1
|
Liang LD, Peng HX, Huang MJ, Su LY, Huang JW, Lao JL, Huang ZH, Liu Y. HGF ameliorates cardiomyocyte apoptosis and inflammatory response in sepsis via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Gene 2024; 928:148763. [PMID: 39002784 DOI: 10.1016/j.gene.2024.148763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE This study aimed to analyze the impact of HGF on cardiomyocyte injury, apoptosis, and inflammatory response induced by lipopolysaccharide (LPS). METHODS Enzyme-linked immunosorbent assay (ELISA) was utilized to quantify the levels of HGF, interleukin (IL)-6, IL-10, creatine phosphokinase-isoenzyme-MB (CK-MB), and cardiac troponin I (cTnI) in the samples. qPCR and Western blotting (WB) were employed to assess the mRNA and protein expressions of HGF, IL-10, IL-6, PI3K, AKT, p-PI3K, and p-AKT. RESULTS The outcomes of the in vivo experiment revealed that serum levels of IL-6, IL-10, HGF and SOFA scores in the SC group were elevated in contrast to the non-SC group. The correlation analysis indicated a substantial and positive association among serum HGF, IL-6, and IL-10 levels and SOFA scores. Relative to IL-6, IL-10 levels, and SOFA scores, serum HGF demonstrated the highest diagnostic value for SC. Following LPS administration to stimulate H9c2 cells across various periods (0, 12, 24, 48, and 72 h), the levels of myocardial injury markers (CK-MB and cTnI) in the cell supernatants, intracellular inflammatory factors (mRNA and protein levels of IL-10 and IL-6), apoptosis and ROS levels, exhibited a gradual increase followed by a subsequent decline. Following the overexpression of HGF, there was an increase in cell viability, and a decrease in apoptosis, inflammation, oxidative stress injuries, and the protein phosphorylation expressions of PI3K and AKT. After knockdown of HGF expression, the activity of LPS-induced H9c2 cells was further reduced, leading to increased cell injury, apoptosis, inflammation, oxidative stress,and the expression levels of PI3K and Akt protein phosphorylation were further elevated. CONCLUSION HGF was associated with decreased LPS-induced H9c2 apoptosis and inflammation in H9c2 cells, alongside an improvement in cell viability, indicating potential cytoprotective effects. The mechanism underlying these impacts may be ascribed to the suppression of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Liu-Dan Liang
- The First Clinical Medical College of Jinan University, Guangzhou 510000, China; Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Laboratory of the Atherosclerosis and Ischemic Cardiovasculaar Diseases, Baise 533000, Guangxi, China; Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Hui-Xin Peng
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Mei-Jin Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Laboratory of the Atherosclerosis and Ischemic Cardiovasculaar Diseases, Baise 533000, Guangxi, China; Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Li-Ye Su
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jia-Wei Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Jian-le Lao
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Zhao-He Huang
- The First Clinical Medical College of Jinan University, Guangzhou 510000, China; Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Laboratory of the Atherosclerosis and Ischemic Cardiovasculaar Diseases, Baise 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Yan Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Laboratory of the Atherosclerosis and Ischemic Cardiovasculaar Diseases, Baise 533000, Guangxi, China; Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|
2
|
Zhang M, Li H, Ma S, Li X, Xi L, Li Y, Zhang Z, Zhang S, Gao Q, Huang Q, Wan J, Xie W, Li J, Yang P, Zhang Y, Zhai Z. Serum proteome profiling reveals HGFA as a candidate biomarker for pulmonary arterial hypertension. Respir Res 2024; 25:418. [PMID: 39609799 PMCID: PMC11603967 DOI: 10.1186/s12931-024-03036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Identification and validation of potential biomarkers could facilitate the identification of pulmonary arterial hypertension (PAH) and thus aid to study their roles in the disease process. METHODS We used the isobaric tag for relative and absolute quantitation approaches to compare the protein profiles between the serum of PAH patients and the controls. Bioinformatics analyses and enzyme-linked immunosorbent assay (ELISA) identification of PAH patients and the controls were performed to identify the potential biomarkers. The receiver operating characteristic curve (ROC) analysis was used to evaluate the diagnostic performance of these potential biomarkers. Mendelian randomization (MR) analysis further clarified the relationship between the potential biomarkers and PAH. Additionally, the expression levels of the potential biomarkers were further validated in two PAH animal models (monocrotaline-PH and Sugen5416 plus hypoxia-PH) using ELISA and reverse transcription-quantitative PCR (RT-qPCR). RESULTS We identified significant changes in three proteins including heparanase (HPSE), gelsolin (GSN), and hepatocyte growth factor activator (HGFA) in PAH patients. The ROC analysis showed that the areas under the curve of HPSE, GSN, and HGFA in differentiating PAH patients from controls were 0.769, 0.777, and 0.964, respectively. HGFA was correlated with multiple parameters of right ventricular functions in PAH patients. Besides proteomic analysis, we also used MR method to demonstrate the causal link between genetically reduced HGFA levels and an increased risk of PAH. In subsequent validation study in PAH animal models, the mRNA expression levels of HGFA in the lung tissues were significantly lower in PAH rat models than in controls. In the rat models, serum levels of HGFA were lower compared to the control group and showed a negative correlation with right ventricular systolic pressure. CONCLUSION The study demonstrated that HGFA might be a promising biomarker for noninvasive detection of PAH.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haobo Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuangshuang Ma
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xincheng Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Harbin Medical University, Harbin, China
| | - Linfeng Xi
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yishan Li
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhu Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qian Gao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Qiang Huang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wan
- Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wanmu Xie
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jifeng Li
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University; Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing Chao-Yang Hospital, Capital Medical University; Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University; Department of Respiratory Disease, Capital Medical University, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College; National Center for Respiratory Medicine; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Yunxia Zhang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Zhenguo Zhai
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences; Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
3
|
Guo M, Li S, Li C, Mao X, Tian L, Yang X, Xu C, Zeng M. Overexpression of Wnt5a promoted the protective effect of mesenchymal stem cells on Lipopolysaccharide-induced endothelial cell injury via activating PI3K/AKT signaling pathway. BMC Infect Dis 2024; 24:335. [PMID: 38509522 PMCID: PMC10953236 DOI: 10.1186/s12879-024-09204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.
Collapse
Grants
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- the Guangdong Basic and Applied Basic Research Foundation, China (2024)
Collapse
Affiliation(s)
- Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shiqi Li
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chuan Li
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liru Tian
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xintong Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
4
|
Huang T, Zeng Y, Yang Y, Fan H, Deng Y, Chen W, Liu J, Yang F, Li W, Xiao Y. Comprehensive analysis of m 6A methylomes in idiopathic pulmonary arterial hypertension. Epigenetics 2023; 18:2242225. [PMID: 37537976 PMCID: PMC10405774 DOI: 10.1080/15592294.2023.2242225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a serious and fatal disease. Recently, m6A has been reported to play an important role in the lungs of IPAH patients and experimental pulmonary hypertension models. However, the meaning of m6A mRNAs in the peripheral blood of IPAH patients remains largely unexplored. We aimed to construct a transcriptome-wide map of m6A mRNAs in the peripheral blood of IPAH patients. M6A RNA Methylation Quantification Kit was utilized to measure the total m6A levels in the peripheral blood of IPAH patients. A combination of MeRIP-seq, RNA-seq and bioinformatics analysis was utilized to select m6A-modified hub genes of IPAH. MeRIP-qPCR and RT-qPCR were used to measure the m6A levels and mRNA levels of TP53, RPS27A, SMAD3 and FoxO3 in IPAH patients. Western blot was performed to assess the protein levels of m6A related regulators and m6A related genes in experimental PH animal models, hypoxia-treated and PDGF-BB induced PASMCs. We found that the total m6A levels were increased in peripheral blood of IPAH patients and verified that m6A levels of RPS27A and SMAD3 were significantly elevated and m6A levels of TP53 and FoxO3 were significantly reduced. The mRNA or protein levels of RPS27A, SMAD3, TP53 and FoxO3 were changed in human blood samples, experimental PH animal models and PDGF-BB induced PASMCs. Moreover, METTL3 and YTHDF1 were increased in the hypoxia induced pulmonary hypertension rat model, hypoxia-treated and PDGF-BB induced PASMCs. These finding suggested that m6A may play an important role in IPAH.
Collapse
Affiliation(s)
- Ting Huang
- Department of Ultrasound, Hunan Children’s Hospital, Changsha, China
| | - Yunhong Zeng
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Haoqin Fan
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Youcai Deng
- Institute of Material Medical, College of Pharmacy, Army Medical University (Third Military Medical), Chongqing, China
| | - Wenjuan Chen
- Department of Ultrasound, Hunan Children’s Hospital, Changsha, China
| | - Jinqiao Liu
- Department of Ultrasound, Hunan Children’s Hospital, Changsha, China
| | - Fan Yang
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Li
- Department of Ultrasound, Hunan Children’s Hospital, Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
5
|
Mirhadi E, Kesharwani P, Johnston TP, Sahebkar A. Nanomedicine-mediated therapeutic approaches for pulmonary arterial hypertension. Drug Discov Today 2023; 28:103599. [PMID: 37116826 DOI: 10.1016/j.drudis.2023.103599] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Nanomedicine has emerged as a field in which there are opportunities to improve the diagnosis, treatment and prevention of incurable diseases. Pulmonary arterial hypertension (PAH) is known as a severe and fatal disease affecting children and adults. Conventional treatments have not produced optimal effectiveness in treating this condition. Several reasons for this include drug instability, poor solubility of the drug and a shortened duration of pharmacological action. The present review focuses on new approaches for delivering anti-PAH drugs using nanotechnology with the aim of overcoming these shortcomings and increasing their efficacy. Solid-lipid nanoparticles, liposomes, metal-organic frameworks and polymeric nanoparticles have demonstrated advantages for the potential treatment of PAH, including increased drug bioavailability, drug solubility and accumulation in the lungs.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zeng Z, Wang X, Cui L, Wang H, Guo J, Chen Y. Natural Products for the Treatment of Pulmonary Hypertension: Mechanism, Progress, and Future Opportunities. Curr Issues Mol Biol 2023; 45:2351-2371. [PMID: 36975522 PMCID: PMC10047369 DOI: 10.3390/cimb45030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Pulmonary hypertension (PH) is a lethal disease due to the remodeling of pulmonary vessels. Its pathophysiological characteristics include increased pulmonary arterial pressure and pulmonary vascular resistance, leading to right heart failure and death. The pathological mechanism of PH is complex and includes inflammation, oxidative stress, vasoconstriction/diastolic imbalance, genetic factors, and ion channel abnormalities. Currently, many clinical drugs for the treatment of PH mainly play their role by relaxing pulmonary arteries, and the treatment effect is limited. Recent studies have shown that various natural products have unique therapeutic advantages for PH with complex pathological mechanisms owing to their multitarget characteristics and low toxicity. This review summarizes the main natural products and their pharmacological mechanisms in PH treatment to provide a useful reference for future research and development of new anti-PH drugs and their mechanisms.
Collapse
Affiliation(s)
- Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongjuan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.G.); (Y.C.)
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (J.G.); (Y.C.)
| |
Collapse
|
7
|
唐 胡, 母 炜, 向 渝, 安 永. Effect of hepatocyte growth factor on mice with hypoxic pulmonary arterial hypertension: a preliminary study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:936-941. [PMID: 36036134 PMCID: PMC9425866 DOI: 10.7499/j.issn.1008-8830.2203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/21/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the association between hepatocyte growth factor (HGF) and treatment response in mice with hypoxic pulmonary arterial hypertension (HPAH) and the possibility of HGF as a new targeted drug for HPAH. METHODS After successful modeling, the HPAH model mice were randomly divided into two groups: HPAH group and HGF treatment group (tail vein injection of recombinant mouse HGF 1 mg/kg), with 10 mice in each group. Ten normal mice were used as the control group. After 5 weeks, echocardiography was used to measure tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio; the Griess method was used to measure the content of nitric oxide in serum; ELISA was used to measure the serum level of endothelin-1; transmission electron microscopy was used to observe changes in the ultrastructure of pulmonary artery. RESULTS Compared with the HGF treatment and normal control groups, the HPAH group had significantly higher tricuspid peak velocity, right ventricular systolic pressure, right ventricular hypertrophy index, and right ventricular/body weight ratio (P<0.05). The transmission electron microscopy showed that the HPAH group had massive destruction of vascular endothelial cells and disordered arrangement of the elastic membrane of arteriolar intima with rupture and loss. The structure of vascular endothelial cells was almost complete and the structure of arterial intima elastic membrane was almost normal in the HGF treatment group. Compared with the normal control and HGF treatment groups, the HPAH group had significantly higher serum levels of nitric oxide and endothelin-1 (P<0.05). CONCLUSIONS Increasing serum HGF level can alleviate the impact of HPAH on the cardiovascular system of mice, possibly by repairing endothelial cell injury, improving vascular remodeling, and restoring the normal vasomotor function of pulmonary vessels.
Collapse
|
8
|
Wang RR, Yuan TY, Wang JM, Chen YC, Zhao JL, Li MT, Fang LH, Du GH. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective. Pharmacol Res 2022; 180:106238. [DOI: 10.1016/j.phrs.2022.106238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/08/2023]
|
9
|
Qin L, Zhang J, Xiao Y, Liu K, Cui Y, Xu F, Ren W, Yuan Y, Jiang C, Ning S, Ye X, Zeng M, Qian H, Bian A, Li F, Yang G, Tang S, Zhang Z, Dai J, Guo J, Wang Q, Sun B, Ge Y, Ouyang C, Xu X, Wang J, Huang Y, Cui H, Zhou J, Wang M, Su Z, Lu Y, Wu D, Shi J, Liu W, Dong L, Pan Y, Zhao B, Cui Y, Gao X, Gao Z, Ma X, Chen A, Wang J, Cao M, Cui Q, Chen L, Chen F, Yu Y, Ji Q, Zhang Z, Gu M, Zhuang X, Lv X, Wang H, Pan Y, Wang L, Xu X, Zhao J, Wang X, Liu C, Liang N, Xing C, Liu J, Wang N. A novel long-term intravenous combined with local treatment with human amnion-derived mesenchymal stem cells for a multidisciplinary rescued uremic calciphylaxis patient and the underlying mechanism. J Mol Cell Biol 2022; 14:6526318. [PMID: 35142858 PMCID: PMC9205756 DOI: 10.1093/jmcb/mjac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022] Open
Abstract
Calciphylaxis is a rare disease characterized histologically by microvessel calcification and microthrombosis, with high mortality and no proven therapy. Here, we reported a severe uremic calciphylaxis patient with progressive skin ischemia, large areas of painful malodorous ulcers, and mummified legs. Because of the worsening symptoms and signs refractory to conventional therapies, treatment with human amnion-derived mesenchymal stem cells (hAMSCs) was approved. Pre-clinical release inspections of hAMSCs, efficacy, and safety assessment including cytokine secretory ability, immunocompetence, tumorigenicity, and genetics analysis in vitro were introduced. We further performed acute and long-term hAMSC toxicity evaluations in C57BL/6 mice and rats, abnormal immune response tests in C57BL/6 mice, and tumorigenicity tests in neonatal Balbc-nu nude mice. After the pre-clinical research, the patient was treated with hAMSCs by intravenous and local intramuscular injection and external supernatant application to the ulcers. When followed up to 15 months, the blood-based markers of bone and mineral metabolism improved, with skin soft tissue regeneration and a more favorable profile of peripheral blood mononuclear cells. Skin biopsy after 1-month treatment showed vascular regeneration with mature non-calcified vessels within the dermis, and 20 months later, the re-epithelialization restored the integrity of the damaged site. No infusion or local treatment-related adverse events occurred. Thus, this novel long-term intravenous combined with local treatment with hAMSCs warrants further investigation as a potential regenerative treatment for uremic calciphylaxis with effects of inhibiting vascular calcification, stimulating angiogenesis and myogenesis, anti-inflammatory and immune modulation, multi-differentiation, re-epithelialization, and restoration of integrity.
Collapse
Affiliation(s)
- Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yujie Xiao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Kang Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Fangyan Xu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wenkai Ren
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Song Ning
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiaoxue Ye
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hanyang Qian
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Anning Bian
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Fan Li
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Guang Yang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Guo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qiang Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Bin Sun
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yifei Ge
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Chun Ouyang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xueqiang Xu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yaoyu Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hongqing Cui
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Zhou
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Meilian Wang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Zhonglan Su
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yan Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Di Wu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Wei Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Li Dong
- Department of Infection, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yinbing Pan
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Baiqiao Zhao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Department of Nephrology, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Ying Cui
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Department of Nephrology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Xueyan Gao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Department of General Medicine, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanhui Gao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Department of Nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Aiqin Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jie Wang
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Qian Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Li Chen
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Feng Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Youjia Yu
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Qiang Ji
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhiwei Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Mufeng Gu
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaojun Zhuang
- Department of Human Anatomy, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaolin Lv
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Hui Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yanyan Pan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ling Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xianrong Xu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Zhao
- Department of Outpatient Treatment Clinic, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiuqin Wang
- Department of International Cooperation, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Cuiping Liu
- Department of Biological Specimen Repository, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ningxia Liang
- Academy of Clinical and Translational Research, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Ningning Wang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
10
|
Diekmann F, Legchenko E, Chouvarine P, Lichtinghagen R, Bertram H, Happel CM, Hansmann G. Circulating Interleukin-7 in Human Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:794549. [PMID: 34957265 PMCID: PMC8692707 DOI: 10.3389/fcvm.2021.794549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Interleukin-7 (IL-7) secures B cell maturation, regulatory T and natural killer (NK) cell survival, and homeostasis, all of which are important for beneficial immunomodulation in pulmonary arterial hypertension (PAH). However, the role and potential impact of IL-7, VEGF-C and the vascular injury markers ICAM-1, and VCAM-1 on the pathobiology and severity of PAH is unknown. Methods: EDTA blood was collected during cardiac catheterization from the superior vena cava (SVC), pulmonary artery (PA), and ascending aorta (AAO) in children with pulmonary hypertension (PH) [n = 10; 9.1 (3.9–18.5) years] and non-PH controls [n = 10; 10.5 (2.0–17.3) years]. Compartment-specific plasma concentrations of IL-7, VEGF-C, aldosterone, ICAM-1, and VCAM-1 were determined using Meso Scale Discovery's multi array technology and the LIAISON Aldosterone Assay. Results: Children with PH had approximately 50% lower IL-7 (p < 0.01) and 59% lower VEGF-C plasma levels (p < 0.001) in the SVC, PA, and AAO versus non-PH controls. IL-7 and VEGF-C concentrations negatively correlated with the pulmonary vascular resistance (PVR)/systemic vascular resistance (SVR) ratio (rho = −0.51 and r = −0.62, respectively). Central-venous IL-7 strongly positively correlated with VEGF-C (r = 0.81). Most patients had a step down in ICAM-1 and VCAM-1 plasma concentrations across the pulmonary circulation and both ICAM-1 and VCAM-1 transpulmonary gradients negatively correlated with invasive hemodynamics. Conclusion: This manuscript is the first report on decreased circulating IL-7 and VEGF-C plasma concentrations in human PAH and their inverse correlations with invasive surrogates of PAH severity. Additional and larger studies are needed to explore the role of the immune-modulatory IL-7 and VEGF-C in pediatric and adult PAH.
Collapse
Affiliation(s)
- Franziska Diekmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Harald Bertram
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Christoph M Happel
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hanover, Germany
| |
Collapse
|
11
|
N-Acetylcysteine Slows Down Cardiac Pathological Remodeling by Inhibiting Cardiac Fibroblast Proliferation and Collagen Synthesis. DISEASE MARKERS 2021; 2021:3625662. [PMID: 34868392 PMCID: PMC8642028 DOI: 10.1155/2021/3625662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Objective By observing the effect of N-acetylcysteine (NAC) on the proliferation and collagen synthesis of rat cardiac fibroblasts (CFs) to explore the effect of NAC on cardiac remodeling (CR). Methods In vivo, first, the Sprague Dawley (SD) rat myocardial hypertrophy model was constructed, and the effect of NAC on cardiac structure and function was detected by echocardiography, serological testing, and Masson staining. Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression level of antioxidant enzymes, and flow cytometry was used to detect the intracellular reactive oxygen species (ROS) content. In vitro, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and 5-ethynyl-2′-deoxyuridine (EdU) staining were used to detect cell proliferation, and the expression level of the NF-κB signaling pathway was detected. Results Compared with the control group, the model group had disordered cardiac structure, reduced cardiac function, and obvious oxidative stress (OS) response. However, after NAC treatment, it could obviously improve the rat cardiac structure and cardiac function and alleviate redox imbalance and cardiology remodeling. At the same time, NAC can inhibit the activation of the NF-κB signaling pathway and reduce the proliferation level of CFs and the amount of 3H proline incorporated. Conclusions NAC can inhibit AngII-induced CF proliferation and collagen synthesis through the NF-κB signaling pathway, alleviate the OS response of myocardial tissue, inhibit the fibrosis of myocardial tissue, and thus slow down the pathological remodeling of the heart.
Collapse
|
12
|
Wang X, Yan L, Tang Y, He X, Zhao X, Liu W, Wu Z, Luo G. Anti-inflammatory effect of HGF responses to oral traumatic ulcers using an HGF-Tg mouse model. Exp Anim 2021; 71:204-213. [PMID: 34819402 PMCID: PMC9130041 DOI: 10.1538/expanim.21-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hepatocyte growth factor (HGF) has been implicated in inhibiting diverse types of inflammation. Oral traumatic ulceration (OTU) is a common disease of the oral mucosa, and inflammation is
the main process for ulcer healing. This study aimed to explore the expression of HGF in oral ulcers and its role in ulcer inflammation. The saliva of 14 recurrent alphous stomatitis (RAS)
patients, 18 OTU patients and 17 healthy controls was collected. Traumatic ulcers of the left mucosa were observed in 42 wild-type (WT) and 42 HGF-overexpressing transgenic (HGF-Tg) mice.
Histological scores, inflammatory cell expression and serum cytokine expression were measured and analyzed on the 5th day. The HGF protein level in ulcer-affected human saliva was 9.3-fold
higher than that in healthy saliva. The HGF protein levels in RAS and OTU saliva were 14- and 5.7-fold higher, respectively, than those in healthy saliva. Traumatic ulcers enhanced HGF
expression in ulcer-affected oral mucosa and in the blood of C57BL/6 mice by 1.21- and 1.40-fold, respectively. In HGF-Tg mouse traumatic ulcers, HGF expression was 1.34-fold higher than
that in wild-type mice. HGF-Tg mice had lower weight loss, less ulcer area and lower histopathology scores than WT mice. The results from immunohistochemistry, flow cytometry and serum
cytokine analysis showed that HGF-Tg animals presented fewer Ly6G-positive neutrophils and higher levels of circulating inflammatory cytokines. HGF overexpression alleviated weight loss,
ulcer area and inflammation, suggesting the role of HGF in promoting the healing of oral ulcers.
Collapse
Affiliation(s)
- Xinhong Wang
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Liting Yan
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine.,Wuxi Stomatology Hospital
| | - Yinghua Tang
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Xiaoxi He
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Xiaomin Zhao
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Weijia Liu
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Zhicong Wu
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| | - Gang Luo
- Department of Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine
| |
Collapse
|
13
|
Lahmann I, Griger J, Chen JS, Zhang Y, Schuelke M, Birchmeier C. Met and Cxcr4 cooperate to protect skeletal muscle stem cells against inflammation-induced damage during regeneration. eLife 2021; 10:57356. [PMID: 34350830 PMCID: PMC8370772 DOI: 10.7554/elife.57356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Acute skeletal muscle injury is followed by an inflammatory response, removal of damaged tissue, and the generation of new muscle fibers by resident muscle stem cells, a process well characterized in murine injury models. Inflammatory cells are needed to remove the debris at the site of injury and provide signals that are beneficial for repair. However, they also release chemokines, reactive oxygen species, as well as enzymes for clearance of damaged cells and fibers, which muscle stem cells have to withstand in order to regenerate the muscle. We show here that MET and CXCR4 cooperate to protect muscle stem cells against the adverse environment encountered during muscle repair. This powerful cyto-protective role was revealed by the genetic ablation of Met and Cxcr4 in muscle stem cells of mice, which resulted in severe apoptosis during early stages of regeneration. TNFα neutralizing antibodies rescued the apoptosis, indicating that TNFα provides crucial cell-death signals during muscle repair that are counteracted by MET and CXCR4. We conclude that muscle stem cells require MET and CXCR4 to protect them against the harsh inflammatory environment encountered in an acute muscle injury.
Collapse
Affiliation(s)
- Ines Lahmann
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Joscha Griger
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Jie-Shin Chen
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Yao Zhang
- Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Birchmeier
- Neurowissenschaftliches Forschungzentrum, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Developmental Biology/Signal Transduction Group, Max Delbrueck Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
14
|
Pienkos S, Gallego N, Condon DF, Cruz-Utrilla A, Ochoa N, Nevado J, Arias P, Agarwal S, Patel H, Chakraborty A, Lapunzina P, Escribano P, Tenorio-Castaño J, de Jesús Pérez VA. Novel TNIP2 and TRAF2 Variants Are Implicated in the Pathogenesis of Pulmonary Arterial Hypertension. Front Med (Lausanne) 2021; 8:625763. [PMID: 33996849 PMCID: PMC8119639 DOI: 10.3389/fmed.2021.625763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling and right heart failure. Specific genetic variants increase the incidence of PAH in carriers with a family history of PAH, those who suffer from certain medical conditions, and even those with no apparent risk factors. Inflammation and immune dysregulation are related to vascular remodeling in PAH, but whether genetic susceptibility modifies the PAH immune response is unclear. TNIP2 and TRAF2 encode for immunomodulatory proteins that regulate NF-κB activation, a transcription factor complex associated with inflammation and vascular remodeling in PAH. Methods: Two unrelated families with PAH cases underwent whole-exome sequencing (WES). A custom pipeline for variant prioritization was carried out to obtain candidate variants. To determine the impact of TNIP2 and TRAF2 in cell proliferation, we performed an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on healthy lung pericytes transfected with siRNA specific for each gene. To measure the effect of loss of TNIP2 and TRAF2 on NF-kappa-beta (NF-κB) activity, we measured levels of Phospho-p65-NF-κB in siRNA-transfected pericytes using western immunoblotting. Results: We discovered a novel missense variant in the TNIP2 gene in two affected individuals from the same family. The two patients had a complex form of PAH with interatrial communication and scleroderma. In the second family, WES of the proband with PAH and primary biliary cirrhosis revealed a de novo protein-truncating variant in the TRAF2. The knockdown of TNIP2 and TRAF2 increased NF-κB activity in healthy lung pericytes, which correlated with a significant increase in proliferation over 24 h. Conclusions: We have identified two rare novel variants in TNIP2 and TRAF2 using WES. We speculate that loss of function in these genes promotes pulmonary vascular remodeling by allowing overactivation of the NF-κB signaling activity. Our findings support a role for WES in helping identify novel genetic variants associated with dysfunctional immune response in PAH.
Collapse
Affiliation(s)
- Shaun Pienkos
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Natalia Gallego
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Alejandro Cruz-Utrilla
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Nuria Ochoa
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Julián Nevado
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pedro Arias
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Pablo Lapunzina
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pilar Escribano
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Jair Tenorio-Castaño
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Vinicio A. de Jesús Pérez
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Innovative therapeutic strategy using prostaglandin I 2 agonist (ONO1301) combined with nano drug delivery system for pulmonary arterial hypertension. Sci Rep 2021; 11:7292. [PMID: 33790393 PMCID: PMC8012709 DOI: 10.1038/s41598-021-86781-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Clinical outcomes of pulmonary arterial hypertension (PAH) may be improved using targeted delivery system. We investigated the efficacy of ONO1301 (prostacyclin agonist) nanospheres (ONONS) in Sugen5416/hypoxia rat models of PAH. The rats were injected with saline (control) or ONONS (n = 10, each) on days 21 and 28, respectively. Hepatocyte growth factor (HGF)-expressing fibroblasts and inflammatory cytokines were measured. Cardiac performance was assessed and targeted delivery was monitored in vivo, using Texas red-labeled nanoparticles. Compared with control, HGF-expressing fibroblasts and HGF expression levels were significantly higher in the ONONS group, while the levels of interleukin-6, interleukin-1β, transforming growth factor-β, and platelet-derived growth factor were lower. Histological assessment revealed significant amelioration of the percent medial wall thickness in pulmonary vasculature of rats in the ONONS group. Rats in the ONONS group showed decreased proliferating cell nuclear antigen-positive smooth muscle cells and improved right ventricle pressure/left ventricle pressure. No difference was seen in the accumulation of Texas red-labeled nanoparticles in the brain, heart, liver, and spleen between PAH and normal rats. However, a significant area of nanoparticles was detected in the lungs of PAH rats. ONONS effectively ameliorated PAH, with selective delivery to the damaged lung.
Collapse
|
16
|
Sun C, Li B, Duan H, Tao B, Zhao C, Li W, Pang Y, Fan B, Feng S. Cytokine expressions of spinal cord injury treated by neurotropin and nafamostat mesylate. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:489. [PMID: 33850886 PMCID: PMC8039678 DOI: 10.21037/atm-21-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Spinal cord injury (SCI) leads to severe physical disability and sensory dysfunction. Neurotropin (NTP) has been used clinically to alleviate neuropathic pain, while nafamostat mesylate (NM) used clinical on pancreatitis patients through inhibiting synthetic serine protease. Our previous studies showed that NTP and NM were able to repair SCI. However, the underlying mechanism has not been fully explored after treatment with these 2 different drugs. Methods The drugs NTP and NM were administered on a contusion SCI Wistar rat model. Cytokine array analysis was performed to describe the changes of 67 proteins after acute SCI. Hierarchical clustering and volcano plot analysis were conducted to clarify protein change profiles. The differently expressed proteins related to biological processes were analyzed by functional protein association networks, Gene Ontology and pathway analysis. Flow cytometric analysis was detected to reflect the activation of immune system after drug intervention, while withdrawal threshold and BBB score were detected to evaluated the mechanical allodynia and functional recovery after SCI. Results HGF, β-NGF, and activin were the 3 most upregulated proteins, while the receptor for RAGE, IL-1α, and TNF-α were the 3 most downregulated proteins after NTP treatment. Adiponectin, decorin and CTACK were the 3 most upregulated proteins, while RAGE, IL-1α, and IL-1β were the 3 most downregulated proteins in the NM group. Number of lymphocytes was decreased while BBB score was increased both in NTP and NM group. But only NTP could improve mechanical pain threshold after SCI. Conclusions The PI3K-Akt, Jak-STAT signaling pathway and apoptosis might participate in SCI restoration by NTP, while the MAPK and NOD-like receptor signaling pathway may participated in repairing SCI with NM. We concluded that NTP regulated the microenvironment via a neuroprotective effect and inhibition of inflammation to repair SCI, while NM healed SCI through an anti-inflammatory effect. Both NTP and NM could down-regulate the activation of immune system and improve the functional recovery while only NTP could improve the pathological neuralgia after SCI. Elucidating the molecular mechanisms of these 2 clinical drugs indicates that they their expected to be effective clinical treatment for SCI.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxiang Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoyou Fan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Deng Y, Guo SL, Li JQ, Xie SS, Zhou YC, Wei B, Wang Q, Wang F. Interferon regulatory factor 7 inhibits rat vascular smooth muscle cell proliferation and inflammation in monocrotaline-induced pulmonary hypertension. Life Sci 2021; 264:118709. [PMID: 33152351 DOI: 10.1016/j.lfs.2020.118709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Although interferon regulatory factor 7 (IRF7) has known roles in regulating the inflammatory response, vascular smooth muscle cell proliferation, and apoptosis, its role in the pathogenesis of pulmonary hypertension (PH) is unclear. We hypothesized that IRF7 overexpression could inhibit pulmonary vascular remodeling and slow the progression of PH. MAIN METHODS IRF7 mRNA and protein levels in the lung samples and pulmonary artery smooth muscle cells (PASMCs) isolated from monocrotaline (MCT)-induced PH rats were assessed. We evaluated the effects of IRF7 on inflammation, proliferation, and apoptosis using an in vivo MCT-induced PH rat model and in vitro methods. KEY FINDINGS We noted decreased IRF7 mRNA and protein levels in the pulmonary vasculature of MCT-induced PH rats. IRF7 upregulation attenuated pulmonary vascular remodeling, decreased the pulmonary artery systolic pressure, and improved the right ventricular (RV) structure and function. Our findings suggest that nuclear factor kappa-Bp65 (NF-κBp65) deactivation could confer pulmonary vasculature protection, reduce proinflammatory cytokine (tumor necrosis factor-α, interleukin 6) release, and decrease PASMC proliferation and resistance to apoptosis via deactivating transcription factor 3 (ATF3) signaling. ATF3 deactivation induced the downregulation of the proliferation-dependent genes proliferating cell nuclear antigen (PCNA), cyclin D1, and survivin, coupled with increased levels of B cell lymphoma-2-associated X protein (Bax)/B cell lymphoma-2 (Bcl2) ratio, and cleaved caspase-3 in PASMCs. SIGNIFICANCE Our findings showed that IRF7 downregulation could initiate inflammation via NF-κBp65 signaling, causing PASMC proliferation via ATF3 signaling pathway activation. Therefore, IRF7 could be a potential molecular target for PH therapy.
Collapse
MESH Headings
- Activating Transcription Factor 3/metabolism
- Animals
- Apoptosis
- Caspase 3/metabolism
- Cell Proliferation
- Cells, Cultured
- Core Binding Factor Alpha 1 Subunit/metabolism
- Cyclin D1/metabolism
- Dependovirus/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Inflammation/complications
- Inflammation/pathology
- Interferon Regulatory Factor-7/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Monocrotaline
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Rats, Sprague-Dawley
- Receptor for Advanced Glycation End Products/metabolism
- Signal Transduction
- Survivin/metabolism
- Up-Regulation
- Vascular Remodeling
- bcl-2-Associated X Protein/metabolism
- Rats
Collapse
Affiliation(s)
- Yan Deng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Sheng-Lan Guo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Quan Li
- The Experimental Center of Guangxi Medical University, Nanning, China
| | - Shan-Shan Xie
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying-Chuan Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qian Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fen Wang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
de Araújo Moreira MDR, Sales-Campos H, Fontanari C, Galvão Meireles AF, Borges Prado MK, Zoccal KF, Sorgi CA, Tefé da Silva C, Groppo M, Faccioli LH. The ethanolic extract of Terminalia argentea Mart. & Zucc. bark reduces the inflammation through the modulation of cytokines and nitric oxide mediated by the downregulation of NF-κB. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113150. [PMID: 32730887 DOI: 10.1016/j.jep.2020.113150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/18/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. & Zucc. (Combretaceae), popularly known as "capitão do campo", is native from the Brazilian cerrado, which is used in folk medicine to treat inflammatory diseases. AIM OF THE STUDY We aimed to investigate the anti-inflammatory effects, toxicity and mechanisms of action regarding the use of the hydroalcoholic extract of T. argentea bark. MATERIALS AND METHODS Toxicity was determinate in vitro using the macrophage lineage J774.1 without LPS. Cells were treated with 0.5; 2; 8; 32 and 125 μg/mL of the plant extract. Cell viability was assessed by MTT colorimetric assay. The production of nitrite and cytokines was also determined in the supernatants. A NF-κB reporter assay using RAW macrophages was employed to elucidate the impact of the plant extract on the expression of such molecule. In mice, toxicity was assessed by orally given an intermediate to high concentration of the plant extract on a single dose (1000 or 5000 mg/kg) or low and intermediate doses (300 or 1000 mg/kg) twice daily for 14 days. Blood samples were collected for biochemical analysis. The anti-inflammatory activity was assessed using the air-pouch model with or without pre-inoculation with the inflammatory stimuli LPS (0.5 μg/mL), followed by treatment with plant extract at 5, 60 or 300 mg/kg administered in the air pouch (subcutaneous injection). After 4 h, mice were euthanized and the air pouches washed with 2 mL heparinized PBS (10 IU/mL). Then, the local production in the air pouch wash of cytokines, total proteins and leukocytes was assessed. RESULTS No signals of toxicity were observed either in cells or mice. Regardless the concentration used in vitro, the extract exhibited a significant anti-inflammatory activity, as perceived by the reduction of the inflammatory cytokines IL-1β, TNF-α and IL-6 and nitrites on cell supernatants. This was concomitant with a downregulation in NF-κB and elevated levels of IL-10. In mice, similar effects were observed, especially when the plant extract was given at 300 mg/kg, inhibiting the release of IL-1β, TNF-α, IL-6 and proteins, as well as increasing the release of IL-10. CONCLUSIONS Altogether, our results demonstrated that the hydroalcoholic extract of T. argentea bark has anti-inflammatory activity without inducing toxicity in cells or living animals. This activity seems to be chiefly influenced by a downregulation in NF-κB, inflammatory cytokines and production of nitrite along with augmented concentration of IL-10.
Collapse
Affiliation(s)
| | - Helioswilton Sales-Campos
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Caroline Fontanari
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Alyne Fávero Galvão Meireles
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Morgana Kelly Borges Prado
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Karina Furlani Zoccal
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro Universitário Barão de Mauá, Ribeirão Preto, São Paulo, Brazil.
| | - Carlos Artério Sorgi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| | - Lúcia Helena Faccioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
19
|
Johnson AA, Shokhirev MN, Wyss-Coray T, Lehallier B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res Rev 2020; 60:101070. [PMID: 32311500 DOI: 10.1016/j.arr.2020.101070] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
The development of clinical interventions that significantly improve human healthspan requires robust markers of biological age as well as thoughtful therapeutic targets. To promote these goals, we performed a systematic review and analysis of human aging and proteomics studies. The systematic review includes 36 different proteomics analyses, each of which identified proteins that significantly changed with age. We discovered 1,128 proteins that had been reported by at least two or more analyses and 32 proteins that had been reported by five or more analyses. Each of these 32 proteins has known connections relevant to aging and age-related disease. GDF15, for example, extends both lifespan and healthspan when overexpressed in mice and is additionally required for the anti-diabetic drug metformin to exert beneficial effects on body weight and energy balance. Bioinformatic enrichment analyses of our 1,128 commonly identified proteins heavily implicated processes relevant to inflammation, the extracellular matrix, and gene regulation. We additionally propose a novel proteomic aging clock comprised of proteins that were reported to change with age in plasma in three or more different studies. Using a large patient cohort comprised of 3,301 subjects (aged 18-76 years), we demonstrate that this clock is able to accurately predict human age.
Collapse
|
20
|
Akhtar M, Shaukat A, Zahoor A, Chen Y, Wang Y, Yang M, Umar T, Guo M, Deng G. Anti-inflammatory effects of Hederacoside-C on Staphylococcus aureus induced inflammation via TLRs and their downstream signal pathway in vivo and in vitro. Microb Pathog 2019; 137:103767. [DOI: 10.1016/j.micpath.2019.103767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/29/2019] [Indexed: 01/08/2023]
|
21
|
Zhang LΖ, Fan ZR, Wang L, Liu LQ, Li XZ, Li L, Si JQ, Ma KT. Carbenoxolone decreases monocrotaline‑induced pulmonary inflammation and pulmonary arteriolar remodeling in rats by decreasing the expression of connexins in T lymphocytes. Int J Mol Med 2019; 45:81-92. [PMID: 31746364 PMCID: PMC6889920 DOI: 10.3892/ijmm.2019.4406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022] Open
Abstract
The adaptive immune response mediated by T lymphocytes is a well-established factor in the pathogenesis of pulmonary inflammation. Changes in the expression of various connexins (Cxs) or disruption of connexin-mediated cellular communication in T lymphocytes contribute to inflammation or tissue remodeling. The aim of the present study was to investigate the potential therapeutic value of blocking Cxs in a monocrotaline (MCT)-induced pulmonary inflammation rat model. Carbenoxolone (CBX) was used to inhibit connexin-mediated cellular communication. An MCT rat model was established by intraperitoneal (i.p.) injection of a single dose of MCT (60 mg/kg), and CBX treatment (20 µg/kg/day, i.p.) was initiated on the day following MCT treatment for 28 days. Vehicle-treated male Sprague-Dawley rats were used as the negative control. The MCT rat model was evaluated by measuring the pulmonary artery flow acceleration time and right ventricular hypertrophy index (RVHI). Histopathological features of the lung tissues and pulmonary arteriolar remodeling were assessed. The proportions of T lymphocyte subtypes, Cx40/cx43 expression in the T cell subtypes and the cytokine levels in the plasma and the lung tissues were also analyzed. Pharmacological inhibition of Cxs using CBX attenuated MCT-induced right ventricular hypertrophy, pulmonary arteriolar remodeling, lung fibrosis and inflammatory cell infiltration by decreasing the RVHI, pulmonary arterial wall thickening, collagen deposition and pro-inflammatory cytokines production as well as CD3+ and CD4+ T cell accumulation in lung tissues of MCT-treated rats. Furthermore, flow cytometry analysis revealed that CBX may inhibit MCT-induced Cx40 and Cx43 expression in CD4+ and CD8+ T lymphocytes in lung tissues. The present study provides evidence that pharmacological inhibition of Cxs may attenuate MCT-induced pulmonary arteriolar remodeling and pulmonary inflammatory response, at least in part, by decreasing Cx expression. The results highlight the critical role of Cxs in T lymphocytes in the MCT-induced pulmonary inflammatory response and that targeting of Cxs may be a potential therapeutic method for treating pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Liang Ζ Zhang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Zhi-Ru Fan
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Lu Wang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Lu-Qian Liu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xin-Zhi Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|
22
|
Li H, Yahaya BH, Ng WH, Yusoff NM, Lin J. Conditioned Medium of Human Menstrual Blood-Derived Endometrial Stem Cells Protects Against MPP +-Induced Cytotoxicity in vitro. Front Mol Neurosci 2019; 12:80. [PMID: 31024252 PMCID: PMC6460823 DOI: 10.3389/fnmol.2019.00080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) showed the potential to treat Parkinson’s disease (PD). However, it is unknown whether the conditioned medium of human menstrual blood-derived endometrial stem cells (MenSCs-CM) has the function to alleviate syndromes of PD. In this study, human neuroblastoma SH-SY5Y cells were exposed to neurotoxicant 1-methyl-4-phenylpyridinium (MPP+) for inducing a range of response characteristics of PD. After culturing this cell model with 24 h/48 h collected MenSCs-CM for different days, cell viability, pro-inflammation cytokines, mitochondrial membrane potential (ΔΨm), oxidative stress, and cell apoptosis were detected. Finally, protein assay was performed to detect 12 kinds of neurotrophic factors inside MenSCs-CM. Our results showed that MPP+ caused SH-SY5Y cell viability reduction as an increasing dose and time dependent manner. MPP+ treatment resulted in inflammation, mitochondrial dysfunction, reactive oxygen species (ROS) production accumulation, and apoptosis of SH-SY5Y at its IC50 concentration. Forty-eight hours-collected MenSCs-CM and culturing with the MPP+-treated SH-SY5Y for 2 days are the optimized condition to increase cell viability. Besides, MenSCs-CM was efficacious against MPP+ induced inflammation, ΔΨm loss, ROS generation, and it could significantly decrease cells numbers in late apoptosis stage. What’s more, protein assay showed that MenSCs-CM contained various neuroprotective factors. Our study provided the first evidence that MenSCs-CM has a protective effect on MPP+-induced cytotoxicity in various aspects, and firstly showed that MenSCs can release at least 12 kinds of neurotrophic factors to medium, which may contribute to the protective function of MenSCs-CM to treat PD. This research enlightening that MenSCs-CM is beneficial in the therapy for PD and probably also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Han Li
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.,Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life, Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Badrul Hisham Yahaya
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Wai Hoe Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Juntang Lin
- Stem Cell and Biotherapy Engineering Research Center of Henan, College of Life, Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Joint International Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
23
|
Radik M, Kmecova Z, Veteskova J, Malikova E, Doka G, Krenek P, Klimas J. Hepatocyte growth factor plays a particular role in progression of overall cardiac damage in experimental pulmonary hypertension. Int J Med Sci 2019; 16:854-863. [PMID: 31337959 PMCID: PMC6643116 DOI: 10.7150/ijms.31690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background: HGF/MET pathway may have a role in pulmonary hypertension (PH). However, the link between the pathway and development of target organ damage in PH remains elusive. We aimed to demonstrate the relation between plasma HGF and HGF/MET tissue expressions in affected organs during PH progression. Methods: 12 weeks old male Wistar rats were injected with monocrotaline (MCT, 60 mg/kg, s.c.) to induce PH and sacrificed after 1, 2 and 4 weeks. Controls received saline. mRNA levels of HGF regulatory complex (Hgf, Met, Hgfa, Hai-1, Hai-2) were determined in right and left ventricles (RV, LV), lungs, pulmonary artery and liver by RT-qPCR. HGF protein levels in plasma were analysed by ELISA. Results: PH development was associated with a progressive elevation of HGF plasma levels that correlated with relative RV mass. Furthermore, Hgf mRNA expressions at week 4 were upregulated solely in the cardiac ventricles while being downregulated in a. pulmonalis, lungs and liver. Met and Hai-1/Hai-2 followed a similar pattern and were upregulated in cardiac ventricles, where Hgfa remained unchanged, but downregulated in lungs. Conclusion: We suggest that cardiac overexpression of Hgf might contribute to increased plasma HGF in MCT-induced PH. HGF could be exploited as a cardiospecific biomarker and HGF/MET pathway as a target in drug discovery for PH.
Collapse
Affiliation(s)
- Michal Radik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| | - Zuzana Kmecova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| | - Jana Veteskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| | - Eva Malikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| | - Gabriel Doka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 83232 Bratislava, Slovak Republic
| |
Collapse
|
24
|
Xu Z, Jin Y, Yan H, Gao Z, Xu B, Yang B, He Q, Shi Q, Luo P. High-mobility group box 1 protein-mediated necroptosis contributes to dasatinib-induced cardiotoxicity. Toxicol Lett 2018; 296:39-47. [PMID: 30086328 DOI: 10.1016/j.toxlet.2018.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022]
Abstract
Dasatinib shows remarkable activity against imatinib-refractory chronic myelogenous leukemia (CML) and Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ALL). However, severe cardiovascular toxicity limits the clinical applications of dasatinib. Since the underlying mechanism of dasatinib-induced cardiotoxicity is still elusive, we aim to clarify this. Recent studies have shown that necroptosis and apoptosis participate in multiple toxicity development. Here, we first report that dasatinib could directly induce cardiomyocytes death, as analyzed by the Sulforhodamine B (SRB) assay. This type of cardiomyocytes death was mediated by the necrosis pathway rather than apoptosis, as determined by using flow cytometry to characterize the mode of dasatinib-induced cell death. Inhibition of receptor-interacting protein kinase 1 (RIP1)activity and knockdown of receptor-interacting protein kinase 3 (RIP3)expression can block dasatinib-evoked cardiotoxicity, which further confirmed the involvement of necroptosis. We next found that the classic substrates of RIP3, mixed lineage kinase domain-like protein (MLKL) and Ca2+-calmodulin-dependent protein kinase II (CaMKII) were not involved in dasatinib-induced cardiomyocytes necroptosis. What's more, unlike the inflammation-associated necroptosis, dasatinib-triggered necroptosis was dependent on intracellular instead of secreted High-mobility group box 1 (HMGB1) protein. Collectively, our study revealed that dasatinib-induced cardiotoxicity acted via leading cardiomyocytes to HMGB1-mediated necroptosis, indicating a viable strategy for prevention of dasatinib-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhifei Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Jin
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yan
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zizheng Gao
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Xu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 72079, USA
| | - Peihua Luo
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|