1
|
Shang Z, Huang L, Qin S. The underlying mechanism behind the different outcomes of COVID-19 in children and adults. Front Immunol 2025; 16:1440169. [PMID: 40370452 PMCID: PMC12075420 DOI: 10.3389/fimmu.2025.1440169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has affected hundreds of millions of people globally, resulting in millions of deaths. During this pandemic, children have demonstrated greater resistance than adults, exhibiting lower infection rates, reduced mortality, and milder symptoms. Summarizing the differences in resistance between children and adults during COVID-19 can provide insights into protective mechanisms and potential implications for future treatments. In this review, we focused on summarizing and discussing the mechanisms for better protection of children in COVID-19. These protective mechanisms encompass several factors: the baseline expression of cell surface receptor ACE2 and hydrolase TMPRSS2, the impact of complications on COVID-19, and age-related cytokine profiles. Additionally, differences in local and systemic immune responses between children and adults also contribute significantly, particularly interferon responses, heterologous protection from non-COVID-19 vaccinations, and immune status variations influenced by micronutrient levels. The advantageous protection mechanisms of these children may provide insights into the prevention and treatment of COVID-19. Importantly, while age-related metabolic profiles and differential COVID-19 vaccine responses may contribute to protection in children, current comparative research remains limited and requires further investigation.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, Guangdong, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Ling Huang
- Department of Critical Medicine, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shijie Qin
- Innovative Vaccine and Immunotherapy Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
3
|
Goode-Romero G, Dominguez L. Computational study of the conformational ensemble of CX3C chemokine receptor 1 (CX3CR1) and its interactions with antagonist and agonist ligands. J Mol Graph Model 2022; 117:108278. [PMID: 35988439 DOI: 10.1016/j.jmgm.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/14/2023]
Abstract
The CX3C chemokine receptor 1 (CX3CR1), a member of the class A of G Protein-Coupled Receptors (GPCR) superfamily, and its ligand fractalkine constitute an important biochemical axis that influence many cellular pathways involving homeostatic and inflammatory processes. They participate in the activation, chemotaxis and recruitment of multiple immunological cells such as microglia, macrophages and monocytes, and play a critical role in neuroinflammatory conditions such as Alzheimer's disease and multiple sclerosis, in the recovery from central nervous system injuries, in several chronic, peripheral inflammatory entities and in some infective processes including HIV-AIDS. In this work we present the study of the CX3CR1 receptor employing extensive atomistic Molecular Dynamics (MD) simulations with the aim to characterize the conformational ensemble of the receptor in the presence of its antagonist and agonist ligands. We analyzed the receptor conformational changes and described interactions within its key regions and the bounded ligands to identify their notable differences. Finally, we classify the features that would allow the identification of patterns that characterize a functional state to contribute to the understanding of the complexity of the GPCR superfamily.
Collapse
Affiliation(s)
- Guillermo Goode-Romero
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
4
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Different gene co-expression patterns of aortic intima-media and adventitia in thoracic aortic aneurysm. Gene 2022; 819:146233. [PMID: 35121027 DOI: 10.1016/j.gene.2022.146233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to permanent aortic dilation, thoracic aortic aneurysm (TAA) is a life-threatening disease. Once ruptured, TAA has a high lethality and disability rate. Although studies have focused on transcriptomic alterations in TAA, more detailed analysis is still lacking, especially the different aortic intima-media and adventitia roles. This study aimed to identify the different co-expression patterns between the aortic intima-media and the adventitia underlying the aortic dilation. METHODS We analyzed the gene expression profiles obtained from Gene Expression Omnibus (GEO, GSE26155) database. With a false discovery rate (FDR) < 0.05 and |log2FC| ≥ 1, 56 and 33 differential genes in the intima-media and adventitia, respectively, between the non-dilated and dilated status. Gene ontology (GO) and gene set enrichment analysis revealed that degranulation and activation of neutrophils play an essential role in the intima-media of dilated aortas. Through weighted gene co-expression network analysis (WGCNA), we identified essential co-expressed modules and hub genes to explore the biological functions of the dysregulated genes. RESULTS Functional pathway analysis suggested that lipid metabolism, C-C motif chemokine pathways were significantly enriched in the adventitia, whereas ribosome proteins and related mRNA translation pathways were closely related to intima and media. Furthermore, the ssGSEA analysis indicated that macrophages, helper T cells, and neutrophils were higher in the intima-media of the dilated thoracic aorta. Finally, we validated the critical findings of the study with the murine model of TAA. CONCLUSION This study identified and verified hub genes and pathways in aortic intima-media and adventitia prominently associated with aortic dilation, providing practical understanding in the perspective of searching for new molecular targets.
Collapse
|
6
|
Yue Y, Zhang Q, Sun Z. CX3CR1 Acts as a Protective Biomarker in the Tumor Microenvironment of Colorectal Cancer. Front Immunol 2022; 12:758040. [PMID: 35140706 PMCID: PMC8818863 DOI: 10.3389/fimmu.2021.758040] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays an important role in the pathogenesis of many cancers. We aimed to screen the TME-related hub genes of colorectal adenoma (CRAD) and identify possible prognostic biomarkers. The gene expression profiles and clinical data of 464 CRAD patients in The Cancer Genome Atlas (TCGA) database were downloaded. The Estimation of STromal and Immune cells in MAlignant Tumours using Expression data (ESTIMATE) algorithm was performed to calculate the ImmuneScore, StromalScore, and EstimateScore. Thereafter, differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein interaction (PPI) analysis were performed to explore the roles of DEGs. Furthermore, univariate and multivariate Cox analyses were accomplished to identify independent prognostic factors of CRAD. CX3CR1 was selected as a hub gene, and the expression was confirmed in colorectal cancer (CRC) patients and cell lines. The correlations between CX3CR1 and tumor-infiltrating immune cells were estimated by Tumor IMmune Estimation Resource database (TIMER) and CIBERSORT analysis. Besides, we investigated the effects of coculture with THP-1-derived macrophages with HCT8 cells with low CX3CR1 expression on immune marker expression, cell viability, and migration. There were significant differences in the ImmuneScore and EstimateScore among different stages. Patients with low scores presented significantly lower lifetimes than those in the high-score group. Moreover, we recognized 1,578 intersection genes in ImmuneScore and StromalScore, and these genes were mainly enriched in numerous immune-related biological processes. CX3CR1 was found to be associated with immune cell infiltration levels, immune marker expression, and macrophage polarization. Simultaneous silencing of CX3CR1 and coculture with THP-1 cells further regulated macrophage polarization and promoted the cell proliferation and migration of CRC cells. CX3CR1 was decreased in CRAD tissues and cell lines and was related to T and N stages, tumor differentiation, and prognosis. Our results suggest that CX3CR1 contributes to the recruitment and regulation of immune-infiltrating cells and macrophage polarization in CRC and TAM-induced CRC progression. CX3CR1 may act as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Yuanyi Yue
- Department of Gastroenterology Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengrong Sun
- BioBank, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhengrong Sun,
| |
Collapse
|
7
|
Jafarpour R, Pashangzadeh S, Dowran R. Host factors: Implications in immunopathogenesis of COVID-19. Pathol Res Pract 2021; 228:153647. [PMID: 34749207 PMCID: PMC8505027 DOI: 10.1016/j.prp.2021.153647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is more serious in people with underlying diseases, but the cause of healthy people with progressive disease is largely unknown. Host genetic factors such as ACE2 variants, IFITM-3, HLA, TMRSS2, and furin polymorphisms appear to be one of the agents involved in the progression of the COVID-19 and outcome of the disease. This review discusses the general characteristics of SARS-CoV-2, including viral features, receptors, cell entry, clinical findings, and the main human genetic factors that may contribute to the pathogenesis of COVID-19 and get the patients' situation more complex. Further knowledge in this context may help to find a way to prevent and treat this viral pneumonia.
Collapse
Affiliation(s)
- Roghayeh Jafarpour
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Salar Pashangzadeh
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran,Immunology Today, Universal Scientific Education and Research Network (USERN), Tehan, Iran
| | - Razieh Dowran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author at: Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Aryankalayil MJ, Martello S, Bylicky MA, Chopra S, May JM, Shankardass A, MacMillan L, Sun L, Sanjak J, Vanpouille-Box C, Eke I, Coleman CN. Analysis of lncRNA-miRNA-mRNA expression pattern in heart tissue after total body radiation in a mouse model. J Transl Med 2021; 19:336. [PMID: 34364390 PMCID: PMC8349067 DOI: 10.1186/s12967-021-02998-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background Radiation therapy is integral to effective thoracic cancer treatments, but its application is limited by sensitivity of critical organs such as the heart. The impacts of acute radiation-induced damage and its chronic effects on normal heart cells are highly relevant in radiotherapy with increasing lifespans of patients. Biomarkers for normal tissue damage after radiation exposure, whether accidental or therapeutic, are being studied as indicators of both acute and delayed effects. Recent research has highlighted the potential importance of RNAs, including messenger RNAs (mRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as biomarkers to assess radiation damage. Understanding changes in mRNA and non-coding RNA expression will elucidate biological pathway changes after radiation. Methods To identify significant expression changes in mRNAs, lncRNAs, and miRNAs, we performed whole transcriptome microarray analysis of mouse heart tissue at 48 h after whole-body irradiation with 1, 2, 4, 8, and 12 Gray (Gy). We also validated changes in specific lncRNAs through RT-qPCR. Ingenuity Pathway Analysis (IPA) was used to identify pathways associated with gene expression changes. Results We observed sustained increases in lncRNAs and mRNAs, across all doses of radiation. Alas2, Aplnr, and Cxc3r1 were the most significantly downregulated mRNAs across all doses. Among the significantly upregulated mRNAs were cell-cycle arrest biomarkers Gdf15, Cdkn1a, and Ckap2. Additionally, IPA identified significant changes in gene expression relevant to senescence, apoptosis, hemoglobin synthesis, inflammation, and metabolism. LncRNAs Abhd11os, Pvt1, Trp53cor1, and Dino showed increased expression with increasing doses of radiation. We did not observe any miRNAs with sustained up- or downregulation across all doses, but miR-149-3p, miR-6538, miR-8101, miR-7118-5p, miR-211-3p, and miR-3960 were significantly upregulated after 12 Gy. Conclusions Radiation-induced RNA expression changes may be predictive of normal tissue toxicities and may indicate targetable pathways for radiation countermeasure development and improved radiotherapy treatment plans. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02998-w.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA
| | | | - Landy Sun
- Gryphon Scientific, Takoma Park, MD, 20912, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.,Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room B3B406, Bethesda, MD, 20892, USA.,Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| |
Collapse
|
9
|
Chamera K, Szuster-Głuszczak M, Basta-Kaim A. Shedding light on the role of CX3CR1 in the pathogenesis of schizophrenia. Pharmacol Rep 2021; 73:1063-1078. [PMID: 34021899 PMCID: PMC8413165 DOI: 10.1007/s43440-021-00269-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Schizophrenia has a complex and heterogeneous molecular and clinical picture. Over the years of research on this disease, many factors have been suggested to contribute to its pathogenesis. Recently, the inflammatory processes have gained particular interest in the context of schizophrenia due to the increasing evidence from epidemiological, clinical and experimental studies. Within the immunological component, special attention has been brought to chemokines and their receptors. Among them, CX3C chemokine receptor 1 (CX3CR1), which belongs to the family of seven-transmembrane G protein-coupled receptors, and its cognate ligand (CX3CL1) constitute a unique system in the central nervous system. In the view of regulation of the brain homeostasis through immune response, as well as control of microglia reactivity, the CX3CL1–CX3CR1 system may represent an attractive target for further research and schizophrenia treatment. In the review, we described the general characteristics of the CX3CL1–CX3CR1 axis and the involvement of this signaling pathway in the physiological processes whose disruptions are reported to participate in mechanisms underlying schizophrenia. Furthermore, based on the available clinical and experimental data, we presented a guide to understanding the implication of the CX3CL1–CX3CR1 dysfunctions in the course of schizophrenia.
Collapse
Affiliation(s)
- Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland.
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna St., 31-343, Kraków, Poland
| |
Collapse
|
10
|
Abstract
Growing evidence implicates the renin-angiotensin system (RAS) in multiple facets of neuropathic pain (NP). This narrative review focuses primarily on the major bioactive RAS peptide, Angiotensin II (Ang II), and its receptors, namely type 1 (AT1R) and type 2 (AT2R). Both receptors are involved in the development of NP and represent potential therapeutic targets. We first discuss the potential role of Ang II receptors in modulation of NP in the central nervous system. Ang II receptor expression is widespread in circuits associated with the perception and modulation of pain, but more studies are required to fully characterize receptor distribution, downstream signaling, and therapeutic potential of targeting the central nervous system RAS in NP. We then describe the peripheral neuronal and nonneuronal distribution of the RAS, and its contribution to NP. Other RAS modulators (such as Ang (1-7)) are briefly reviewed as well. AT1R antagonists are analgesic across different pain models, including NP. Several studies show neuronal protection and outgrowth downstream of AT2R activation, which may lead to the use of AT2R agonists in NP. However, blockade of AT2R results in analgesia. Furthermore, expression of the RAS in the immune system and a growing appreciation of neuroimmune crosstalk in NP add another layer of complexity and therapeutic potential of targeting this pathway. A growing number of human studies also hint at the analgesic potential of targeting Ang II signaling. Altogether, Ang II receptor signaling represents a promising, far-reaching, and novel strategy to treat NP.
Collapse
|
11
|
Lei C, Yang D, Chen W, Kan H, Xu F, Zhang H, Wang W, Ji L, Zheng Y. The potential role of chemotaxis and the complement system in the formation and progression of thoracic aortic aneurysms inferred from the weighted gene coexpression network analysis. J Transl Med 2021; 19:49. [PMID: 33531038 PMCID: PMC7852290 DOI: 10.1186/s12967-021-02716-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) can be life-threatening due to the progressive weakening and dilatation of the aortic wall. Once the aortic wall has ruptured, no effective pharmaceutical therapies are available. However, studies on TAA at the gene expression level are limited. Our study aimed to identify the driver genes and critical pathways of TAA through gene coexpression networks. METHODS We analyzed the genetic data of TAA patients from a public database by weighted gene coexpression network analysis (WGCNA). Modules with clinical significance were identified, and the differentially expressed genes (DEGs) were intersected with the genes in these modules. Gene Ontology and pathway enrichment analyses were performed. Finally, hub genes that might be driving factors of TAA were identified. Furthermore, we evaluated the diagnostic accuracy of these genes and analyzed the composition of immune cells using the CIBERSORT algorithm. RESULTS We identified 256 DEGs and two modules with clinical significance. The immune response, including leukocyte adhesion, mononuclear cell proliferation and T cell activation, was identified by functional enrichment analysis. CX3CR1, C3, and C3AR1 were the top 3 hub genes in the module correlated with TAA, and the areas under the curve (AUCs) by receiver operating characteristic (ROC) analysis of all the hub genes exceeded 0.7. Finally, we found that the proportions of infiltrating immune cells in TAA and normal tissues were different, especially in terms of macrophages and natural killer (NK) cells. CONCLUSION Chemotaxis and the complement system were identified as crucial pathways in TAA, and macrophages with interactive immune cells may regulate this pathological process.
Collapse
Affiliation(s)
- Chuxiang Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Dan Yang
- Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoxuan Kan
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Fang Xu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Hui Zhang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Wei Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Lei Ji
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No 1. Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
12
|
Ye CH, Hsu WL, Peng GR, Yu WC, Lin WC, Hu S, Yu SH. Role of the Immune Microenvironment in SARS-CoV-2 Infection. Cell Transplant 2021; 30:9636897211010632. [PMID: 33949207 PMCID: PMC8114753 DOI: 10.1177/09636897211010632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) first emerged in December 2019 in Wuhan, China, and has since spread rapidly worldwide. As researchers seek to learn more about COVID-19, the disease it causes, this novel virus continues to infect and kill. Despite the socioeconomic impacts of SARS-CoV-2 infections and likelihood of future outbreaks of other pathogenic coronaviruses, options to prevent or treat coronavirus infections remain limited. In current clinical trials, potential coronavirus treatments focusing on killing the virus or on preventing infection using vaccines largely ignore the host immune response. The relatively small body of current research on the virus indicates pathological responses by the immune system as the leading cause for much of the morbidity and mortality caused by COVID-19. In this review, we investigated the host innate and adaptive immune responses against COVID-19, collated information on recent COVID-19 experimental data, and summarized the systemic immune responses to and histopathology of SARS-CoV-2 infection. Finally, we summarized the immune-related biomarkers to define patients with high-risk and worst-case outcomes, and identified the possible usefulness of inflammatory markers as potential immunotherapeutic targets. This review provides an overview of current knowledge on COVID-19 and the symptomatological differences between healthy, convalescent, and severe cohorts, while offering research directions for alternative immunoregulation therapeutic targets.
Collapse
Affiliation(s)
- Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wen-Lin Hsu
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Cancer Center, Hualien, Taiwan
- Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Department of Radiation Oncology, Hualien, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ. Role of inflammatory chemokines in hypertension. Pharmacol Ther 2020; 223:107799. [PMID: 33359600 DOI: 10.1016/j.pharmthera.2020.107799] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is associated with immune cells activation and their migration into the kidney, vasculature, heart and brain. These inflammatory mechanisms are critical for blood pressure regulation and mediate target organ damage, creating unique novel targets for pharmacological modulation. In response to angiotensin II and other pro-hypertensive stimuli, the expression of several inflammatory chemokines and their receptors is increased in the target organs, mediating homing of immune cells. In this review, we summarize the contribution of key inflammatory chemokines and their receptors to increased accumulation of immune cells in target organs and effects on vascular dysfunction, remodeling, oxidative stress and fibrosis, all of which contribute to blood pressure elevation. In particular, the role of CCL2, CCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL16, CXCL1, CX3CL1, XCL1 and their receptors in the context of hypertension is discussed. Recent studies have tested the efficacy of pharmacological or genetic targeting of chemokines and their receptors on the development of hypertension. Promising results indicate that some of these pathways may serve as future therapeutic targets to improve blood pressure control and prevent target organ consequences including kidney failure, heart failure, atherosclerosis or cognitive impairment.
Collapse
Affiliation(s)
- Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Piotr Szczepaniak
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Francesca Vidler
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland; BHF Centre for Excellence Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Abstract
Coronavirus disease 2019 (COVID-19), caused by the virus designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread widely throughout the world. Despite the strict global outbreak management and quarantine measures that have been implemented, the incidence of COVID-19 continues to rise, resulting in more than 290,000 deaths and representing an extremely serious threat to human life and health. The clinical symptoms of the affected patients are heterogeneous, ranging from mild upper respiratory symptoms to severe pneumonitis and even acute respiratory distress syndrome (ARDS) or death. Systemic immune over activation due to SARS-CoV-2 infection causes the cytokine storm, which is especially noteworthy in severely ill patients with COVID-19. Pieces of evidence from current studies have shown that the cytokine storm may be an important factor in disease progression, even leading to multiple organ failure and death. This review provides an overview of the knowledge on the COVID-19 epidemiological profile, the molecular mechanisms of the SARS-CoV-2-induced cytokine storm and immune responses, the pathophysiological changes that occur during infection, the main antiviral compounds used in treatment strategies and the potential drugs for targeting cytokines, this information is presented to provide valuable guidance for further studies and for a therapeutic reduction of this excessive immune response.
Collapse
|
15
|
FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells via Activating the AMPK-SIRT1 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6384803. [PMID: 32509148 PMCID: PMC7254086 DOI: 10.1155/2020/6384803] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Vascular oxidative stress and inflammation play a major role in vascular diseases. This study was aimed at determining the protective roles of fibronectin type III domain-containing 5 (FNDC5) in angiotensin II- (Ang II-) induced vascular oxidative stress and inflammation and underlying mechanisms. Wild-type (WT) and FNDC5−/− mice, primary mouse vascular smooth muscle cells (VSMCs), and the rat aortic smooth muscle cell line (A7R5) were used in the present study. Subcutaneous infusion of Ang II caused more serious hypertension, vascular remodeling, oxidative stress, NLRP3 inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in the aorta of FNDC5−/− mice than those of WT mice. Exogenous FNDC5 attenuated Ang II-induced superoxide generation, NADPH oxidase 2 (NOX2) and NLRP3 upregulation, mature caspase-1, and interleukin-1β (IL-1β) production in A7R5 cells. The protective roles of FNDC5 were prevented by SIRT-1 inhibitor EX527, AMPK inhibitor compound C, or integrin receptor inhibitor GLPG0187. FNDC5 attenuated the Ang II-induced inhibition in SIRT1 activity, SIRT1 protein expression, and AMPKα phosphorylation in A7R5 cells, which were prevented by compound C, EX527, and GLPG0187. FNDC5 deficiency deteriorated Ang II-induced oxidative stress, NLRP3 inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in primary aortic VSMCs of mice, which were prevented by exogenous FNDC5. These results indicate that FNDC5 deficiency aggravates while exogenous FNDC5 alleviates the Ang II-induced vascular oxidative stress and NLRP3 inflammasome activation via the AMPK-SIRT1 signal pathway in VSMCs.
Collapse
|
16
|
A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 2019; 117:109078. [DOI: 10.1016/j.biopha.2019.109078] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
17
|
Nonn O, Güttler J, Forstner D, Maninger S, Zadora J, Balogh A, Frolova A, Glasner A, Herse F, Gauster M. Placental CX3CL1 is Deregulated by Angiotensin II and Contributes to a Pro-Inflammatory Trophoblast-Monocyte Interaction. Int J Mol Sci 2019; 20:ijms20030641. [PMID: 30717334 PMCID: PMC6387455 DOI: 10.3390/ijms20030641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023] Open
Abstract
CX3CL1, which is a chemokine involved in many aspects of human pregnancy, is a membrane-bound chemokine shed into circulation as a soluble isoform. Placental CX3CL1 is induced by inflammatory cytokines and is upregulated in severe early-onset preeclampsia. In this study, the hypothesis was addressed whether angiotensin II can deregulate placental CX3CL1 expression, and whether CX3CL1 can promote a pro-inflammatory status of monocytes. qPCR analysis of human placenta samples (n = 45) showed stable expression of CX3CL1 and the angiotensin II receptor AGTR1 throughout the first trimester, but did not show a correlation between both or any influence of maternal age, BMI, and gestational age. Angiotensin II incubation of placental explants transiently deregulated CX3CL1 expression, while the angiotensin II receptor antagonist candesartan reversed this effect. Overexpression of recombinant human CX3CL1 in SGHPL-4 trophoblasts increased adhesion of THP-1 monocytes and significantly increased IL8, CCL19, and CCL13 in co-cultures with human primary monocytes. Incubation of primary monocytes with CX3CL1 and subsequent global transcriptome analysis of CD16+ subsets revealed 81 upregulated genes, including clusterin, lipocalin-2, and the leptin receptor. Aldosterone synthase, osteopontin, and cortisone reductase were some of the 66 downregulated genes present. These data suggest that maternal angiotensin II levels influence placental CX3CL1 expression, which, in turn, can affect monocyte to trophoblast adhesion. Release of placental CX3CL1 could promote the pro-inflammatory status of the CD16+ subset of maternal monocytes.
Collapse
Affiliation(s)
- Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Jacqueline Güttler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Sabine Maninger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| | - Julianna Zadora
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
| | - András Balogh
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Berlin Institute of Health (BIH), 13125 Berlin, Germany.
| | - Alina Frolova
- Institute of Molecular Biology and Genetic of National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine.
| | | | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.
- Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany.
- Berlin Institute of Health (BIH), 13125 Berlin, Germany.
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Ageing, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
18
|
BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5018410. [PMID: 30805081 PMCID: PMC6362478 DOI: 10.1155/2019/5018410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
Proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling in hypertension and several major vascular diseases. B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor. The present study is designed to determine the roles of BCL6 in VSMC proliferation and oxidative stress and underlying mechanism. Angiotensin (Ang) II was used to induce VSMC proliferation and oxidative stress in human VSMCs. Effects of BCL6 overexpression and knockdown were, respectively, investigated in Ang II-treated human VSMCs. Therapeutical effects of BCL6 overexpression on vascular remodeling, oxidative stress, and proliferation were determined in the aorta of spontaneously hypertensive rats (SHR). Ang II reduced BCL6 expression in human VSMCs. BCL6 overexpression attenuated while BCL6 knockdown enhanced the Ang II-induced upregulation of NADPH oxidase 4 (NOX4), production of reactive oxygen species (ROS), and proliferation of VSMCs. BCL6 expression was downregulated in SHR. BCL6 overexpression in SHR reduced NOX4 expression, ROS production, and proliferation of the aortic media of SHR. Moreover, BCL6 overexpression attenuated vascular remodeling and hypertension in SHR. However, BCL6 overexpression had no significant effects on NOX2 expression in human VSMCs or in SHR. We conclude that BCL6 attenuates proliferation and oxidative stress of VSMCs in hypertension.
Collapse
|
19
|
Brioschi M, Banfi C. The application of gene silencing in proteomics: from laboratory to clinic. Expert Rev Proteomics 2018; 15:717-732. [PMID: 30205712 DOI: 10.1080/14789450.2018.1521275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Since the completion of genome sequencing, gene silencing technologies have emerged as powerful tools to study gene functions in various biological processes, both in vivo and in vitro. Moreover, they have also been proposed as therapeutic agents to inhibit selected genes in a variety of pathological conditions, such as cancer, neurodegenerative, and cardiovascular diseases. Area covered: This review summarizes the mechanisms of action and applications of genome editing tools, from RNA interference to clustered regularly interspaced short palindromic repeats-based systems, in research and in clinics. We describe their essential role in high-throughput genetic screens and, in particular, in functional proteomics studies, to identify diagnostic markers and therapeutic targets. Indeed, gene silencing and proteomics have been extensively integrated to study global proteome changes, posttranslational modifications, and protein-protein interactions. Expert commentary: Functional proteomics approaches that leverage gene silencing tools have been successfully applied to examine the role of several genes in various contexts, leading to a deeper knowledge of biological pathways and disease mechanisms. Recent developments of gene silencing tools have improved their performance, also in terms of off-targets effects reduction, paving the way for a wider therapeutic application of these systems.
Collapse
Affiliation(s)
- Maura Brioschi
- a Unit of Proteomics , Centro Cardiologico Monzino IRCCS , Milano , Italy
| | - Cristina Banfi
- a Unit of Proteomics , Centro Cardiologico Monzino IRCCS , Milano , Italy
| |
Collapse
|