1
|
Yan Q, Liu G, Wang R, Li D, Chen X, Cong J, Wang D. Relationship between glucose to lymphocyte ratio and the first peritonitis episode in patients treated with peritoneal dialysis. Sci Rep 2025; 15:6834. [PMID: 40000901 PMCID: PMC11861661 DOI: 10.1038/s41598-025-91252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the potential relationship between baseline glucose to lymphocyte ratio (GLR) levels and the first episode of peritonitis in patients treated with peritoneal dialysis (PD). A total of 314 patients treated with PD were included and divided into three groups based on GLR tertiles: tertile 1 (GLR ≤ 4.23); tertile 2 (4.23 < GLR ≤ 5.96), and tertile 3 (GLR > 5.96). The relationships between GLR and the first peritonitis episode were analyzed using Kaplan-Meier curves and multivariable Cox regression models. Competitive risk analysis, subgroup and sensitivity analyses were performed to validate the robustness of the findings. During a median follow-up of 27 months, 123 (39.17%) patients developed the first episode of peritonitis. The incidence of the first peritonitis episode increased with the higher GLR tertiles (tertile 1: 32.08%, tertile 2: 37.50%, tertile 3: 48.08%). Kaplan-Meier curves revealed significant differences in the cumulative incidence of the first peritonitis episode among the GLR tertiles (Log-Rank test, P = 0.018). After full adjustment for confounding factors, patients in tertile 3 remained at significantly higher risk for the first episode of peritonitis compared to those in tertile 1 (HR 2.633, 95% CI 1.223-5.668, P = 0.013). Competitive risk models and sensitivity analysis further confirmed this association. Our study suggests that elevated GLR is associated with an increased risk of the first peritonitis episode in patients with PD.
Collapse
Affiliation(s)
- Qiqi Yan
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guiling Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruifeng Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dandan Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Cong
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
- Institute of Kidney Disease, Inflammation and Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Zhou X, Wei C, Chen Z, Xia X, Wang L, Li X. Potential mechanisms of ischemic stroke induced by heat exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175815. [PMID: 39197783 DOI: 10.1016/j.scitotenv.2024.175815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/04/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Recent decades of epidemiological and clinical research have suggested that heat exposure could be a potential risk factor for ischemic stroke. Despite climate factors having a minor impact on individuals compared with established risk factors such as smoking, their widespread and persistent effects significantly affect public health. The mechanisms by which heat exposure triggers ischemic stroke are currently unclear. However, several potential mechanisms, such as the impact of temperature variability on stroke risk factors, inflammation, oxidative stress, and coagulation system changes, have been proposed. This article details the potential mechanisms by which heat exposure may induce ischemic stroke, aiming to guide the prevention and treatment of high-risk groups in hot climates and support public health policy development.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chanjuan Wei
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
3
|
Han KI, Shin HD, Lee Y, Baek S, Moon E, Park YB, Cho J, Lee JH, Kim TJ, Manoharan RK. Probiotic and Postbiotic Potentials of Enterococcus faecalis EF-2001: A Safety Assessment. Pharmaceuticals (Basel) 2024; 17:1383. [PMID: 39459022 PMCID: PMC11510163 DOI: 10.3390/ph17101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Probiotics, which are live microorganisms that, when given in sufficient quantities, promote the host's health, have drawn a lot of interest for their ability to enhance gut health. Enterococcus faecalis, a member of the human gut microbiota, has shown promise as a probiotic candidate due to its functional attributes. However, safety concerns associated with certain strains warrant comprehensive evaluation before therapeutic application. MATERIALS AND METHODS In this study, E. faecalis EF-2001, originally isolated from fecal samples of a healthy human infant, was subjected to a multi-faceted assessment for its safety and probiotic potential. In silico analysis, CAZyme, biosynthetic, and stress-responsive proteins were identified. RESULTS The genome lacked biogenic amine genes but contained some essential amino acid and vitamin synthetic genes, and carbohydrate-related enzymes essential for probiotic properties. The negligible difference of 0.03% between the 1st and 25th generations indicates that the genetic information of the E. faecalis EF-2001 genome remained stable. The live E. faecalis EF-2001 (E. faecalis EF-2001L) demonstrated low or no virulence potential, minimal D-Lactate production, and susceptibility to most antibiotics except some aminoglycosides. No bile salt deconjugation or biogenic amine production was observed in an in vitro assay. Hemolytic activity assessment showed a β-hemolytic pattern, indicating no red blood cell lysis. Furthermore, the EF-2001L did not produce gelatinase and tolerated simulated gastric and intestinal fluids in an in vitro study. Similarly, heat-killed E. faecalis EF-2001 (E. faecalis EF-2001HK) exhibits tolerance in both acid and base conditions in vitro. Further, no cytotoxicity of postbiotic EF-2001HK was observed in human colorectal adenocarcinoma HT-29 cells. CONCLUSIONS These potential properties suggest that probiotic and postbiotic E. faecalis EF-2001 could be considered safe and retain metabolic activity suitable for human consumption.
Collapse
Affiliation(s)
- Kwon Il Han
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Hyun-Dong Shin
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Yura Lee
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Sunhwa Baek
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Eunjung Moon
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Youn Bum Park
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Junhui Cho
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| | - Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea;
| | - Ranjith Kumar Manoharan
- Research and Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea; (K.I.H.); (H.-D.S.); (Y.L.); (S.B.); (E.M.); (Y.B.P.); (J.C.)
| |
Collapse
|
4
|
He Y, Yang G, Wang P, Wang X, Xiong Z, He Y, Xiong Z. Evolution of Peritoneal Dialysis-Associated Peritonitis: Pathogen, Antibiotic Resistance, and the Impact of Lymphocyte Count on Treatment Outcomes. Infect Drug Resist 2024; 17:685-696. [PMID: 38405055 PMCID: PMC10887942 DOI: 10.2147/idr.s442641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose Antibiotic administration leads to alterations in pathogenic organisms and antibiotic resistance, posing a significant risk to peritoneal dialysis patients' health. This study aimed to investigate changes in the cause-specific peritonitis, pathogen profiles, antibiotic resistance, and the prognostic factors among patients with peritoneal dialysis-associated peritonitis (PDAP) at our center. Patients and Methods We included 463 PDAP patients who attended Peking University Shenzhen Hospital between 2002 and 2023. We analyzed the effects of empirical treatment regimens with cefazolin and ceftazidime or gentamicin. Results From 2002 to 2023, we observed that gram-positive staphylococci emerged as the primary causative agents, while the proportion of gram-negative bacillary, enteric peritonitis, and catheter-associated peritonitis decreased significantly. However, the overall cure rate for PDAP and gram-negative bacillary peritonitis declined significantly from 2014 to 2023. Notably, we observed no increase in antibiotic resistance associated with antibiotic drugs use. In addition, reduced lymphocyte counts due to the prevalence of 2019 coronavirus disease (COVID-19) emerged as an independent risk factor for treatment failure in cases of gram-negative bacillary peritonitis. Conclusion We did not observe elevated antibiotic resistance in our center when employing empirical dosing strategies involving cefazolin, ceftazidime, or gentamicin. Additionally, we found that a decrease in lymphocyte count due to the COVID-19 epidemic was a significant risk factor for treatment failure in cases of gram-negative bacillary peritonitis at our center. This study provides a foundation for developing clinical treatment strategies for PDAP.
Collapse
Affiliation(s)
- YuJian He
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- Renal Division, PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, People’s Republic of China
| | - Guang Yang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Pengpeng Wang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- Renal Division, PKU-Shenzhen Clinical Institute of Shenzhen University Medical College, Shenzhen, People’s Republic of China
| | - Xu Wang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- Renal Division, PKU-Shenzhen Clinical Institute of Shenzhen University Medical College, Shenzhen, People’s Republic of China
| | - Zuying Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yan He
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zibo Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
5
|
He Y, Huang X, Zhang J, Liao J, Huang H, He Y, Gao M, Liao Y, Xiong Z. Decreased Peripheral Blood Lymphocyte Count Predicts Poor Treatment Response in Peritoneal Dialysis-Associated Peritonitis. J Inflamm Res 2023; 16:5327-5338. [PMID: 38026234 PMCID: PMC10658940 DOI: 10.2147/jir.s438674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Peripheral blood lymphocyte counts is a pivotal parameter in assessing the host's immune response during maladies and the equilibrium of the immune system which has been found to correlate with various diseases progression and prognosis. However, there was no study on patients with peritoneal dialysis-associated peritonitis (PDAP). We sought to investigate the prognostic value of baseline peripheral blood lymphocyte count in PDAP patients. Patients and methods This retrospective study analyzed data from 286 PDAP patients over nine years. Episodes were categorized according to the tertiles of peripheral blood lymphocyte counts (Very Low Lymphocyte Count (VLLC) Group, <0.72×106/L; Low Lymphocyte Count (LLC) Group, 0.72-1.11×106/L; Normal Lymphocyte Count (NLC) Group, ≥ 1.11×106/L). Demographic, laboratory, and infection-related variables were analyzed. Cox regression and generalized estimating equation (GEE) models were used to estimate the association between lymphocyte counts and PDAP treatment failure, which included PD catheter removal and death. Results After adjusting for other potential predictors, decreased lymphocyte counts exhibited an incremental relationship with the risk of treatment failure. The VLLC group indicated a 270% (95% CI, 1.168-6.247, P=0.020) and 273% (95% CI, 1.028-7.269, P=0.044) increased venture of treatment failure in Cox regression and GEE analyses, respectively, compared with the NLC group. As a continuous variable, the restricted cubic spline showed a linear negative correlation between lymphocyte counts and the treatment failure risk (P for overall = 0.026). The multivariate model C (combined lymphocyte count with baseline age, sex, dialysis age, Charlson Comorbidity index (CCI), etiology of kidney failure, hemoglobin, albumin, total bilirubin and infection type) showed an area under the curve of 0.824 (95% CI, 0.767-0.881, P=0.001) for the prediction of treatment failure. Conclusion Lower lymphocyte counts are linked to increased PDAP treatment failure risk. This highlights lymphocyte count's potential as a prognostic indicator for PDAP.
Collapse
Affiliation(s)
- YuJian He
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- Renal Division, PKU-Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, People’s Republic of China
| | - XiaoYan Huang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jingwen Zhang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jinlan Liao
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Huie Huang
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yan He
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Min Gao
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Yumei Liao
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zibo Xiong
- Renal Division, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
6
|
Tian E, Zhou C, Quan S, Su C, Zhang G, Yu Q, Li J, Zhang J. RIPK2 inhibitors for disease therapy: Current status and perspectives. Eur J Med Chem 2023; 259:115683. [PMID: 37531744 DOI: 10.1016/j.ejmech.2023.115683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Receptor-interacting protein kinase 2 (RIPK2) belongs to the receptor-interacting protein family (RIPs), which is mainly distributed in the cytoplasm. RIPK2 is widely expressed in human tissues, and its mRNA level is highly expressed in the spleen, leukocytes, placenta, testis, and heart. RIPK2 is a dual-specificity kinase with multiple domains, which can interact with tumor necrosis factor receptor (TNFR), and participate in the Toll-like receptor (TLR) and nucleotide-binding oligomerization domain (NOD) signaling pathways. It is considered as a vital adapter molecule involved in the innate immunity, adaptive immunity, and apoptosis. Functionally, RIPK2 and its targeted small molecules are of great significance in inflammatory responses, autoimmune diseases and tumors. The present study reviews the molecule structure and biological functions of RIPK2, and its correlation between human diseases. In addition, we focus on the structure-activity relationship of small molecule inhibitors of RIPK2 and their therapeutic potential in human diseases.
Collapse
Affiliation(s)
- Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chongying Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guanning Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Quanwei Yu
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
8
|
Goto H, Kinoshita M, Oshima N. Heatstroke-induced acute kidney injury and the innate immune system. Front Med (Lausanne) 2023; 10:1250457. [PMID: 37614951 PMCID: PMC10442538 DOI: 10.3389/fmed.2023.1250457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Heatstroke can cause multiple organ failure and systemic inflammatory response syndrome as the body temperature rises beyond the body's ability to regulate temperature in a hot environment. Previous studies have indicated that heatstroke-induced acute kidney injury (AKI) can lead to chronic kidney disease. Therefore, there is an urgent need to elucidate the mechanism of heatstroke-induced AKI and to establish methods for its prevention and treatment. Recent reports have revealed that innate immunity, including neutrophils, macrophages, lymphocytes, and mast cells, is deeply involved in heat-induced AKI. In this review, we will discuss the roles of each immune cell in heat-induced renal injury and their potential therapeutic use.
Collapse
Affiliation(s)
- Hiroyasu Goto
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
9
|
The Chinese Herbal Formula Huoxiang Zhengqi Dropping Pills Prevents Acute Intestinal Injury Induced by Heatstroke by Increasing the Expression of Claudin-3 in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9230341. [PMID: 35958934 PMCID: PMC9357687 DOI: 10.1155/2022/9230341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.
Collapse
|
10
|
Jiang Z, Wu C. Reciprocal Interactions Between Regulatory T Cells and Intestinal Epithelial Cells. Front Immunol 2022; 13:951339. [PMID: 35860233 PMCID: PMC9289291 DOI: 10.3389/fimmu.2022.951339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
It has been well established that Foxp3+ regulatory T cells (Treg cells) play a crucial role for immune repression and tolerance, protecting the body from autoimmunity and inflammation. Previous studies indicate that intestinal Treg cells are one specialized population of Treg cells, distinct from those in other organ compartments, both functionally and phenotypically. Specific external and internal signals, particularly the presence of microbiota, shape these Treg cells to better cooperate with the gut ecosystem, controlling intestinal physiology. The integrity of intestinal epithelial barrier represents a key feature of gut immune tolerance, which can be regulated by multiple factors. Emerging evidence suggests that bidirectional interactions between gut epithelium and resident T cells significantly contribute to intestinal barrier function. Understanding how Treg cells regulate intestinal barrier integrity provides insights into immune tolerance-mediated mucosal homeostasis, which can further illuminate potential therapeutic strategies for treating inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Sun-Yat Sen University, School of Medicine, Guangzhou, China
- *Correspondence: Zhiqiang Jiang, ; Chuan Wu,
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Health (NIH), Bethesda, MD, United States
- *Correspondence: Zhiqiang Jiang, ; Chuan Wu,
| |
Collapse
|
11
|
Ji J, Su P, Lin W, Ouyang L, Wang C, Jia J, Liu Z, Liu Z. Immune Cells Characteristics and Their Prognostic Effects in Exertional Heatstroke Patients: A Retrospective Cohort Study. Front Med (Lausanne) 2022; 9:867774. [PMID: 35433749 PMCID: PMC9011182 DOI: 10.3389/fmed.2022.867774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Exertional heatstroke (EHS) remains a major problem for those who take strenuous physical activity. Inflammation and immune dysfunction were thought to be crucial to the pathophysiological process of heatstroke. The present study was aimed to investigate the dynamic changes of the immune cells in patients with EHS and determine their prognostic effects to provide the clinical evidence of the above process. Methods This single-center retrospective cohort study collected all patients with EHS admitted to the intensive care unit (ICU) of the General Hospital of Southern Theater Command of PLA from October 2008 to May 2019. The dynamic changes of the main immune cell count and ratio were collected, including white blood cell (WBC), neutrophil, monocyte, and lymphocyte. The neutrophil-to-lymphocyte ratios (NLR) were calculated by the neutrophil count/lymphocyte count × 100%. The main outcome was 90-day mortality. Results A total of 189 patients were enrolled. For survivors, after 24 h, the WBC and neutrophil counts began to decrease, and they were back to normal in 72 h. In addition, the lymphocyte counts were within normal limits all the time. For non-survivors, the WBC and neutrophil counts were continuous over the normal range, while the lymphocyte count and the ratio began to decrease after 24 h and were continuously low in the following days. Receiver operating characteristic (ROC) curves analysis showed that increased neutrophils and decreased lymphocytes were associated with the poor prognosis of the patients. A prediction model based on immune cell counts and ratios was constructed, and the lymphocyte count was accounted for the maximum weight. Conclusions In patients with EHS, increased neutrophils and decreased lymphocytes were associated with the poor prognosis. The lymphocyte count at 72 h after admission was the most important prognostic factor.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Peng Su
- Department of Medical Administration, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Wenyi Lin
- Department of Obstetrics and Gynecology, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Leifang Ouyang
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Conglin Wang
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Jinxin Jia
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zheying Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou, China
- *Correspondence: Zhifeng Liu
| |
Collapse
|
12
|
Tan Y, Liu X, Yu X, Shen T, Wang Z, Luo Z, Luo X, Yang X. Lack of lymphocytes exacerbate heat stroke severity in male mice through enhanced inflammatory response. Int Immunopharmacol 2021; 101:108206. [PMID: 34626875 DOI: 10.1016/j.intimp.2021.108206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023]
Abstract
Though it has long been thought that the immune system is implicated in the pathophysiology of heat stroke, the underlying mechanisms are still poorly understood. As it has been reported in the literature that lymphocyte disturbance occurs in heat stroke patients or animals, we attempted to seek experimental evidence to define the role of lymphocytes in the pathophysiology of heat stroke. In our study, we used male Balb/c mice to establish a passive heat stroke model. We found that lymphocyte-deficient Severe combined immunodeficient (SCID) mice exposed to heat stress exhibited exacerbated heat stroke severity, which could be indicated by increased rates of mortality and serum levels of inflammatory cytokines compared to wildtype control mice. We further showed, through the depletion of T lymphocytes in wildtype mice and the transfer of wildtype lymphocytes into SCID mice, respectively, that T lymphocytes were both necessary and sufficient to alleviate the severity of heat stroke by inhibiting the early inflammatory response. Moreover, we found that the severity of heat injuries in heat-stressed wildtype mice showed great inter-individual variability, and the early number of T lymphocytes could be negatively associated with the severity of heat stroke. Our results suggest that lack of T lymphocytes could exacerbate the severity of heat stroke by augmenting inflammatory response, and the early circulating T lymphocytes may serve as a potential biomarker for the diagnosis of heat stroke.
Collapse
Affiliation(s)
- Yulong Tan
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Third Military Medical University, Chongqing, China
| | - Xiaoqian Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xueting Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Tingting Shen
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zeze Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
13
|
Li L, Wang M, Chen J, Xu Z, Wang S, Xia X, Liu D, Wang S, Xie C, Wu J, Li J, Zhang J, Wang M, Zhu J, Ling C, Xu S. Preventive Effects of Bacillus licheniformis on Heat Stroke in Rats by Sustaining Intestinal Barrier Function and Modulating Gut Microbiota. Front Microbiol 2021; 12:630841. [PMID: 33889138 PMCID: PMC8055866 DOI: 10.3389/fmicb.2021.630841] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Heat stroke (HS) models in rats are associated with severe intestinal injury, which is often considered as the key event at the onset of HS. Probiotics can regulate the gut microbiota by inhibiting the colonization of harmful bacteria and promoting the proliferation of beneficial bacteria. Here, we investigated the preventive effects of a probiotic Bacillus licheniformis strain (BL, CMCC 63516) on HS rats as well as its effects on intestinal barrier function and gut microbiota. All rats were randomly divided into four groups: control (Con) + PBS (pre-administration with 1 ml PBS twice a day for 7 days, without HS induction), Con + BL group (pre-administration with 1 ml 1 × 108 CFU/ml BL twice a day for 7 days, without HS induction), HS + PBS (PBS, with HS induction), and HS + BL (BL, with HS induction). Before the study, the BL strain was identified by genomic DNA analysis. Experimental HS was induced by placing rats in a hot and humid chamber for 60 min until meeting the diagnostic criterion of HS onset. Body weight, core body temperature, survival rate, biochemical markers, inflammatory cytokines, and histopathology were investigated to evaluate the preventive effects of BL on HS. D-Lactate, I-FABP, endotoxin, and tight-junction proteins were investigated, and the fluorescein isothiocyanate-dextran (FD-4) test administered, to assess the degree of intestinal injury and integrity. Gut microbiota of rats in each group were analyzed by 16S rRNA sequencing. The results showed that pre-administration with BL significantly attenuated hyperthermia, reduced HS-induced death, alleviated multiple-organ injury, and decreased the levels of serum inflammatory cytokines. Furthermore, BL sustained the intestinal barrier integrity of HS rats by alleviating intestinal injury and improving tight junctions. We also found that BL significantly increased the ratios of two probiotic bacteria, Lactobacillus and Lactococcus. In addition, Romboutsia, a candidate biomarker for HS diagnosis, was unexpectedly detected. In summary, BL pre-administration for 7 days has preventative effects on HS that may be mediated by sustaining intestinal barrier function and modulating gut microbiota.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Man Wang
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Jikuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhuoran Xu
- First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Shaokang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xinyu Xia
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dong Liu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chaoyu Xie
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianghong Wu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinfeng Li
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jiqianzhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Meitang Wang
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiangbo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Changquan Ling
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Deng L, Xu H, Liu P, Wu S, Shi Y, Lv Y, Chen X. Prolonged exposure to high humidity and high temperature environment can aggravate influenza virus infection through intestinal flora and Nod/RIP2/NF-κB signaling pathway. Vet Microbiol 2020; 251:108896. [PMID: 33091794 DOI: 10.1016/j.vetmic.2020.108896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023]
Abstract
Seasonal influenza is an acute viral infection caused by influenza virus, which is often prevalent in the summer and winter. The influenza virus can infect pigs and poultry. Some literature reports that the influenza virus has an outbreak in summer. The summer climate is characterized by a high humidity and high temperature environment, which is the same as many animal feeding and growing environments. We established a flu animal model under a high temperature and humidity environment during the day to observe the impact of high humidity and high temperature environment on the mice after contracting the influenza virus. Our results indicate that the intestinal flora of 16 s rDNA cultured in High humidity and high temperature environment changes, the intestinal mucosal permeability increases, the expression of pIgR, sIgA, and IgA in the intestinal mucosal immune system decreases, and the NLR immune recognition signaling pathway NOD1 is activated. The expression of related genes such as NOD2, NF-κB, and pIgR increases, which leads to the increase of related inflammatory factors in the vicinity of the intestines, aggravating local inflammation. High humidity and high temperature environment can cause the expression of inflammatory cytokines in the body to rise, causing Th17/Treg immune imbalance, inhibiting Treg maturation and differentiation, and increasing the expression of IL-2, IL-6, and other cytokines, while the expression of IFN-γ and IL-17A decreases. This condition worsens after infection with the influenza virus. Overall, our study found that High humidity and high temperature environment affect the intestinal flora and the body's immune status, thereby aggravating the status of influenza virus infection.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|