1
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
2
|
Binsaleh AY, Bahaa MM, Elmasry TA, Elberri EI, Kotkata FA, El-Khateeb E, Kamal M, El-samongy MA, Hamouda AO, Alghamdi AM, Alrubia S, Salahuddin MM, Eltantawy N. A randomized controlled trial comparing tacrolimus versus hydrocortisone for the treatment of atopic dermatitis in children: new perspectives on interferon gamma-induced protein and growth-related oncogene-α. Front Med (Lausanne) 2024; 11:1399305. [PMID: 39114823 PMCID: PMC11303293 DOI: 10.3389/fmed.2024.1399305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is a type of chronic inflammatory disorder that affects children. Aim To investigate whether hydrocortisone or tacrolimus could be more effective for treating AD in children. Patients and methods This clinical randomized investigation included 100 children with AD who met the eligibility criteria. AD patients were recruited from Tanta University's Dermatology Department and divided into two groups (n = 50)., For four months, group 1 (the hydrocortisone group) received topical hydrocortisone cream. Group 2 received topical tacrolimus for four months. A dermatologist evaluated the patients at the start and four months after the treatment had been initiated to measure serum concentrations of neutrophil chemoattractant growth-related oncogene-α (GRO-α), interferon gamma induced protein 10 (IP-10), tumor necrosis factor alpha (TNF-α), vascular adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1). All patients were examined using the modified Eczema Area and Severity Index (mEASI) score. Results Tacrolimus group showed a significant reduction in serum levels of all measured biomarkers (p < 0.05) when compared to its baseline and when compared to the hydrocortisone group. Both groups displayed a significant decline in mEASI score in comparison with their baseline values (p < 0.05). Conclusion In children with AD, tacrolimus reduces inflammatory biomarkers better than hydrocortisone, suggesting its potential as a more effective treatment option. Clinical trial registration https://clinicaltrials.gov, identifier NCT05607901.
Collapse
Affiliation(s)
- Ammena Y. Binsaleh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Thanaa A. Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman I. Elberri
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Fedaa A. Kotkata
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman El-Khateeb
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Marwa Kamal
- Department of Clinical Pharmacy, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | | | - Amir O. Hamouda
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Amira M. Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah Alrubia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammed M. Salahuddin
- Department of Biochemistry and Pharmacology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nashwa Eltantawy
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
3
|
Shen F, Gao C, Wang M, Ding X, Zhao H, Zhou M, Mao J, Kuai L, Li B, Wang D, Zhang H, Ma X. Therapeutic effects of the Qingre-Qushi recipe on atopic dermatitis through the regulation of gut microbiota and skin inflammation. Heliyon 2024; 10:e26063. [PMID: 38380039 PMCID: PMC10877368 DOI: 10.1016/j.heliyon.2024.e26063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Accumulating evidence has highlighted a strong association between gut microbiota and the occurrence, development, prevention, and treatment of atopic dermatitis (AD). The regulation of gut microbial dysbiosis by oral traditional Chinese medicine (TCM) has garnered significant attention. In the treatment of AD, the TCM formula Qingre-Qushi Recipe (QRQS) has demonstrated clinical efficacy. However, both the therapeutic mechanisms of QRQS and its impact on gut microbiota remain unclear. Thus, our study aimed to assess the efficacy of QRQS and evaluate its influence on the composition and diversity of gut microbiota in AD animal models. First, we investigated the therapeutic effect of QRQS on AD using two animal models: filaggrin-deficient mice (Flaky tail, ft/ft) and MC903-induced AD-like mice. Subsequently, we explored its influence on the composition and diversity of gut microbiota. Our results demonstrated that QRQS treatment ameliorated the symptoms in both ft/ft mice and MC903-induced AD-like mice. It also reduced the levels of serum IgE and pro-inflammatory cytokines, including IL-1β, IL-4, IL-5, IL-9, IL-13, IL-17A, and TNF-α. Furthermore, QRQS remarkably regulated gut microbiota diversity by increasing Lactobacillaceae and decreasing Bacteroidales. The inflammatory factors in peripheral serum of ft/ft mice showed a close correlation with gut microbiota, as determined using the Spearman correlation coefficient. Additionally, PICRUSt analysis revealed an enrichment in ascorbate and aldarate metabolism, fatty acid metabolism and biosynthesis, and propanoate metabolism in the QRQS group compared to the ft/ft group. Finally, we identified liquiritin as the primary active ingredient of QRQS using ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS). Our findings revealed that QRQS improved AD-like symptoms and alleviated skin inflammation in ft/ft and MC903-induced mice. This suggests that modulating the gut microbiota may help elucidate its anti-inflammation activation mechanism, highlighting a new therapeutic strategy that targets the intestinal flora to prevent and treat AD.
Collapse
Affiliation(s)
- Fang Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunjie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Mingxia Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Xiaojie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingyi Mao
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Dongming Wang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huimin Zhang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
4
|
Lin Y, Chen XJ, He L, Yan XL, Li QR, Zhang X, He MH, Chang S, Tu B, Long QD, Zeng Z. Systematic elucidation of the bioactive alkaloids and potential mechanism from Sophora flavescens for the treatment of eczema via network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115799. [PMID: 36216196 DOI: 10.1016/j.jep.2022.115799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sophora flavescens is a frequently used traditional Chinese medicine (TCM) for the treatment of skin disorders, diarrhea, vaginal itching and inflammatory diseases. In particular, the root of S. flavescens combination with other herbs mainly treat eczema ailment in the clinical applications. However, a holistic network pharmacology approach to understanding the mechanism by which alkaloids in S. flavescens treat eczema has not been pursued. AIM OF THE STUDY To examine the network pharmacological potential effect of S. flavescens on eczema, we studied the alkaloids, performed protein targets prediction and investigated interacting signal pathways. Furthermore, animal experiment was carried out to evaluate its efficacy and real-time quantitative polymerase chain reactions (RT-qPCR) analysis was explored the mechanism of action. MATERIALS AND METHODS The detail information on alkaloids from S. flavescens were obtained from a handful of public databases on the basis of oral bioavailability (OB ≥ 30%) and drug-likeness (DL ≥ 0.18). Then, correlations between compounds and protein targets were linked using the STRING database, and targets associated with eczema were gathered by the GeneCards database. Human genes were identified and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene Ontology (GO) functional enrichment analysis. Particularly, matrine, the crucial alkaloid from S. flavescens, was estimated using a 2,4-dinitrochlorobenzene (DNCB)-induced eczema Kunming (KM) mice model, administered (50 mg/kg and 10 mg/kg) to mice for 22 days. On the last day, the activities of serum tumor necrosis factor α (TNF-α), interleukin-4 (IL-4) and histopathologic examinations were determined. For further to elucidate the mechanisms, the mRNA levels of TNF-α, STAT3, TP53, AKT1, IL-6, JUN and EGFR in dorsal skin tissues were also tested. RESULTS Network analysis collected and identified 35 alkaloids from S. flavescens. Among them, in total 10 dominating alkaloids, including matrine, oxymatrine, sophoridine, sophocarpine, oxysophocarpine, allomatrine, sophoramine, anagyrine, cytisine and N-methylcytisine. And 71 related targets were provided of alkaloids for the treatment of eczema from S. flavescens. Furthermore, matrine dose-dependently (50 or 10 mg/kg, 22 days, apply to dorsal skin) remarkable decreased the serum levels of TNF-α and IL-4, and significantly alleviated the skin lesions. The effects of 50 mg/kg of matrine were almost identical to those of 200 mg/kg of the positive drug dexamethasone (DXM). The further RT-qPCR analyses could reveal that matrine down-regulate TNF-α, STAT3 and TP53 at transcriptional level in dorsal skin tissues. CONCLUSION Pharmacological network analysis can utilize to illuminate the pharmacodynamic substances and the potential molecular mechanism of S. flavescens for treating eczema. Matrine, as the crucial alkaloid from S. flavescens, could be a promising drug candidate for the treatment of eczema ailment.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Xing-Jun Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Lei He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Xue-Long Yan
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Qi-Rui Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Xu Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Ming-Hui He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Shuai Chang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
| | - Bo Tu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China.
| | - Qing-De Long
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China.
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Xia T, Liang X, Liu CS, Hu YN, Luo ZY, Tan XM. Network Pharmacology Integrated with Transcriptomics Analysis Reveals Ermiao Wan Alleviates Atopic Dermatitis via Suppressing MAPK and Activating the EGFR/AKT Signaling. Drug Des Devel Ther 2022; 16:4325-4341. [PMID: 36578822 PMCID: PMC9790806 DOI: 10.2147/dddt.s384927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Ermiao Wan (EMW) is commonly used to treat atopic dermatitis (AD) in China. However, the pharmacological mechanisms underlying the action of EMW against AD remain unclear. Purpose We aimed to determine the mechanisms underlying the effectiveness of EMW in the treatment of AD. Methods We evaluated the effect of EMW on AD induced by dinitrochlorobenzene (DNCB) in BALB/C mice. To clarify the key components of EMW in AD treatment, the main components of EMW were identified using HPLC. Serum pharmacochemistry was used to analyze the absorbed ingredients from blood. Based on the phytochemical results, network pharmacology and molecular docking were used to predict the action of EMW. Skin transcriptomic analysis was used to validate the network pharmacology results. RT-qPCR,ELISA, and immunohistochemical were performed to validate the results of skin transcriptomics. Results EMW improved the symptoms of AD, with less rashes, less spontaneous scratching, less inflammatory cell infiltration, and fewer allergic reactions. The established HPLC method is simple and reliable. Chlorogenic acid, phellodendrine, magnoflorine, jatrorrhizine, palmatine, berberine, and atractylodin were the key effective ingredients with a high blood concentration. Fifty-seven primary causal targets of EMW against AD were identified. These targets are mainly involved in ErbB signaling pathways including EGFR, AKT1, MAPK8, JUN, MAPK1. Molecular docking showed that EGFR, AKT1, MAPK8, JUN, MAPK1 had good binding force with EMW. In AD mice, EMW regulated the EGFR/AKT signaling through upregulation of Grb2, GAB1, Raf-1, EGFR, and AKT, and downregulation of MAPK1 and JUN, compared to that in the MD group. Conclusion EMW could alleviate AD through activating EGFR/AKT signaling and suppressing MAPK. This study provides a theoretical basis for the clinical use of EMW.
Collapse
Affiliation(s)
- Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, People’s Republic of China
| | - Xiao Liang
- School of Pharmaceutical Sciences, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, People’s Republic of China
| | - Yan-Nan Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, People’s Republic of China
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, People’s Republic of China
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, People’s Republic of China,Correspondence: Xiao-Mei Tan, Tel/Fax + 86-020-61648265, Email
| |
Collapse
|
6
|
Ta-Xi-San Suppresses Atopic Dermatitis Involved in Multitarget Mechanism Using Experimental and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8441938. [PMID: 35646146 PMCID: PMC9132654 DOI: 10.1155/2022/8441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022]
Abstract
Atopic dermatitis (AD) is a relapsing and chronic skin inflammation with a common incidence worldwide. Ta-Xi-San (TXS) is a Chinese herbal formula usually used for atopic dermatitis in clinic; however, its active compounds and mechanisms of action are still unclear. Our study was designed to reveal the pharmacological activities, the active compounds, and the pharmacological mechanisms of TXS for atopic dermatitis. Mice were induced by 2,4-dinitrocluorobenzene (DNCB) to build atopic dermatitis model. The pathological evaluation, enzyme-linked immunosorbent assay (ELISA), and hematoxylin and eosin (H&E) assay were performed. The UPLC-Q-Exactive-MSE and network pharmacology analysis were performed to explore active ingredients and therapeutic mechanisms of TXS. TXS treatment decreased levels of immunoglobulin E (IgE), interleukin-4 (IL-4), and tumor necrosis factor-α (TNF-α) in serum induced by DNCB. TXS reduced scratching behavior and alleviated inflammatory pathology of skin and ear. Meanwhile, TXS decreased the spleen index and increased spleen index. The UPLC-Q-Exactive-MSE results showed that 65 compounds of TXS were detected and 337 targets were fished. We collected 1371 AD disease targets, and the compound-target gene network reveled that the top 3 active ingredients were (−)-epigallocatechin gallate, apigenin, and esculetin, and the core target genes were PTGS2, PTGS1, and HSP90AA1. The KEGG pathway and GO analysis showed that TXS remedied atopic dermatitis via PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and Toll-like receptor (TLR) signaling pathway with the regulation of inflammatory response and transcription. Further, we found that the targets of PTGS2 and HSP90AA1 were both elevated in ears and skin of AD model mouse; however, TXS decreased the elevated expressions of PTGS2 and HSP90AA1. Our study revealed that TXS ameliorated AD based on (−)-epigallocatechin gallate, apigenin, and esculetin via targeting PTGS2 and HSP90AA1.
Collapse
|
7
|
Wang W, Wang Y, Zou J, Jia Y, Wang Y, Li J, Wang C, Sun J, Guo D, Wang F, Wu Z, Yang M, Wu L, Zhang X, Shi Y. The Mechanism Action of German Chamomile ( Matricaria recutita L.) in the Treatment of Eczema: Based on Dose-Effect Weight Coefficient Network Pharmacology. Front Pharmacol 2021; 12:706836. [PMID: 34658853 PMCID: PMC8515037 DOI: 10.3389/fphar.2021.706836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
To determine the active ingredients in German chamomile volatile oil and the mechanism of action in the treatment of eczema, this study used two parameters (ingredient content and oil–water partition coefficient) and established a new network pharmacology method based on the dose–effect weight coefficient. Through the new network pharmacology method, we found that German chamomile volatile oil regulated T-cell lymphatic subpopulations to inhibit the Th17 cell differentiation signaling pathway. This resulted in a reduction of interleukin 17 (IL-17), thereby inhibiting the activation of the nuclear factor kappa beta (NF-κB) and MAPK pathways, decreasing the secretion of the pro-inflammatory factors (tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6)), and reducing inflammation. In this study, a new dose–effect relationship synergistic network pharmacology method was established to provide a new method for the screening of effective ingredients and pathways of drugs, and to provide a basis for the follow-up studies of German chamomile volatile oil in the treatment of eczema.
Collapse
Affiliation(s)
- Wenfei Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yichun Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Junbo Zou
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaaxi University of Chinese Medicine, Xianyang, China
| | - Yanzhuo Jia
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yao Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jia Li
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Changli Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaaxi University of Chinese Medicine, Xianyang, China
| | - Jing Sun
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaaxi University of Chinese Medicine, Xianyang, China
| | - Dongyan Guo
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaaxi University of Chinese Medicine, Xianyang, China
| | - Fang Wang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhenfeng Wu
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lei Wu
- Henan Feinari Aromatic Biotechnology Co., Ltd, Zhumadian, China
| | - Xiaofei Zhang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaaxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yajun Shi
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China.,Department of Pharmaceutics, The Key Laboratory of Basicand New Drug Research of Traditional Chinese Medicine, Shaaxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
8
|
Najafi S, Ghanavat M, Shahrabi S, Gatavizadeh Z, Saki N. The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biol Int 2021; 45:900-912. [PMID: 33386770 DOI: 10.1002/cbin.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022]
Abstract
Inflammatory cytokines exert different effects on hematopoietic stem cells (HSCs), lead to the development of various cell lineages in bone marrow (BM) and are thus a differentiation axis for HSCs. The content used in this article has been obtained by searching PubMed database and Google Scholar search engine of English-language articles (1995-2020) using "Hematopoietic stem cell," "Inflammatory cytokine," "Homeostasis," and "Myelopoiesis." Inflammatory cytokines are involved in the differentiation and proliferation of hematopoietic progenitors to compensate for cellular death due to inflammation. Since each of these cytokines differentiates HSCs into a specific cell line, the difference in the effect of these cytokines on the fate of HSC progenitors can be predicted. Inhibitors of these cytokines can also control the inflammatory process as well as the cells involved in leukemic conditions. In general, inflammatory signaling can specify the dominant cell line in BM to counteract inflammation and leukemic condition via stimulating or inhibiting hematopoietic progenitors. Therefore, detection of the effects of inflammatory cytokines on the differentiation of HSCs can be an appropriate approach to check inflammatory and leukemic conditions and the suppression of these cytokines by their inhibitors allows for control of homeostasis in stressful conditions.
Collapse
Affiliation(s)
- Sahar Najafi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Kumar P, Sharma DK, Ashawat MS. Traditional Herbal Medicines, Newer Herbs and Other Novel Approaches Integrated in Herbal Medicine for Atopic Dermatitis-A Narrative Review. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666191018165209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atopic Dermatitis (AD) is a prolonged reverting skin ailment with characteristically distributed
skin lesions. In the previous decades, researchers had shown a marked interest in AD due to
its increased prevalence in developed countries. Although different strategies including biological
and immune modulators are available for the treatment of AD, each has certain limitations. The
researchers had shown considerable interest in the management of AD with herbal medicines. The
establishment of herbal drugs for AD might eliminate local as well as systemic adverse effects associated
with long term use of corticosteroids and also higher cost of therapy with biological drugs.
The present review discusses the traditional East Asian herbal medicines and scientific data related
to newer herbal extracts or compositions for the treatment of AD. In vivo animal models and in
vitro cell cultures, investigated with herbal medicines to establish a possible role in AD treatment,
have also been discussed in the paper. The paper also highlights the role of certain new approaches,
i.e. pharmacopuncture, a combination of allopathic and herbal medicines; and novel carriers
(liposomes, cubosomes) for herbal drugs on atopic skin. In conclusion, herbal medicines can be a
better and safe, complementary and alternative treatment option for AD.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO-Kathog, Kangra, H.P, 176031, India
| | | | - Mahendra Singh Ashawat
- Department of Pharmaceutics, Laureate Institute of Pharmacy, VPO-Kathog, Kangra, H.P, 176031, India
| |
Collapse
|
10
|
Zhang Z, Liu Q, Zang H, Shao Q, Sun T. Oxymatrine protects against l-arginine-induced acute pancreatitis and intestine injury involving Th1/Th17 cytokines and MAPK/NF-κB signalling. PHARMACEUTICAL BIOLOGY 2019; 57:595-603. [PMID: 31496325 PMCID: PMC6746280 DOI: 10.1080/13880209.2019.1657906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Context: Oxymatrine (OMT) has various pharmacological effects, including immune reaction regulation, anti-inflammation and anti-hypersensitive reaction. Objective: This is the first report to investigate the molecular mechanism of OMT function in l-arginine (Arg)-induced acute pancreatitis (AP) involving intestinal injury. Materials and methods: Rat pancreatic AR42J and small intestinal IEC-6 cells were treated with Arg (200-800 µM) for 48 h plus OMT (4 mg/mL) treatment. Thirty adult Wistar rats were randomly assigned to control (saline), AP (i.p. of 250 mg/100 g body weight Arg) and OMT (i.p. injection of 50 mg/kg b.w. OMT every 6 h following Arg). Both cells and rats were harvested at 48 h. Results: Arg-induced cell proliferation in both rats AR42J (EC50 633.9 ± 31.4 µM) and IEC-6 cells (EC50 571.3 ± 40.4 µM) in a dose-dependent manner, which was significantly inhibited by OMT (4 mg/mL). Meanwhile, Arg (600 µM) induced expression of proinflammatory cytokines (TNF-α, IL-6, IL-1β, NF-κB, IL-17A/IL-17F and IFN-γ) and activation of p-p38/p-ERK in vitro, which was reversed by OMT. In vivo, OMT (50 mg/kg) inhibited 250 mg/100 g of Arg-induced AP involving intestinal injury, including inhibiting Arg-induced inflammatory in pancreas and intestine, inhibiting Arg-induced increase of TNF-α, IL-6, IL-1β, NF-κB and p-p38/p-ERK-MAPK signalling, and inhibiting Arg-induced increase of IL-17A/IL-17F, IFN-γ, ROR-γt and T-bet. Meanwhile, OMT inhibited Arg-induced expression of CD44 and CD55 in intestinal injury. Discussion and conclusions: OMT protects against Arg-induced AP involving intestinal injury via regulating Th1/Th17 cytokines and MAPK/NF-κB signalling, which is a promising therapeutic agent in clinics.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Qingfeng Liu
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Hui Zang
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Qingliang Shao
- Department of General Surgery, The People's Hospital of Liaoning Province, Shenyang, China
- CONTACT Qingliang Shao Department of General Surgery, The Peoples’ Hospital of Liaoning Province, Shenyang 110016, China
| | - Tian Sun
- Department of General Surgery, The People's Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhou W, Wu Y, Pan M, Liu D, Liu B. Proliferation and Migration of Lung Cancer Could be Inhibited by Oxymatrine through the Regulation for miR-520/VEGF. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:865-878. [PMID: 31091971 DOI: 10.1142/s0192415x19500459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent evidence suggests that Oxymatrine (OMT) has excellent effects in anticancer. The mechanism, however, remains unclear. In the present study, we investigated the potential mechanism of OMT against cancer. The differential expression of miRNA was screened by miRNA array. The expression of miRNA-520 and VEGF in lung cancer was assayed by real-time PCR, Western blot and immunohistochemistry, respectively. The direct interaction between miRNA-520 and VEGF was assayed by luciferase activity assay and their roles in lung cancer proliferation, invasion and migration were analyzed in vivo and in vitro. We found that miR-520 was markedly down-regulated and VEGF was markedly up-regulated in lung cancer tissues compared with adjacent normal tissues, which had significant negative correlation. Dual-luciferase assays confirmed that miR-520 directly targeting VEGF by binding to its upstream promoter region. Through in vitro and in vivo experiments, we found that different doses of OMT could up-regulate miR-520, selectively inhibit VEGF and thus inhibit the proliferation and migration of lung cancer. Our findings indicate that OMT inhibited cancer progression and metastasis by upregulation of miR-520 and downregulation of VEGF, which provide new support for OMT may be as a novel anticancer drug for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Wen Zhou
- * Department of Chinese Medicine, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, P. R. China.,† Department of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Neihuanxi Road, Guangzhou 510006, P. R. China
| | - Yunshan Wu
- ‡ Department of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, P. R. China
| | - Miao Pan
- * Department of Chinese Medicine, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, P. R. China
| | - Daojun Liu
- * Department of Chinese Medicine, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, P. R. China
| | - Bo Liu
- † Department of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, 55 Neihuanxi Road, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Inhibitory Effects of Helianthus tuberosus Ethanol Extract on Dermatophagoides farina body-induced Atopic Dermatitis Mouse Model and Human Keratinocytes. Nutrients 2018; 10:nu10111657. [PMID: 30400334 PMCID: PMC6265995 DOI: 10.3390/nu10111657] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by complex symptoms. To treat AD without adverse effects, alternative therapeutic agents are required. The tubers of Helianthus tuberosus L. (Jerusalem artichoke) have been used in folk remedies for diabetes and rheumatism. However, its effect on AD development remains unknown. Therefore, this study examined the inhibitory effect of H. tuberosus (HT) on AD skin symptoms using an NC/Nga mouse model and HaCaT keratinocytes. The effect of HT and associated molecular mechanisms were evaluated in Dermatophagoides farina body (Dfb)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated HaCaT keratinocytes by ELISA, western blot, and histological analysis. Topical HT administration attenuated AD skin symptoms in Dfb-induced AD mice, with a significant reduction in the dermatitis score and production of inflammatory mediators. HT also decreased epidermal thickness and mast cell infiltration. Moreover, HT restored filaggrin expression and inhibited adhesion molecules in the mice. These effects were confirmed in vitro. Furthermore, HT suppressed the activation of NF-κB, Akt, and mitogen-activated protein kinase (MAPK) signaling pathways induced by TNF-α/IFN-γ. These results suggest that HT is a potential therapeutic agent or supplement for skin allergic inflammatory diseases such as AD.
Collapse
|
13
|
Jiang Y, Sang W, Wang C, Lu H, Zhang T, Wang Z, Liu Y, Xue B, Xue S, Cai Z, Hua Y, Zhu L, Ma J. Oxymatrine exerts protective effects on osteoarthritis via modulating chondrocyte homoeostasis and suppressing osteoclastogenesis. J Cell Mol Med 2018; 22:3941-3954. [PMID: 29799160 PMCID: PMC6050479 DOI: 10.1111/jcmm.13674] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/05/2018] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by the progressive destruction both articular cartilage and the subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone loss are crucial for the prevention and treatment of OA. Oxymatrine (OMT) is a natural compound with anti‐inflammatory and antitumour properties. We found that OMT exhibited a strong inhibitory effect on LPS‐induced chondrocyte inflammation and catabolism. To further support our results, fresh human cartilage explants were treated with LPS to establish an ex vivo degradation model, and the results revealed that OMT inhibited the catabolic events of LPS‐stimulated human cartilage and substantially attenuated the degradation of articular cartilage ex vivo. As subchondral bone remodelling is involved in OA progression, and osteoclasts are a unique cell type in bone resorption, we investigated the effects of OMT on osteoclastogenesis, and the results demonstrated that OMT suppresses RANKL‐induced osteoclastogenesis by suppressing the RANKL‐induced NFATc1 and c‐fos signalling pathway in vitro. Further, we found that the anti‐inflammatory and anti‐osteoclastic effects of oxymatrine are mediated via the inhibition of the NF‐κB and MAPK pathways. In animal studies, OMT suppressed the ACLT‐induced cartilage degradation, and TUNEL assays further confirmed the protective effect of OMT on chondrocyte apoptosis. MicroCT analysis revealed that OMT had an attenuating effect on ACLT‐induced subchondral bone loss in vivo. Taken together, these results show that OMT interferes with the vicious cycle associated with OA and may be a potential therapeutic agent for abnormal subchondral bone loss and cartilage degradation in osteoarthritis.
Collapse
Affiliation(s)
- Yafei Jiang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Weilin Sang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiming Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yu Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bao Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Xue
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Bone Tumor Institution, Shanghai, China
| | - Libo Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinzhong Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|