1
|
Jatczak-Pawlik I, Jurewicz A, Domowicz M, Ewiak-Paszyńska A, Stasiołek M. CHI3L1 in Multiple Sclerosis-From Bench to Clinic. Cells 2024; 13:2086. [PMID: 39768177 PMCID: PMC11674340 DOI: 10.3390/cells13242086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) with a complex and not fully understood etiopathological background involving inflammatory and neurodegenerative processes. CHI3L1 has been implicated in pathological conditions such as inflammation, injury, and neurodegeneration, and is likely to play a role in the physiological development of the CNS. CHI3L1 is primarily produced by CNS macrophages, microglia, and activated astrocytes. The CHI3L1 expression pattern in MS lesions might support the important role of astrocytes in modulating inflammatory processes in this disease. The potential applications of CHI3L1 as a biomarker in MS are multifactorial. The measurement of CHI3L1 in body fluids might find its role in the early diagnosis of MS. In further stages, the monitoring of CHI3L1 levels might provide information on disease severity and progression, enabling a better adjustment of therapeutic strategies. Importantly, CHI3L1 might potentially serve as a marker of ongoing glial activation, reflecting the dynamic response of the CNS cells to the inflammatory processes in MS. Although preliminary findings have been promising, further research is needed to validate the utility of CHI3L1 measurements in the diagnosis and prediction of the progression of MS. Additionally, comparisons with other biomarkers might be useful in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Kosciuszki Street 4, 90-419 Lodz, Poland; (I.J.-P.); (A.J.); (M.D.); (A.E.-P.)
| |
Collapse
|
2
|
Liu D, Hu X, Ding X, Li M, Ding L. Inflammatory Effects and Regulatory Mechanisms of Chitinase-3-like-1 in Multiple Human Body Systems: A Comprehensive Review. Int J Mol Sci 2024; 25:13437. [PMID: 39769202 PMCID: PMC11678640 DOI: 10.3390/ijms252413437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Chitinase-3-like-1 (Chi3l1), also known as YKL-40 or BRP-39, is a highly conserved mammalian chitinase with a chitin-binding ability but no chitinase enzymatic activity. Chi3l1 is secreted by various cell types and induced by several inflammatory cytokines. It can mediate a series of cell biological processes, such as proliferation, apoptosis, migration, differentiation, and polarization. Accumulating evidence has verified that Chi3l1 is involved in diverse inflammatory conditions; however, a systematic and comprehensive understanding of the roles and mechanisms of Chi3l1 in almost all human body system-related inflammatory diseases is still lacking. The human body consists of ten organ systems, which are combinations of multiple organs that perform one or more physiological functions. Abnormalities in these human systems can trigger a series of inflammatory environments, posing serious threats to the quality of life and lifespan of humans. Therefore, exploring novel and reliable biomarkers for these diseases is highly important, with Chi3l1 being one such parameter because of its physiological and pathophysiological roles in the development of multiple inflammatory diseases. Reportedly, Chi3l1 plays an important role in diagnosing and determining disease activity/severity/prognosis related to multiple human body system inflammation disorders. Additionally, many studies have revealed the influencing factors and regulatory mechanisms (e.g., the ERK and MAPK pathways) of Chi3l1 in these inflammatory conditions, identifying potential novel therapeutic targets for these diseases. In this review, we comprehensively summarize the potential roles and underlying mechanisms of Chi3l1 in inflammatory disorders of the respiratory, digestive, circulatory, nervous, urinary, endocrine, skeletal, muscular, and reproductive systems, which provides a more systematic understanding of Chi3l1 in multiple human body system-related inflammatory diseases. Moreover, this article summarizes potential therapeutic strategies for inflammatory diseases in these systems on the basis of the revealed roles and mechanisms mediated by Chi3l1.
Collapse
Affiliation(s)
- Dong Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Xin Hu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Ecosecurity, Yunnan University, Kunming 650500, China;
| | - Xiao Ding
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ming Li
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming 650500, China;
| |
Collapse
|
3
|
Su PC, Chen CY, Yu MH, Kuo IY, Yang PS, Hsu CH, Hou YC, Hsieh HT, Chang CP, Shan YS, Wang YC. Fully human chitinase-3 like-1 monoclonal antibody inhibits tumor growth, fibrosis, angiogenesis, and immune cell remodeling in lung, pancreatic, and colorectal cancers. Biomed Pharmacother 2024; 176:116825. [PMID: 38820971 DOI: 10.1016/j.biopha.2024.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Pei-Chia Su
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Ching-Yu Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Min-Hua Yu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Pei-Shan Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Ching-Hsuan Hsu
- AP Biosciences, Inc, No. 508, Sec. 7, Zhongxiao E. Rd, Taipei 115011, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan
| | - Hsin-Ta Hsieh
- AP Biosciences, Inc, No. 508, Sec. 7, Zhongxiao E. Rd, Taipei 115011, Taiwan
| | - Chih-Peng Chang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan.
| |
Collapse
|
4
|
Salembier R, De Haes C, Bellemans J, Demeyere K, Van Den Broeck W, Sanders NN, Van Laere S, Lyons TR, Meyer E, Steenbrugge J. Chitin-mediated blockade of chitinase-like proteins reduces tumor immunosuppression, inhibits lymphatic metastasis and enhances anti-PD-1 efficacy in complementary TNBC models. Breast Cancer Res 2024; 26:63. [PMID: 38605414 PMCID: PMC11007917 DOI: 10.1186/s13058-024-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.
Collapse
Affiliation(s)
- Robbe Salembier
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caro De Haes
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
5
|
Xiao LY, Su YL, Huang SY, Chen YH, Hsueh PR. Chitinase 3-like-1 Expression in the Microenvironment Is Associated with Neutrophil Infiltration in Bladder Cancer. Int J Mol Sci 2023; 24:15990. [PMID: 37958973 PMCID: PMC10648396 DOI: 10.3390/ijms242115990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder cancer is a common cancer with well-established therapeutic strategies. However, recurrence occurs in 50% of patients with non-muscle-invasive bladder cancer, and 20% of patients progress to muscle-invasive bladder cancer. The 5-year survival rate for muscle-invasive bladder cancer patients is disappointingly low, ranging from 36% to 48%. A molecular marker of interest is chitinase 3-like-1 (CHI3L1), which is elevated in various cancers, including bladder cancer. In addition to its role in cancer cells, CHI3L1 also has regulatory abilities in immune cells. Neutrophil infiltration has been shown to positively correlate with overall survival, progression-free survival, and relapse-free survival in bladder cancer patients. However, the relationship between CHI3L1 and neutrophils remain poorly understood. Therefore, this study investigated the relationship between CHI3L1 level and protumor neutrophil infiltration in bladder cancer. We analyzed the GSE128959 dataset and the data of a bladder cancer cohort undergoing chemotherapy. We observed higher expression of CHI3L1 in bladder cancer patients with invasive or chemotherapy-resistance. Our results revealed a positive correlation between CHI3L1 expression and protumor neutrophil infiltration. Elevated CHI3L1 expression was associated with genes which were related to the recruitment and infiltration of neutrophils. Consequently, CHI3L1 may serve as a novel evaluation factor for the degree of neutrophil infiltration in advanced bladder cancer in those scheduled for chemotherapy.
Collapse
Affiliation(s)
- Ling-Yi Xiao
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404327, Taiwan;
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
- Genomic & Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shih-Yu Huang
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Hua Chen
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404327, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan
- Ph.D. Program for Aging, School of Medicine, China Medical University, Taichung 404327, Taiwan
| |
Collapse
|
6
|
Topcu DB, Tugcu G, Er B, Polat SE, Hizal M, Yalcin EE, Ersoz DD, Coplu L, Ozcelik U, Kiper N, Lay I, Oztas Y. Increased Plasma YKL-40 Level and Chitotriosidase Activity in Cystic Fibrosis Patients. Inflammation 2022; 45:627-638. [PMID: 34637032 DOI: 10.1007/s10753-021-01572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
We investigated plasma YKL-40 levels and chitotriosidase (CHIT1) activity in patients with cystic fibrosis (CF) lung disease and evaluated clinically relevant factors that may affect their levels. Plasma samples were obtained from pediatric (n = 19) and adult patients (n = 15) during exacerbation, discharge, and stable period of the disease. YKL-40 levels and chitotriosidase activity were measured by enzyme-linked immunosorbent assay and fluorometric assay, respectively. Data were compared with healthy children and adults of similar age. YKL-40 levels of pediatric and adult CF patients at all periods were significantly higher than controls (p < 0.001 and p < 0.05). CHIT1 activities of adult patients at all periods were significantly higher compared to controls (p < 0.05). On the other hand, CHIT1 activities of pediatric CF patients were similar with controls. YKL-40 levels of exacerbation period of adult CF patients were negatively correlated with forced vital capacity (FVC) (r = - 0.800, p = 0.014) and forced expiratory volume in 1 s (FEV1) (r = - 0.735, p = 0.008). YKL-40 levels in the exacerbation period of pediatric CF patients were negatively correlated with FVC (r = - 0.697, p = 0.0082) and FEV1 (r = - 0.720, p = 0.006). CHIT1 activity may be a valuable marker of chronic inflammation in adult CF patients who suffer from CF for a longer period compared to pediatric patients. Increased YKL-40 levels in both pediatric and adult patients compared to controls may point to a role in between CF pathology.
Collapse
Affiliation(s)
- Dilara Bal Topcu
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| | - Gokcen Tugcu
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Berrin Er
- Faculty of Medicine, Department of Chest Diseases, Hacettepe University, Ankara, Turkey
| | - Sanem Eryilmaz Polat
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Mina Hizal
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Ebru Elmas Yalcin
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Deniz Dogru Ersoz
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Lutfi Coplu
- Faculty of Medicine, Department of Chest Diseases, Hacettepe University, Ankara, Turkey
| | - Ugur Ozcelik
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Faculty of Medicine, Department of Pediatric Pulmonology, Hacettepe University, Ankara, Turkey
| | - Incilay Lay
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Yesim Oztas
- Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| |
Collapse
|
7
|
Yang PS, Yu MH, Hou YC, Chang CP, Lin SC, Kuo IY, Su PC, Cheng HC, Su WC, Shan YS, Wang YC. Targeting protumor factor chitinase-3-like-1 secreted by Rab37 vesicles for cancer immunotherapy. Am J Cancer Res 2022; 12:340-361. [PMID: 34987649 PMCID: PMC8690922 DOI: 10.7150/thno.65522] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Chitinase 3-like-1 (CHI3L1) is a secretion glycoprotein associated with the immunosuppressive tumor microenvironment (TME). The secretory mode of CHI3L1 makes it a promising target for cancer treatment. We have previously reported that Rab37 small GTPase mediates secretion of IL-6 in macrophages to promote cancer progression, whereas the roles of Rab37 in the intracellular trafficking and exocytosis of CHI3L1 are unclear. Methods: We examined the concentration of CHI3L1 in the culture medium of splenocytes and bone marrow derived macrophages (BMDMs) from wild-type or Rab37 knockout mice, and macrophage or T cell lines expressing wild type, active GTP-bound or inactive GDP-bound Rab37. Vesicle isolation, total internal reflection fluorescence microscopy, and real-time confocal microscopy were conducted. We developed polyclonal neutralizing-CHI3L1 antibodies (nCHI3L1 Abs) to validate the therapeutic efficacy in orthotopic lung, pancreas and colon cancer allograft models. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37 and CHI3L1, and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from cancer patients. Results: We demonstrate a novel secretion mode of CHI3L1 mediated by the small GTPase Rab37 in T cells and macrophages. Rab37 mediated CHI3L1 intracellular vesicle trafficking and exocytosis in a GTP-dependent manner, which is abolished in the splenocytes and BMDMs from Rab37 knockout mice and attenuated in macrophage or T cell lines expressing the inactive Rab37. The secreted CHI3L1 activated AKT, ß-catenin and NF-κB signal pathways in cancer cells and macrophages to foster a protumor TME characterized by activating M2 macrophages and increasing the population of regulatory T cells. Our developed nCHI3L1 Abs showed the dual properties of reducing tumor growth/metastases and eliciting an immunostimulatory TME in syngeneic orthotopic lung, pancreas and colon tumor models. Clinically, high plasma level or intratumoral expression of CHI3L1 correlated with poor survival in 161 lung cancer, 155 pancreatic cancer and 180 colon cancer patients. Conclusions: These results provide the first evidence that Rab37 mediates CHI3L1 secretion in immune cells and highlight nCHI3L1 Abs that can simultaneously target both cancer cells and tumor microenvironment.
Collapse
|
8
|
Coriati A, Bouvet GF, Massé C, Ducruet T, Berthiaume Y. YKL-40 as a clinical biomarker in adult patients with CF: Implications of a CHI3L1 single nucleotide polymorphism in disease severity. J Cyst Fibros 2021; 20:e93-e99. [PMID: 33277205 DOI: 10.1016/j.jcf.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND YKL-40 (chitinase 3-like 1 gene; CHI3L1) is an inflammatory marker that is increased in the blood of patients with inflammatory diseases, including cystic fibrosis (CF). The objective of our study was to explore the relationship between circulating levels of YKL-40, selected CHI3L1 single nucleotide polymorphisms (SNPs) and the severity of CF disease. METHODS A prospective cohort of 188 adult patients with CF was established in 2015. Blood samples and clinical data were collected over 2 years to analyze the circulating levels of YKL-40 and to genotype selected CHI3L1 SNPs. We also looked for an association between these factors and clinical parameters. RESULTS We found that according to the serum YKL-40 concentration, the patients could be categorized into two distinct groups: low and high YKL-40. Compared to the patients in the low YKL-40 group, the patients in the high YKL-40 group had lower lung function (P < 0.001), a higher proportion of delF508 homozygote mutations (P= 0.027) and dysglycemia (P= 0.015). They were also more colonized with Pseudomonas aeruginosa (P= 0.003) and required more frequent antibiotic intravenous courses (P < 0.001). We also observed that patients expressing the C/C-rs4950928 genotype had higher levels of YKL-40 in their blood and were more frequently dysglycemic. CONCLUSION Our study suggests that YKL-40 could be a potential biomarker of CF disease severity. Furthermore, the CHI3L1 rs4950928 SNP could be a susceptible gene that could be used by CF health professionals to identify patients who are the most at risk of having a severe clinical profile.
Collapse
Affiliation(s)
- Adèle Coriati
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada.
| | - Guillaume F Bouvet
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - Chantal Massé
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada
| | - Thierry Ducruet
- Unité de Recherche Clinique Appliquée, CHU Ste-Justine, 3175 Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada
| | - Yves Berthiaume
- Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, Canada; Université de Montréal, Department of Medicine, 2900, Boul. Édouard-Montpetit Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
9
|
Bouvet GF, Bulka O, Coriati A, Sognigbé L, St-Pierre G, Massé C, Sato S, Berthiaume Y. Peripheral blood mononuclear cell response to YKL-40 and Galectin-3 in cystic fibrosis. Cytokine 2021; 146:155635. [PMID: 34274729 DOI: 10.1016/j.cyto.2021.155635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Elevated circulating levels of YKL-40 correlate with disease severity in Cystic Fibrosis (CF), but the role of YKL-40 in the inflammatory response in CF is still under investigation. Our main goal was to evaluate if YKL-40 can modulate the expression of major cytokines (IL-6, IL-10, IL-13) implicated in the inflammatory response in CF. A secondary goal was to explore the interactions between YKL-40 and other circulating proteins to determine the impacts on cytokine modulation. METHOD Peripheral blood mononuclear cells (PBMCs) were isolated from the blood of 83 adult CF patients in stable clinical condition. PBMCs were treated with human YKL-40 followed by the measure of IL-6, IL-10 and IL-13 gene expression. Protein arrays were used to explore the interactions between YKL-40 and circulating proteins. Interaction with Galectin-3 (GAL3) was identified, and confirmed by binding assay. Cytokine gene expressions were again monitored by RT-qPCR after PBMC treatment with GAL3, with or without YKL-40 co-stimulation. RESULTS Following YKL-40 stimulation, PBMC gene expression of IL-6, IL-10 and IL-13 varies across patients. IL-6 and IL-13 are coexpressed, but this response was different in male and female patients. GAL3 protein was detected in the blood of CF patients, and a molecular interaction with YKL-40 was identified. GAL3 did not interfere with the YKL-40 stimulation of IL-6, IL-10 and IL-13 but may modulate the coexpression. CONCLUSION We observed that YKL-40 stimulation had a variable impact on IL-6, IL-10, and IL-13 gene expression in CF PBMCs and uncovered an interaction between GAL3 and YKL-40 in the serum of CF patients. Our findings suggest that YKL-40 is not only a biomarker of disease severity in CF, but it might play an active role in the inflammatory pathophysiology of the disease.
Collapse
Affiliation(s)
- G F Bouvet
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada.
| | - O Bulka
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - A Coriati
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - L Sognigbé
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - G St-Pierre
- The Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Centre de recherche CHU de Québec, 2705 boulevard Laurier, Québec, Québec G1V 4G2, Canada
| | - C Massé
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - S Sato
- The Glycobiology and Bioimaging Laboratory, Research Centre for Infectious Diseases, Centre de recherche CHU de Québec, 2705 boulevard Laurier, Québec, Québec G1V 4G2, Canada; Faculty of Medicine, Université Laval, Canada
| | - Y Berthiaume
- Institut de recherches cliniques de Montréal (IRCM), 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada; Université de Montréal, Department of Medicine, 2900, Boul. Édouard-Montpetit, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|