1
|
Segawa R, Kyoda T, Yagisawa M, Muramatsu T, Hiratsuka M, Hirasawa N. Hypoxia-inducible factor prolyl hydroxylase inhibitors suppressed thymic stromal lymphopoietin production and allergic responses in a mouse air-pouch-type ovalbumin sensitization model. Int Immunopharmacol 2023; 118:110127. [PMID: 37030118 DOI: 10.1016/j.intimp.2023.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Atopic dermatitis (AD) is an allergic skin disease, triggered by excessive type 2 immune reactions. Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine that induces type 2 immune response through dendritic cell activation. Therefore, TSLP inhibitors may serve as novel antiallergic drugs. Hypoxia-inducible factor (HIF) activation in the epithelia contributes to several homeostatic phenomena, such as re-epithelialization. However, the effects of HIF activation on TSLP production and immune activation in the skin remain unclear. In this study, we found that selective HIF prolyl hydroxylase inhibitors (PHD inhibitors), which induce HIF activation, suppressed TSLP production in a mouse ovalbumin (OVA) sensitization model. PHD inhibitors also suppressed the production of tumor necrosis factor-alpha (TNF-α), which is a major inducer of TSLP production, in this mouse model and in a macrophage cell line. Consistent with these findings, PHD inhibitors suppressed OVA-specific IgE levels in the serum and OVA-induced allergic responses. Furthermore, we found a direct suppressive effect on TSLP expression in a human keratinocyte cell line mediated by HIF activation. Taken together, our findings suggest that PHD inhibitors exert antiallergic effects by suppressing TSLP production. Controlling the HIF activation system has therapeutic potential in AD.
Collapse
|
2
|
Segawa R, Ishihara R, Hiratsuka M, Hirasawa N. 229Inhibition of thymic stromal lymphopoietin production by FK3453. J Pharmacol Sci 2022; 149:198-204. [DOI: 10.1016/j.jphs.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
|
3
|
Baliou S, Sofopoulos M, Goulielmaki M, Spandidos DA, Ioannou P, Kyriakopoulos AM, Zoumpourlis V. Bromamine T, a stable active bromine compound, prevents the LPS‑induced inflammatory response. Int J Mol Med 2021; 47:37. [PMID: 33537817 PMCID: PMC7891821 DOI: 10.3892/ijmm.2021.4870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Inflammation is the most common cause of most acute and chronic debilitating diseases. Towards unveiling novel therapeutic options for patients with such complications, N‑bromotaurine (TauNHBr) has emerged as a potential anti‑inflammatory agent; however, its therapeutic efficacy is hindered due to its relatively poor stability. To address this challenge, the present study focused on examining the effects of a stable active bromine compound, named bromamine T (BAT). The present study examined the protective properties of BAT against lipopolysaccharide (LPS)‑mediated inflammation in vitro, by using LPS‑stimulated murine J774.A1 macrophages (Mφs), as well as in vivo, by using a murine LPS‑mediated air‑pouch model. Additionally, its efficacy was compared with that of taurine, a known potent anti‑inflammatory molecule. In LPS‑stimulated J774A.1 Mφs, BAT and taurine were very effective in reducing the secretion of pro‑inflammatory mediators. The in vitro experiments indicated that LPS‑mediated inflammation was attenuated due to the protective properties of BAT and of taurine, probably through the inhibition of phosphorylated p65 NF‑κB subunit (Ser 536) nuclear translocation. The in vivo experiments also revealed that BAT and taurine inhibited LPS‑mediated inflammation by reducing total cell/polymorphonuclear cell (PMN) infiltration in the air‑pouch and by decreasing pouch wall thickness. The analysis of exudates obtained from pouches highlighted that the inhibitory effects of BAT and taurine on the secretion of pro‑inflammatory cytokines were similar to those observed in vitro. Notably, the effect of BAT at the highest concentration tested was superior to that of taurine at the highest concentration. Taken together, the findings of the present study indicate that BAT prevents the LPS‑induced inflammatory response both in vitro and in vivo.
Collapse
Affiliation(s)
- Stella Baliou
- National Hellenic Research Foundation, 11635 Athens, Greece
| | - Michael Sofopoulos
- Department of Surgical Pathology, Saint Savvas Anticancer Hospital of Athens, 11522 Athens, Greece
| | | | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | | |
Collapse
|
4
|
de Araújo Moreira MDR, Sales-Campos H, Fontanari C, Galvão Meireles AF, Borges Prado MK, Zoccal KF, Sorgi CA, Tefé da Silva C, Groppo M, Faccioli LH. The ethanolic extract of Terminalia argentea Mart. & Zucc. bark reduces the inflammation through the modulation of cytokines and nitric oxide mediated by the downregulation of NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113150. [PMID: 32730887 DOI: 10.1016/j.jep.2020.113150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. & Zucc. (Combretaceae), popularly known as "capitão do campo", is native from the Brazilian cerrado, which is used in folk medicine to treat inflammatory diseases. AIM OF THE STUDY We aimed to investigate the anti-inflammatory effects, toxicity and mechanisms of action regarding the use of the hydroalcoholic extract of T. argentea bark. MATERIALS AND METHODS Toxicity was determinate in vitro using the macrophage lineage J774.1 without LPS. Cells were treated with 0.5; 2; 8; 32 and 125 μg/mL of the plant extract. Cell viability was assessed by MTT colorimetric assay. The production of nitrite and cytokines was also determined in the supernatants. A NF-κB reporter assay using RAW macrophages was employed to elucidate the impact of the plant extract on the expression of such molecule. In mice, toxicity was assessed by orally given an intermediate to high concentration of the plant extract on a single dose (1000 or 5000 mg/kg) or low and intermediate doses (300 or 1000 mg/kg) twice daily for 14 days. Blood samples were collected for biochemical analysis. The anti-inflammatory activity was assessed using the air-pouch model with or without pre-inoculation with the inflammatory stimuli LPS (0.5 μg/mL), followed by treatment with plant extract at 5, 60 or 300 mg/kg administered in the air pouch (subcutaneous injection). After 4 h, mice were euthanized and the air pouches washed with 2 mL heparinized PBS (10 IU/mL). Then, the local production in the air pouch wash of cytokines, total proteins and leukocytes was assessed. RESULTS No signals of toxicity were observed either in cells or mice. Regardless the concentration used in vitro, the extract exhibited a significant anti-inflammatory activity, as perceived by the reduction of the inflammatory cytokines IL-1β, TNF-α and IL-6 and nitrites on cell supernatants. This was concomitant with a downregulation in NF-κB and elevated levels of IL-10. In mice, similar effects were observed, especially when the plant extract was given at 300 mg/kg, inhibiting the release of IL-1β, TNF-α, IL-6 and proteins, as well as increasing the release of IL-10. CONCLUSIONS Altogether, our results demonstrated that the hydroalcoholic extract of T. argentea bark has anti-inflammatory activity without inducing toxicity in cells or living animals. This activity seems to be chiefly influenced by a downregulation in NF-κB, inflammatory cytokines and production of nitrite along with augmented concentration of IL-10.
Collapse
Affiliation(s)
| | - Helioswilton Sales-Campos
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Caroline Fontanari
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Alyne Fávero Galvão Meireles
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Morgana Kelly Borges Prado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Karina Furlani Zoccal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil.
| | - Carlos Artério Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Kawai J, Mori K, Hirasawa N. Grifola frondosa extract and ergosterol reduce allergic reactions in an allergy mouse model by suppressing the degranulation of mast cells. Biosci Biotechnol Biochem 2019; 83:2280-2287. [PMID: 31412751 DOI: 10.1080/09168451.2019.1654360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The increasing number of patients suffering from allergic diseases is a global health problem. Grifola frondosa is an edible mushroom consumed as a health food in Asia, and has recently been reported to have anti-allergic effects. We previously reported that G. frondosa extract (GFE) and its active components, ergosterol and its derivatives, inhibited the antigen-induced activation of RBL-2H3 cells. Here, we demonstrated that GFE and ergosterol also had an inhibitory effect on the degranulation of bone marrow-derived mast cells (BMMCs) and alleviated anaphylactic cutaneous responses in mice. Using an air pouch-type allergic inflammation mouse model, we confirmed that oral administration of GFE and ergosterol suppressed the degranulation of mast cells in vivo. Our findings suggest that G. frondosa, including ergosterol as its active component, reduces type I allergic reactions by suppressing mast cell degranulation in mice, and might be a novel functional food that prevents allergic diseases.
Collapse
Affiliation(s)
- Junya Kawai
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Koichiro Mori
- Mushroom Research Laboratory, Hokuto Corporation, Nagano, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
A steroid alkaloid derivative 02F04 upregulates thymic stromal lymphopoietin expression slowly and continuously through a novel Gq/11-ROCK-ERK1/2 signaling pathway in mouse keratinocytes. Cell Signal 2019; 57:58-64. [PMID: 30664940 DOI: 10.1016/j.cellsig.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/24/2022]
Abstract
Thymic stromal lymphopoietin (TSLP), a master switch of allergic inflammation, plays an important role in the pathogenesis of allergic diseases. Although many compounds upregulate TSLP expression in vivo or in vitro, most of them are pollutants or toxicants. In the previous study, for the first time, we found that a steroid alkaloid derivative 02F04, which has a unique skeletal structure compared with other TSLP-inducing chemicals, significantly induced TSLP production in mouse keratinocytes. However, it is not investigated thoroughly that how 02F04 produces TSLP and why. In this study, we did a detailed investigation on the inducible effect and underlying molecular mechanism of 02F04 on TSLP production. We found that the peak time of TSLP mRNA level induced by 02F04 at 48 h led to a slow and continuous TSLP production in PAM212 cells. Besides, 02F04-induced TSLP production was significantly suppressed by inhibitors of Rho-associated protein kinase (ROCK), guanine nucleotide-binding protein subunit alpha q/11 (Gq/11) and extracellular signal-regulated kinase 1/2 (ERK1/2) at not only protein but also mRNA levels, and by siRNA-mediated knockdown of Gq or G11. This suggested that ROCK, Gq/11 and ERK1/2 signaling pathways were involved in 02F04-induced TSLP production. Increase in the level of p-ERK1/2 induced by 02F04 was suppressed by both inhibitors of ROCK and Gq/11, indicating that ROCK and Gq/11 molecules were located at the upstream of ERK1/2 to regulate 02F04-induced TSLP production. Gq/11 was located at the upstream of ROCK because the specific Gq/11 inhibitor of YM-254890 significantly reduced 02F04-induced actin stress fiber formation. Taken together, 02F04 upregulates a slow and continuous TSLP production through a novel Gq/11-ROCK-ERK1/2 signaling pathway. The thorough understanding the effect and mechanism of 02F04 on TSLP production is expected to supply it as a novel TSLP-regulating compound and a potential new tool for investigating the role of TSLP in allergic disorders.
Collapse
|
7
|
Zhang J, Zhao D, Na N, Li H, Miao B, Hong L, Huang Z. Renoprotective effect of erythropoietin via modulation of the STAT6/MAPK/NF-κB pathway in ischemia/reperfusion injury after renal transplantation. Int J Mol Med 2017; 41:25-32. [PMID: 29115389 PMCID: PMC5746301 DOI: 10.3892/ijmm.2017.3204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/02/2017] [Indexed: 12/23/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) commonly occurs in renal transplantation. Erythropoietin (EPO) exerts a protective effect in IRI. To investigate the underlying molecular mechanism, rat models of renal IRI were established and treated with EPO and/or lentivirus-mediated EPO-siRNA, the signal transducer and activator of transcription 6 (STAT6) inhibitor AS1517499, the JNK inhibitor SP600125, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580, and the nuclear factor (NF)-κB inhibitor lactacystin. Histological examination revealed that EPO protected the kidney from IRI, through decreasing the extent of tissue congestion and inflammatory cell infiltration; however, EPO siRNA did not exert the same protective effect. In addition, the EPO level was inversely associated with renal IRI. EPO downregulated the expression of interferon-γ, interleukin (IL)-4, creatinine and caspase-3, and upregulated the expression of IL-10, thymic stromal lymphopoietin, STAT6, p-JNK and p-p38, while the opposite effects were observed with the administration of EPO-siRNA and the specific respective inhibitors. Further results revealed that MAPK (p-JNK and p-p38) acted upstream of NF-κB, and that NF-κB signaling regulated the expression of caspase-1 and -3, which may be responsible for the cytotoxicity associated with IRI. Taken together, the results of the present study demonstrated that EPO exerted a protective effect in renal IRI via the STAT6/MAPK/NF-κB pathway. This protective effect of EPO may improve reperfusion tolerance in ischemic kidneys and benefit transplant recipients.
Collapse
Affiliation(s)
- Jinhua Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Daqiang Zhao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Heng Li
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Bin Miao
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangqing Hong
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Zhengyu Huang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|