nanoencapsulated Hybrid Delivery System (MNEHDS): A Novel Approach for Colon-Targeted Oral Delivery of Berberine. Mol Pharm 2021; 18:1573-1581. [PMID: 33629860 DOI: 10.1021/acs.molpharmaceut.0c00970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Berberine (BBR) is currently explored in the oral treatment of many disorders, especially in those involving inflammatory processes. Nanotechnology-based drug delivery systems are emerging as an effective approach for improving the poor oral absorption/bioavailability of BBR. To optimize the BBR immunoregulatory effects on a specific part of the gastrointestinal tract, here we describe a micro- and nanoencapsulated hybrid delivery system (MNEHDS) for colon-targeted oral delivery of BBR and test its therapeutic efficacy in a murine colitis model. The MNEHDS is formed by encapsulation of BBR-loaded poly(lactic-co-glycolic acid) nanoparticles into a pH-sensitive, BBR-pre-entrapped Eudragit FS30D matrix to form a hybrid microparticle composed of the BBR and BBR nanoparticles. Once in the colonic environment, the microencapsulated BBR is almost completely released for immediate action, while BBR nanoparticles can provide sustained release of BBR subsequent to their intestinal absorption. One dose of oral MNEHDS/BBR treatment results in significant attenuation of acute colitis induced by dextran sulfate sodium. The MNEHDS/BBR also proves to be effective during chronically induced colitis with two doses given 1 week apart. The improved efficacy is accompanied by decreased production of colon inflammation. Comparatively, oral treatment with one or two 7-day courses of free BBR has less effect on ameliorating either acute or chronic colitis. Thus, MNEHDS represents a novel delivery system for BBR, and potentially other therapeutic agents, to treat inflammatory bowel disease.
Collapse
Affiliation(s)
- Lingzhi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Mingyan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Guiqiu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Changxing Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Shengfang Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China.,College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Chen Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Qing Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Materia Medica, Beijing 100050, China
| |
Collapse
|
31
|
Naz H, Naz S, Miraj R, Zaheer A, Azam N, Mughal IS, Khan AW, Ishaq M, Sundas F, Hanif M. The Effect of Berberine, a Drug From Chinese Folk Medicine, on Serum and Urinary Uric Acid Levels in Rats With Hyperuricemia. Cureus 2021; 13:e13186. [PMID: 33717730 PMCID: PMC7943048 DOI: 10.7759/cureus.13186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The principal manifestation of hyperuricemia is gout. Many drugs are in use nowadays to treat gout, but they are linked with multiple side effects. The present study observed berberine (from Chinese folk medicine) on serum and urinary uric acid levels in rats with potassium oxonate-induced hyperuricemia. Materials and methods Thirty-six adult healthy female Sprague Dawley rats were randomly divided into six groups of six rats each. To induce hyperuricemia, all the groups except Group A were given potassium oxonate (250 mg/kg) intraperitoneally on days 1, 3, and 7. Group A, the normal control group, was given normal saline for seven consecutive days intraperitoneally. Group C was administered allopurinol (5 mg/kg body weight) intraperitoneally, and Group D, E, and F were given berberine in doses of 0.75 mg/kg, 1.25 mg/kg, and 2.5 mg/kg body weight respectively intraperitoneally for seven consecutive days, one hour after the potassium oxonate injection. On zero, first, third, and seventh day of the experiment, blood and urine samples were taken to estimate the serum and urinary uric acid levels. On days zero and 7, serum uric acid was measured by cardiac puncture, while on days 1 and 3, it was measured by the tail prick method. The uric acid was measured by an enzymatic colorimetric method and creatinine by the Jaffe method. Fractional excretion of urate was also calculated. Results Berberine lowered serum uric acid levels in rats with potassium oxonate-induced hyperuricemia with highly significant results (p-value <0.001) in all three dosages. Berberine increased the urinary uric acid level and the fractional excretion of urate in a time-dependent manner in all three dosages. This effect was maximally shown by low dose berberine with a highly significant result (p-value <0.001). Conclusion Berberine successfully decreased the serum uric acid level of hyperuricemic rats by increasing the urinary uric acid level and fractional excretion of urate.
Collapse
Affiliation(s)
- Hira Naz
- Internal Medicine, Post Graduate Medical Institute, Lahore General Hospital, Lahore, PAK
| | - Sidra Naz
- Internal Medicine, University of Health Sciences (UHS), Lahore, PAK
| | - Rabab Miraj
- Internal Medicine, Post Graduate Medical Institute, Lahore General Hospital, Lahore, PAK
| | - Akfish Zaheer
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
| | - Nada Azam
- Internal Medicine, University College of Medicine and Dentistry, Lahore, PAK
| | | | - Abdul Wali Khan
- Internal Medicine, College of Physician and Surgeons Pakistan, Peshawar, PAK.,Internal Medicine, Hayatabad Medical Complex Peshawar, Peshawar, PAK
| | - Muhammad Ishaq
- Internal Medicine, Khyber Teaching Hospital, Peshawar, PAK
| | - Fnu Sundas
- Internal Medicine, Khyber Medical College, Peshawar, PAK
| | - Muhammad Hanif
- Internal Medicine, Khyber Medical College, Peshawar, PAK.,Internal Medicine, Hayatabad Medical Complex, Peshawar, PAK
| |
Collapse
|
32
|
Pan D, Gong X, Wang X, Li M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front Pharmacol 2021; 11:594050. [PMID: 33716724 PMCID: PMC7944143 DOI: 10.3389/fphar.2020.594050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis refers to the formation of new blood vessels from the endothelial cells of existing arteries, veins, and capillaries. Angiogenesis is involved in a variety of physiological and pathological processes, such as the formation of malignant and development of atherosclerosis and other diseases. In recent years, many studies have shown that the active components of food have a certain regulatory effect on angiogenesis and negligible clinical limitations. With the increasing attention being paid to medicine and food homology, exploring the effect of active food components on angiogenesis is of great significance. In this review, we discuss the source, composition, pharmacological activity, and mechanism of action of certain active components of medicinal foods in detail. These could help prevent angiogenesis-related complications or provide a basis for healthier dietary habits. This review can provide a theoretical basis for the research and development of highly efficient anti-angiogenic drugs with low toxicity.
Collapse
Affiliation(s)
- Dezhi Pan
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
33
|
Berberine suppresses bone loss and inflammation in ligature-induced periodontitis through promotion of the G protein-coupled estrogen receptor-mediated inactivation of the p38MAPK/NF-κB pathway. Arch Oral Biol 2020; 122:104992. [PMID: 33338754 DOI: 10.1016/j.archoralbio.2020.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/04/2020] [Accepted: 11/15/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to explore the protective actions of berberine on inflammation, and alveolar bone loss in ligature-induced periodontitis, as well as its mechanism of action METHODS: Micro-computed tomography was conducted to analyze the alveolar bone loss, and hematoxylin and eosin staining was carried out to observe the histopathological changes and inflammation status. Furthermore, enzyme linked immunosorbent assay (ELISA) was conducted to evaluate the levels of TNF-α, IL-1β, and IL-10, as well as western blots to determine the levels of GPR30 and the activity of the p38MAPK/NF-κB pathway. RESULTS Berberine distinctly suppressed alveolar bone loss and inflammation in rats exposed to ligature-induced periodontitis. As well as this, berberine significantly decreased the levels of phosphorylated p38MAPK and phosphorylated NF-κB 65 through upregulating the GRP30 protein levels, this protective effects of berberine were reversed by injection of G15, along with the upregulated activity of the p38MAPK/NF-κB pathway in rats with periodontitis. CONCLUSIONS Berberine had a clear inhibitory effect on alveolar bone loss and inflammation in rats exposed to ligature-induced periodontitis, and its putative mechanism of action was attributed to the downregulation of the activity of the P38MAPK/NF-κB pathway, mediated by the G Protein-coupled estrogen receptor.
Collapse
|
34
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
35
|
Aryaeian N, Hadidi M, Mahmoudi M, Asgari M, Hezaveh ZS, Sadehi SK. The effect of black barberry hydroalcoholic extract on immune mediators in patients with active rheumatoid arthritis: A randomized, double-blind, controlled clinical trial. Phytother Res 2020; 35:1062-1068. [PMID: 32914483 DOI: 10.1002/ptr.6874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/23/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease associated with inflammation. In this trial, we aimed to investigate the Immunomodulatory effect of hydroalcoholic extract of black barberry on immune mediators in patients with active rheumatoid arthritis. In this randomized, double-blind, placebo-controlled clinical trial, 80 women with active RA were randomly assigned into two groups of two capsules, each containing 1,000 mg black barberry extract (n = 40) or maltodextrin placebo (n = 40) daily for 12 weeks. Demographic indices, physical activity, dietary intake, and disease activity were investigated using suitable questionnaires. Concentration of cytokines IL-2, IL-4, IL-10, and IL-17 in blood sample were measured using PBMC method. Statistical analysis was performed using SPSS (version 22). At baseline, there were no differences between the two groups in terms of demographic indices, physical activity, and dietary intake (p > .05). Black barberry supplementation reduced the severity of RA. It showed no significant effect on IL-2 and IL-4 cytokines (p > .05). IL-17 levels decreased significantly after the intervention within the black barberry group, while IL-10 had a significant increase in this group (p < .05). Barberry extract may reduce inflammatory and increase anti-inflammatory cytokines in RA, and stimulates the immune response by increasing Th2 production.
Collapse
Affiliation(s)
- Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Hadidi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center of Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Asgari
- Rheumatology Research Center of Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Sajadi Hezaveh
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Khorshidi Sadehi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Ghorbani N, Sahebari M, Mahmoudi M, Rastin M, Zamani S, Zamani M. Berberine Inhibits the Gene Expression and Production of Proinflammatory Cytokines by Mononuclear Cells in Rheumatoid Arthritis and Healthy Individuals. Curr Rheumatol Rev 2020; 17:113-121. [PMID: 32895042 DOI: 10.2174/1573397116666200907111303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/13/2020] [Accepted: 06/29/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is the most prevalent autoimmune arthritis. Berberine is an alkaloid isolated from Berberis vulgaris, and its anti-inflammatory effect has been identified. METHODS Twenty newly diagnosed RA patients and 20 healthy controls participated. Peripheral mononuclear cells were prepared and stimulated with bacterial lipopolysachharide (LPS,1 μg/ml), exposed to different concentrations of berberine (10 and 50μM) and dexamethasone (10-7 M) as a reference. The toxicity of compounds was evaluated by WST-1 assay. The expression of TNF-α and IL-1β was determined by quantitative real-time PCR. Protein level of secreted TNF-α and IL-1β was measured by using ELISA. RESULTS Berberine did not have any toxic effect on cells, whereas Lipopolysaccharide (LPS) stimulation caused a noticeable rise in TNF-α and IL-1β production. Berberine markedly downregulated the expression of both TNF-α and IL-1β, and inhibited TNF-α and IL-1β secretion from LPS-stimulated PBMCs. DISCUSSION This study provided a molecular basis for anti-inflammatory effect of berberine on human mononuclear cells through the suppression of TNF-a and IL-1secretion. Our findings highlighted the significant inhibitory effect of berberine on proinflammatory responses of mononuclear cells from rheumatoid arthritis individuals, which may be responsible for antiinflammatory property of Barberry. We observed that berberine at high concentration exhibited anti-inflammatory effect in PBMCs of both healthy and patient groups by suppression of TNF-a and IL-1cytokines at both mRNA and protein levels. CONCLUSION Berberine may inhibit the gene expression and production of pro-inflammatory cytokines by mononuclear cells in rheumatoid arthritis and healthy individuals without affecting cell viability. Future studies with a larger sample size are needed to prove the idea.
Collapse
Affiliation(s)
- Niloofar Ghorbani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sahebari
- Rheumatic Diseases Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrzad Zamani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Zamani
- Immunology Research Centre, Bu Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Fibrauretine reduces ischemia/reperfusion injury via RISK/eNOS activation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1515-1525. [PMID: 31796985 DOI: 10.1007/s00210-019-01770-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/15/2023]
Abstract
Current studies have shown that fibrauretine can be used in the treatment of cardiovascular diseases; however, the protective mechanism of fibrauretine in cardiovascular diseases is unclear. The aim of this study was to investigate the effect and mechanism of fibrauretine in acute myocardial ischemia-reperfusion injury. We investigated the effects of glucocorticoid receptor/oestrogen receptor (GR/ER)-mediated Akt phosphorylation, extracellular regulated protein kinase (ERK1/2) activation and nitric oxide (NO) on the treatment of acute myocardial ischemia-reperfusion injury by fibrauretine. Myocardial ischemia-reperfusion (I/R) injury models were established in rats and gene-knockout mice, and the infarct size was measured. We detected the expression and phosphorylation of phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), glucocorticoid receptor, oestrogen receptor, lactate dehydrogenase (LDH), creatine phosphokinase (CK-MB), stress-activated protein kinase (JNK), P38 protein kinase (P38 MAPK) and nitric oxide synthase (NOS) with or without the inhibitors to investigate the protective effect of fibrauretine on the heart. The results showed that fibrauretine can significantly reduce the myocardial infarction area in myocardial I/R injury, inhibit the activities of LDH and CK-MB in the serum, and increase the content of NO. However, the effects of fibrauretine on the reduction of the myocardial infarction area were eliminated by the PI3K inhibitor LY294002, Akt inhibitor IV, GR inhibitor RU468, ER inhibitor tamoxifen, eNOS inhibitor L-NAME and ERK1/2 inhibitor U0126. Moreover, in the case of WT mice and gene-knockout eNOS and iNOS mice, fibrauretine was able to significantly reduce the myocardial infarction area in iNOS-/- and wild type mice. However, there was no significant protective effect of fibrauretine in eNOS-/- mice. It is suggested that eNOS plays an important role in the protective effect of fibrauretine on the heart. Therefore, the results of this study show that the protective effect of fibrauretine on myocardial I/R injury is closely associated with eNOS expression, GR/ER-induced Akt phosphorylation and ERK1/2 activation.
Collapse
|
38
|
Campos ACP, Antunes GF, Matsumoto M, Pagano RL, Martinez RCR. Neuroinflammation, Pain and Depression: An Overview of the Main Findings. Front Psychol 2020; 11:1825. [PMID: 32849076 PMCID: PMC7412934 DOI: 10.3389/fpsyg.2020.01825] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic pain is a serious public health problem with a strong affective-motivational component that makes it difficult to treat. Most patients with chronic pain suffer from severe depression; hence, both conditions coexist and exacerbate one another. Brain inflammatory mediators are critical for maintaining depression-pain syndrome and could be substrates for it. The goal of our paper was to review clinical and preclinical findings to identify the neuroinflammatory profile associated with the cooccurrence of pain and depression. In addition, we aimed to explore the regulatory effect of neuronal reorganization on the inflammatory response in pain and depression. We conducted a quantitative review supplemented by manual screening. Our results revealed inflammatory signatures in different preclinical models and clinical articles regarding depression-pain syndrome. We also identified that improvements in depressive symptoms and amelioration of pain can be modulated through direct targeting of inflammatory mediators, such as cytokines and molecular inhibitors of the inflammatory cascade. Additionally, therapeutic targets that improve and regulate the synaptic environment and its neurotransmitters may act as anti-inflammatory compounds, reducing local damage-associated molecular patterns and inhibiting the activation of immune and glial cells. Taken together, our data will help to better elucidate the neuroinflammatory profile in pain and depression and may help to identify pharmacological targets for effective management of depression-pain syndrome.
Collapse
Affiliation(s)
| | | | - Marcio Matsumoto
- Anesthesiology Medical Center, Hospital Sirio-Libanes, São Paulo, Brazil
| | | | - Raquel Chacon Ruiz Martinez
- Division of Neuroscience, Hospital Sirio-Libanes, São Paulo, Brazil.,LIM 23, Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
39
|
Mandal SK, Maji AK, Mishra SK, Ishfaq PM, Devkota HP, Silva AS, Das N. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160:105085. [PMID: 32683037 DOI: 10.1016/j.phrs.2020.105085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
Goldenseal (Hydrastis canadensis L.) is a medicinal plant widely used in various traditional systems of medicine and as a food supplement. It has been traditionally used by Native Americans as a coloring agent and as medicinal remedy for common diseases and conditions like wounds, digestive disorders, ulcers, skin and eye ailments, and cancer. Over the years, goldenseal has become a popular food supplement in the USA and other regions. The rhizome of this plant has been used for the treatment of a variety of diseases including, gastrointestinal disorders, ulcers, muscular debility, nervous prostration, constipation, skin and eye infections, cancer, among others. Berberine is one of the most bioactive alkaloid that has been identified in different parts of goldenseal. The goldenseal extract containing berberine showed numerous therapeutic effects such as antimicrobial, anti-inflammatory, hypolipidemic, hypoglycemic, antioxidant, neuroprotective (anti-Alzheimer's disease), cardioprotective, and gastrointestinal protective. Various research finding suggest the health promoting effects of goldenseal components and their extracts. However, few studies have also suggested the possible neurotoxic, hepatotoxic and phototoxic activities of goldenseal extract and its alkaloids. Thus, large randomized, double-blind clinical studies need to be conducted on goldenseal supplements and their main alkaloids to provide more evidence on the mechanisms responsible for the pharmaceutical activity, clinical efficacy and safety of these products. Thus, it is very important to review the scientific information about goldenseal to understand about the current scenario.
Collapse
Affiliation(s)
- Sudip Kumar Mandal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur, 713206, West Bengal, India
| | | | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Pir Mohammad Ishfaq
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Hari Prasad Devkota
- Department of Instrumental Analysis, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Program for Leading Graduate Schools, Health Life Sciences: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, 4485-655, Portugal; Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, 4051-401, Portugal
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia, 799155, Tripura, India.
| |
Collapse
|
40
|
Wong SK, Chin KY, Ima-Nirwana S. Berberine and musculoskeletal disorders: The therapeutic potential and underlying molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152892. [PMID: 30902523 DOI: 10.1016/j.phymed.2019.152892] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Musculoskeletal disorders are a group of disorders that affect the joints, bones, and muscles, causing long-term disability. Berberine, an isoquinoline alkaloid, has been previously established to exhibit beneficial properties in preventing various diseases, including musculoskeletal disorders. PURPOSE This review article aims to recapitulate the therapeutic potential of berberine and its mechanism of action in treating musculoskeletal disorders. METHODS A wide range of literature illustrating the effects of berberine in ameliorating musculoskeletal disorders was retrieved from online electronic databases (PubMed and Medline) and reviewed. RESULTS Berberine may potentially retard the progression of osteoporosis, osteoarthritis and rheumatoid arthritis. Limited studies reported the effects of berberine in suppressing the proliferation of osteosarcoma cells. These beneficial properties of berberine are mediated in part through its ability to target multiple signaling pathways, including PKA, p38 MAPK, Wnt/β-catenin, AMPK, RANK/RANKL/OPG, PI3K/Akt, NFAT, NF-κB, Hedgehog, and oxidative stress signaling. In addition, berberine exhibited anti-apoptotic, anti-inflammatory, and immunosuppressive properties. CONCLUSION The current evidence indicates that berberine may be effective in preventing musculoskeletal disorders. However, findings from in vitro and in vivo investigations await further validation from human clinical trial.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
41
|
Dinesh P, Rasool M. Berberine mitigates IL-21/IL-21R mediated autophagic influx in fibroblast-like synoviocytes and regulates Th17/Treg imbalance in rheumatoid arthritis. Apoptosis 2020; 24:644-661. [PMID: 31111379 DOI: 10.1007/s10495-019-01548-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In our previous study, we explored the therapeutic effect of berberine (BBR) against IL-21/IL-21R mediated inflammatory proliferation of adjuvant-induced arthritic fibroblast-like synoviocytes (AA-FLS) through the PI3K/Akt pathway. The current study was designed to explore the therapeutic potential of BBR (15-45 µM) against IL-21/IL-21R mediated autophagy in AA-FLS mediated through PI3K/Akt signaling and Th17/Treg imbalance. Upon IL-21 stimulation, AA-FLS expressed elevated levels of autophagy-related 5 (Atg5), Beclin-1 and LC3-phosphatidylethanolamine conjugate 3-II (LC3-II) through the utilization of p62 and inhibition of C/EBP homologous protein (CHOP). BBR (15-45 µM) inhibited autophagy in AA-FLS cells mediated through PI3K/Akt signaling via suppressing autophagic elements, p62 sequestration and induction of CHOP in a dose-dependent manner. Moreover, IL-21 promoted the uncontrolled proliferation of AA-FLS through induction of B cell lymphoma-2 (Bcl-2) and diminished expression of Bcl-2 associated X protein (BAX) via PI3K/Akt signaling. BBR inhibited the proliferation of AA-FLS via promoting apoptosis through increased expression of BAX and diminished Bcl-2 transcription factor levels. Furthermore, T cells stimulated with IL-21 induced CD4+ CD196+ Th17 cells proliferation through RORγt activation mediated in a PI3K/Akt dependent manner. BBR inhibited the proliferation of Th17 cells through downregulation of RORγt in a concentration-dependent manner. BBR also promoted the differentiation of CD4+ CD25+ Treg cells through induction of forkhead box P3 (Foxp3) activation via aryl hydrocarbon receptor (AhR) and upregulation of cytochrome P450 family 1, subfamily A, polypeptide 1 (CYP1A1). Collectively, we conclude that BBR might attenuate AA-FLS proliferation through inhibition of IL-21/IL-21R dependent autophagy and regulates the Th17/Treg imbalance in RA.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India. .,SMV 240, Immunopathology Lab, School of Bio Sciences and Technology, VIT, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
42
|
Sujitha S, Dinesh P, Rasool M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur J Pharm Biopharm 2020; 149:170-191. [PMID: 32068029 DOI: 10.1016/j.ejpb.2020.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
Bone erosion is a debilitating pathological process of osteopathic disorder like rheumatoid arthritis (RA). Current treatment strategies render low disease activity but with disease recurrence. To find an alternative, we designed this study with an aim to explore the underlying therapeutic effect of PEGylated liposomal BBR (PEG-BBR) against Wnt1/β-catenin mediated bone erosion in adjuvant-induced arthritic (AA) rat model and fibroblast-like synoviocytes (FLS) with reference to microRNA-23a (miR-23a) activity. Our initial studies using confocal microscopy and Near-Infrared Imaging (NIR) showed successful internalization of PEG-BBR and PEG-miR-23a in vitro and in vivo respectively and was retained till 48 h. The preferential internalization of PEG-BBR into the inflamed joint region significantly reduced the gene and protein level expression of major Wnt1 signaling mediators and reduced bone erosion in rats. Moreover, PEG-BBR treatment in FLS cells attenuated the gene and protein expression levels of FZD4, LRP5, β-catenin, and Dvl-1 through the induction of CYLD. Furthermore, inhibition of these factors resulted in reduced bone loss and increased calcium retainability by altering the RANKL/OPG axis. PEG-BBR treatment markedly inhibited the expression of LRP5 protein on par with the DKK-1 (LRP5/Wnt signaling inhibitor) and suppressed the transcriptional activation of β-catenin inside the cells. We further witnessed that miR-23a altered the expression levels of LRP5 through RNA interference. Overall, our findings endorsed that miR-23a possesses a multifaceted therapeutic efficiency like berberine in RA pathogenesis and can be considered as a potential candidate for therapeutic targeting of Wnt1/β-catenin signaling in RA disease condition.
Collapse
Affiliation(s)
- Sali Sujitha
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
43
|
Gao Y, Wang F, Song Y, Liu H. The status of and trends in the pharmacology of berberine: a bibliometric review [1985-2018]. Chin Med 2020; 15:7. [PMID: 31988653 PMCID: PMC6971869 DOI: 10.1186/s13020-020-0288-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Berberine has significant antibacterial and antipyretic effects and is a commonly used drug for treating infectious diarrhoea. The current research data show that the pharmacological effects of berberine are numerous and complex, and researchers have been enthusiastic about this field. To allow researchers to quickly understand the field and to provide references for the direction of research, using bibliometrics, we analysed 1426 articles, dating from 1985 to 2018, in the field of berberine pharmacology. The research articles we found came from 69 countries/regions, 1381 institutions, 5675 authors, and 325 journals; they contained 3794 key words; they were written in 7 languages; and they were of 2 article types. This study summarizes and discusses the evolution of the historical themes of berberine pharmacology as well as the status quo and the future development directions from a holistic perspective.
Collapse
Affiliation(s)
- Yu Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fengxue Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haibo Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Sun W, Zuo L, Zhao T, Zhu Z, Shan G. Five solvates of a multicomponent pharmaceutical salt formed by berberine and diclofenac. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2019; 75:1644-1651. [PMID: 31802754 DOI: 10.1107/s2053229619015432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/14/2019] [Indexed: 11/10/2022]
Abstract
A multicomponent pharmaceutical salt formed by the isoquinoline alkaloid berberine (5,6-dihydro-9,10-dimethoxybenzo[g]-1,3-benzodioxolo[5,6-a]quinolizinium, BBR) and the nonsteroidal anti-inflammatory drug diclofenac {2-[2-(2,6-dichloroanilino)phenyl]acetic acid, DIC} was discovered. Five solvates of the pharmaceutical salt form were obtained by solid-form screening. These five multicomponent solvates are the dihydrate (BBR-DIC·2H2O or C20H18NO4+·C14H10Cl2NO2-·2H2O), the dichloromethane hemisolvate dihydrate (BBR-DIC·0.5CH2Cl2·2H2O or C20H18NO4+·C14H10Cl2NO2-·0.5CH2Cl2·2H2O), the ethanol monosolvate (BBR-DIC·C2H5OH or C20H18NO4+·C14H10Cl2NO2-·C2H5OH), the methanol monosolvate (BBR-DIC·CH3OH or C20H18NO4+·C14H10Cl2NO2-·CH3OH) and the methanol disolvate (BBR-DIC·2CH3OH or C20H18NO4+·C14H10Cl2NO2-·2CH3OH), and their crystal structures were determined. All five solvates of BBR-DIC (1:1 molar ratio) were crystallized from different organic solvents. Solvent molecules in a pharmaceutical salt are essential components for the formation of crystalline structures and stabilization of the crystal lattices. These solvates have strong intermolecular O...H hydrogen bonds between the DIC anions and solvent molecules. The intermolecular hydrogen-bond interactions were visualized by two-dimensional fingerprint plots. All the multicomponent solvates contained intramolecular N-H...O hydrogen bonds. Various π-π interactions dominate the packing structures of the solvates.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Ting Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhiling Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Guangzhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
45
|
Berberine Modulates LPA Function to Inhibit the Proliferation and Inflammation of FLS-RA via p38/ERK MAPK Pathway Mediated by LPA 1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2580207. [PMID: 31781264 PMCID: PMC6875284 DOI: 10.1155/2019/2580207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2019] [Indexed: 02/08/2023]
Abstract
Objective This study aimed to investigate whether berberine exerted anti-inflammatory and antiproliferative effects on the fibroblast-like synoviocytes of rheumatoid arthritis (FLS-RA) through regulating the lysophosphatidic acid (LPA) function. Methods Firstly, the expression levels of LPA and lysophosphatidic acid receptor 1 (LPA1) in RA patients, osteoarthritis (OA) patients, and healthy controls were detected. Moreover, molecular docking was employed to characterize the binding sites of berberine in the predicted protein targets. Later, FLS-RA were stimulated using berberine, LPA, and the specific inhibitor (Ki16425) of LPA1, thereafter, the effects on the proliferation, apoptosis, the release of inflammatory mediators of FLS-RA, and the MAPK pathway were observed. Results Compared with healthy controls (n = 25), the plasma LPA level (n = 28) and synovial fluid (n = 10) were markedly higher in RA patients. LPA1 was highly expressed in RA patients (n = 4) relative to that in OA patients (n = 4). Berberine remarkably inhibited the proliferation and the excessive production of IL-6 and TNF-α in FLS-RA, whereas suppressing the expression of K-ras, c-Raf, and p-38/ERK-phosphorylation. In addition, berberine inhibited the LPA-induced p-38/ERK-phosphorylation through binding to LPA1. Conclusions LPA plays a certain role in promoting the proliferation and inflammation of FLS-RA. Berberine potentially modulates LPA function to suppress the proliferation and inflammation of FLS-RA through blocking the p38/ERK MAPK pathway mediated by LPA1. These findings suggest that, berberine possesses potential lipid-regulating, antiarthritis, and synovial hyperplasia inhibition activities against RA, which may provide a promising therapeutic target for the clinical drug development for RA patients with dyslipidemia and high CVD risk.
Collapse
|
46
|
Wang W, Zha G, Zou JJ, Wang X, Li CN, Wu XJ. Berberine Attenuates Cigarette Smoke Extract-induced Airway Inflammation in Mice: Involvement of TGF-β1/Smads Signaling Pathway. Curr Med Sci 2019; 39:748-753. [PMID: 31612392 DOI: 10.1007/s11596-019-2101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Although several studies confirmed that berberine may attenuate airway inflammation in mice with chronic obstructive pulmonary disease (COPD), its underlying mechanisms were not clear until now. We aimed to establish an experiment mouse model for COPD and to investigate the effects of berberine on airway inflammation and its possible mechanism in COPD model mice induced by cigarette smoke extract (CSE). Twenty SPF C57BL/6 mice were randomly divided into PBS control group, COPD model group, low-dose berberine group and high-dose berberine group, 5 mice in each group. The neutrophils and macrophages were examined by Wright's staining. The levels of inflammatory cytokines TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) were determined by enzyme-linked immunosorbent assay. The expression levels of TGF-β1, Smad2 and Smad3 mRNA and proteins in lung tissues were respectively detected by quantitative real-time polymerase chain reaction and Western blotting. It was found that CSE increased the number of inflammation cells in BALF, elevated lung inflammation scores, and enhanced the TGF-β1/Smads signaling activity in mice. High-dose berberine restrained the alterations in the COPD mice induced by CSE. It was concluded that high-dose berberine ameliorated CSE-induced airway inflammation in COPD mice. TGF-β1/Smads signaling pathway might be involved in the mechanism. These findings suggested a therapeutic potential of high-dose berberine on the CSE-induced airway inflammation.
Collapse
Affiliation(s)
- Wen Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gan Zha
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jin-Jing Zou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xun Wang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chun-Nian Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Jun Wu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
47
|
Li XZ, Zhang SN. Herbal compounds for rheumatoid arthritis: Literatures review and cheminformatics prediction. Phytother Res 2019; 34:51-66. [PMID: 31515874 DOI: 10.1002/ptr.6509] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/31/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic disease characterized by autoimmunity, joint inflammation, and cartilage destruction, which affects 0.5-1% of the population. Many compounds from herbal medicines show the potentials to treat RA. On this basis, the compounds with good pharmacokinetic behaviors and drug-likeness properties will be further studied and developed. Therefore, the herbal compounds with anti-RA activities were reviewed in this paper, and the cheminformatics tools were used to predict their drug-likeness properties and pharmacokinetic parameters. A total of 90 herbal compounds were analyzed, which were reported to be effective on RA models through anti-inflammation, chondroprotection, immunoregulation, antiangiogenesis, and antioxidation. Most of the herbal compounds have good drug-likeness properties. Most of the compounds can be an alternative and valuable source for anti-RA drug discovery.
Collapse
Affiliation(s)
- Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, PR China
| | - Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, PR China
| |
Collapse
|
48
|
Meshkibaf MH, Maleknia M, Noroozi S. Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freund's adjuvant inflammation-induced male rats. J Inflamm Res 2019; 12:241-249. [PMID: 31564949 PMCID: PMC6732743 DOI: 10.2147/jir.s212577] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/11/2019] [Indexed: 01/20/2023] Open
Abstract
Objective Curcumin is the well-known compound which is extracted from turmeric powder, the dried rhizome of the Curcuma longa Linn. This have been used for the treatment of various disorders including inflammation. In this study we have analyzed the effect of curcumin on arthritis induced by adjuvant in rats, considering changes in methionine sulfoxide reductase A (MSRA) expression and antioxidant enzymes levels. Methods Five groups of adult male Wistar rats (n=10), were randomly selected as control, placebo, experimental 1, 2 and 3. The induction of arthritis was carried out by injection of 0.1 ml adjuvant in plantar region. The first experimental group received no curcumin treatment, whereas the experimental two and three received curcumin (1 and 2 g/kg daily) respectively, for fourteen days. MSRA gene expression was assessed by real-time PCR and protein levels of MSRA, SOD, CAT and GPx were analyzed via ELISA method. Results The results showed no significant weight changes among the groups during the experimental period and the paw swelling caused by adjuvant was recovered within fourteen days of treatment with curcumin. However, the levels of enzymes such as superoxide dismutase, catalase and glutathione peroxidase were increased by a dose dependent manner. These results also illustrated that the gene expression and protein level of MSRA in groups treated with curcumin increased significantly (p≤0.05). Conclusion We concluded that the curcumin can be used against inflammation. The increasing level of MSRA can be due to the antioxidant effect of curcumin. The enzymatic level changes (MSRA, SOD, CAT and GPx) may interfere with the aging process and delay it.
Collapse
Affiliation(s)
- M H Meshkibaf
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - M Maleknia
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| | - S Noroozi
- Department of Clinical Biochemistry, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
49
|
Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3β pathway via upregulating miR-23a. Int Immunopharmacol 2019; 74:105703. [DOI: 10.1016/j.intimp.2019.105703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/24/2023]
|
50
|
Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-кB pathway. Eur J Pharmacol 2019; 852:179-188. [DOI: 10.1016/j.ejphar.2019.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/22/2023]
|