1
|
Borge H, Ringstad IB, Aqrawi LA, Fromreide S, Dongre HN, Galtung HK, Jensen JL, Skarstein K. Increased expression of CXCL10 and CCL3 salivary gland chemokines in primary Sjögren's syndrome detected and systematically quantified using RNAscope®in situ hybridization. Clin Exp Immunol 2025; 219:uxae087. [PMID: 39436967 PMCID: PMC11771196 DOI: 10.1093/cei/uxae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Primary Sjögren's syndrome is a chronic inflammatory disease characterized by the destruction of exocrine glands. We have previously shown significantly upregulated levels of CXCL10 and CCL3 chemokines in saliva from Sjögren's syndrome patients. In this study, we examined the expression pattern and localization of these chemokines at the site of inflammation in patients' minor salivary glands using novel RNAscope® in situ hybridization. Minor salivary glands from 33 primary Sjögren's syndrome patients and 22 non-Sjögren's syndrome (non-SS) sicca controls were included. The biopsies were formalin-fixed, paraffin-embedded, and histopathologically evaluated. The CXCL10 and CCL3 mRNA expression in the glandular tissue was investigated using reverse transcription quantitative real-time polymerase chain reaction followed by an RNAscope® in situ hybridization. The mRNA expression of CXCL10 was higher than CCL3 in all patients. Significantly elevated expression of CXCL10 and CCL3 was detected in patients that also expressed autoantibody positivity and a positive biopsy for mononuclear cell infiltrates when compared with non-SS sicca controls. CXCL10 was localized as clusters within focal infiltrates as well as adjacent to acinar and ductal epithelium, while CCL3 was expressed as scattered single mRNA molecules in focal infiltrates and in acinar cells. Our findings suggest CXCL10 as a possible disease biomarker in primary Sjögren's syndrome due to its upregulated expression in both saliva and minor salivary glands of patients and the localization in the tissue. This should be re-assessed in a larger primary Sjögren's syndrome patient cohort, followed by additional functional studies to further validate its potential as a disease biomarker.
Collapse
Affiliation(s)
- Hanne Borge
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingrid Beate Ringstad
- Faculty of Dentistry, Department of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Lara A Aqrawi
- Department of Health Sciences, Kristiania University College, Oslo, Norway
| | - Siren Fromreide
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Harsh Nitin Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hilde Kanli Galtung
- Faculty of Dentistry, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Janicke Liaaen Jensen
- Faculty of Dentistry, Department of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kathrine Skarstein
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Zhang M, Liu T, Luo L, Zhang Y, Chen Q, Wang F, Xie Y. Common diagnostic biomarkers and molecular mechanisms of Helicobacter pylori infection and inflammatory bowel disease. Front Immunol 2024; 15:1492810. [PMID: 39712025 PMCID: PMC11659760 DOI: 10.3389/fimmu.2024.1492810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background Helicobacter pylori (H. pylori) may be present in the intestinal mucosa of patients with inflammatory bowel disease (IBD), which is a chronic inflammation of the gastrointestinal tract. The role of H. pylori in the pathogenesis of IBD remains unclear. In this study, bioinformatics techniques were used to investigate the correlation and co-pathogenic pathways between H. pylori and IBD. Methods The following matrix data were downloaded from the GEO database: H. pylori-associated gastritis, GSE233973 and GSE27411; and IBD, GSE3365 and GSE179285. Differential gene analysis was performed via the limma software package in the R environment. A protein-protein interaction (PPI) network of DEGs was constructed via the STRING database. Cytoscape software, through the CytoHubba plugin, filters the PPI subnetwork and identifies Hub genes. Validation of the Hub genes was performed in the validation set. Immune analysis was conducted via the CIBERSORT algorithm. Transcription factor interaction and small molecule drug analyses of the Hub genes were also performed. Results Using the GSE233973 and GSE3365 datasets, 151 differentially expressed genes (DEGs) were identified. GO enrichment analysis revealed involvement in leukocyte migration and chemotaxis, response to lipopolysaccharides, response to biostimulatory stimuli, and regulation of interleukin-8 (IL-8) production. Ten Hub genes (TLR4, IL10, CXCL8, IL1B, TLR2, CXCR2, CCL2, IL6, CCR1 and MMP-9) were identified via the PPI network and Cytoscape software. Enrichment analysis of the Hub genes focused on the lipopolysaccharide response, bacterial molecular response, biostimulatory response and leukocyte movement. Validation using the GSE27411 and GSE179285 datasets revealed that MMP-9 was significantly upregulated in both the H. pylori and IBD groups. The CIBERSORT algorithm revealed immune infiltration differences between the control and disease groups of IBD patients. Additionally, the CMap database identified the top 11 small molecule compounds across 10 cell types, including TPCA-1, AS-703026 and memantine, etc. Conclusion Our study revealed the co-pathogenic mechanism between H. pylori and IBD and identified 10 Hub genes related to cellular immune regulation and signal transduction. The expression of MMP-9 is significantly upregulated in both H. pylori infection and IBD. This study provides a new perspective for exploring the prevention and treatment of H. pylori infection and IBD.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tong Liu
- Department of General Surgery, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lijun Luo
- School of Medical Laboratory Science, Hebei North University, Zhangjiakou, Hebei, China
| | - Yi Zhang
- Department of General Surgery, The First People's Hospital of Qingzhen City, Guiyang, Guizhou, China
| | - Qijiao Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuxin Xie
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Lu ZQ, Zhang C, Zhao LJ, Dong W, Lv L, Lu Y, Chen XY, Zhang J, Liu XY, Xiao Z, Chen LW, Yao YM, Zhao GJ. Matrix metalloproteinase-8 regulates dendritic cell tolerance in late polymicrobial sepsis via the nuclear factor kappa-B p65/β-catenin pathway. BURNS & TRAUMA 2024; 12:tkad025. [PMID: 38425412 PMCID: PMC10903637 DOI: 10.1093/burnst/tkad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/24/2023] [Indexed: 03/02/2024]
Abstract
Background Tolerogenic dendritic cells (DCs) are associated with poor prognosis of sepsis. Matrix metalloproteinases (MMPs) have been shown to have immunomodulatory effects. However, whether MMPs are involved in the functional reprogramming of DCs is unknown. The study aims to investigate the role of MMPs in sepsis-induced DCs tolerance and the potential mechanisms. Methods A murine model of late sepsis was induced by cecal ligation and puncture (CLP). The expression levels of members of the MMP family were detected in sepsis-induced tolerogenic DCs by using microarray assessment. The potential roles and mechanisms underlying MMP8 in the differentiation, maturation and functional reprogramming of DCs during late sepsis were assessed both in vitro and in vivo. Results DCs from late septic mice expressed higher levels of MMP8, MMP9, MMP14, MMP19, MMP25 and MMP27, and MMP8 levels were the highest. MMP8 deficiency significantly alleviated sepsis-induced immune tolerance of DCs both in vivo and in vitro. Adoptive transfer of MMP8 knockdown post-septic bone marrow-derived DCs protected mice against sepsis-associated lethality and organ dysfunction, inhibited regulatory T-cell expansion and enhanced Th1 response. Furthermore, the effect of MMP8 on DC tolerance was found to be associated with the nuclear factor kappa-B p65/β-catenin pathway. Conclusions Increased MMP8 levels in septic DCs might serve as a negative feedback loop, thereby suppressing the proinflammatory response and inducing DC tolerance.
Collapse
Affiliation(s)
- Zhong-qiu Lu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Chen Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Lin-jun Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical of the Chinese PLA General Hospital, Fucheng Road, Haidian District, Beijing 100048, China
| | - Wei Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Liang Lv
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Yang Lu
- Department of Emergency Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Huansha Road,Shangcheng District, Hangzhou 310006, China
| | - Xiao-Yan Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Jie Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Xin-yong Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Zhong Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Long-wang Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| | - Yong-ming Yao
- Department of Rheumatology, Wenzhou People's Hospital, Gu'an road, Ouhai district, Wenzhou 325000, China
| | - Guang-ju Zhao
- Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Fanhai West Road, Ouhai District, Wenzhou 325000, China
| |
Collapse
|
4
|
Liao JH, He Q, Huang ZW, Yu XB, Yang JY, Zhang Y, Song WJ, Luo J, Tao QW. Network pharmacology-based strategy to investigate the mechanisms of artemisinin in treating primary Sjögren's syndrome. BMC Immunol 2024; 25:16. [PMID: 38347480 PMCID: PMC10860289 DOI: 10.1186/s12865-024-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE The study aimed to explore the mechanism of artemisinin in treating primary Sjögren's syndrome (pSS) based on network pharmacology and experimental validation. METHODS Relevant targets of the artemisinin and pSS-related targets were integrated by public databases online. An artemisinin-pSS network was constructed by Cytoscape. The genes of artemisinin regulating pSS were imported into STRING database to construct a protein-protein interaction (PPI) network in order to predict the key targets. The enrichment analyses were performed to predict the crucial mechanism and pathway of artemisinin against pSS. The active component of artemisinin underwent molecular docking with the key proteins. Artemisinin was administered intragastrically to SS-like NOD/Ltj mice to validate the efficacy and critical mechanisms. RESULTS Network Pharmacology analysis revealed that artemisinin corresponded to 412 targets, and pSS related to 1495 genes. There were 40 intersection genes between artemisinin and pSS. KEGG indicated that therapeutic effects of artemisinin on pSS involves IL-17 signaling pathway, HIF-1 signaling pathway, apoptosis signaling pathway, Th17 cell differentiation, PI3K-Akt signaling pathway, and MAPK signaling pathway. Molecular docking results further showed that the artemisinin molecule had higher binding energy by combining with the key nodes in IL-17 signaling pathway. In vivo experiments suggested artemisinin can restored salivary gland secretory function and improve the level of glandular damage of NOD/Ltj mice. It contributed to the increase of regulatory T cells (Tregs) and the downregulated secretion of IL-17 in NOD/Ltj model. CONCLUSION The treatment of pSS with artemisinin is closely related to modulating the balance of Tregs and Th17 cells via T cell differentiation.
Collapse
Affiliation(s)
- Jia-He Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Zi-Wei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xin-Bo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jian-Ying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Wei-Jiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China.
| | - Qing-Wen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
5
|
Zhou D, Yu X, Yu K, Ren Y, Yang K, Wang X, Wang Q. Integrated Analysis Identifies Upregulated SAMD9L as a Potential Biomarker Correlating with the Severity of Primary Sjögren's Syndrome. J Inflamm Res 2023; 16:3725-3738. [PMID: 37663755 PMCID: PMC10473423 DOI: 10.2147/jir.s413581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is an autoimmune disease with lymphocytic infiltration of the salivary and lachrymal glands, whose present disease-specific objective indicators are few and have shortcomings that should be addressed. An integrated analysis of sequencing data from different cohorts has the potential to unveil novel biomarkers in pSS. Methods We identified 3 GEO datasets, including gene expression data from minor salivary gland (MSG) biopsy samples of 49 patients with pSS and 31 non-pSS and whole blood cells of 30 pSS patients and 30 healthy controls (HCs). Differentially expressed genes (DEGs) involved in pSS were identified from these datasets. Function Enrichment Analyses of common upregulated DEGs and PPI (protein-protein interaction) networks were performed. Furthermore, we have carried out further analysis of these DEGs to explore their potential clinical significance and diagnostic efficacy as a biomarker for pSS. Sterile Alpha Motif Domain Containing 9 Like (SAMD9L), one of the DEGs, has been identified as a promising candidate biomarker that correlates with the severity of pSS. This has been validated by analyzing local clinical samples from 30 pSS and non-pSS patients' MSG biopsies, as well as serum samples of 18 pSS and HC individuals. Finally, we performed correlation analysis to understand the relationship between SAMD9L and infiltrated immune cells. Results We identified 10 common highly expressed DEGs in pSS of different tissues. These genes were mainly involved in virus infection-related pathways and inferno-related pathways. GEO data and our clinical data showed that SAMD9L increases with disease severity. Public and local cohorts showed that SAMD9L has high diagnostic performance (AUC=0.845-0.867) as a biomarker, and its AUC was comparable to the Focus score when combined with RF or SSA. Conclusion Up-regulated SAMD9L may serve as a promising novel pSS diagnostic biomarker and have potential value for evaluating the severity of pSS.
Collapse
Affiliation(s)
- Donghai Zhou
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| | - Xue Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| | - Kai Yu
- Department of Hepatology 1, Xixi Hospital of Hangzhou, Hangzhou, Zhejiang Province, 310023, People’s Republic of China
| | - Yating Ren
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| | - Kepeng Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310005, People’s Republic of China
| | - Qiao Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310053, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Tan YQ, Zhou G. Melatonin: a potential therapeutic approach for the management of primary Sjögren's syndrome. Immunol Res 2023; 71:373-387. [PMID: 36715831 DOI: 10.1007/s12026-023-09360-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/31/2023]
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease that primarily affects the exocrine glands and is mainly characterized by sicca symptoms of the eyes and mouth. Approximately 30-50% of pSS patients develop systemic multi-organ disorders including malignant lymphoma. The etiology of pSS is not well understood; growing evidence suggests that uncontrolled immune/inflammatory responses, excessive oxidative stress, defected apoptosis, dysregulated autophagy, exosomes, and exogenous virus infections may participate in the pathogenesis of pSS. There is no ideal therapeutic method for pSS; the management of pSS is mainly palliative, which aims to alleviate sicca symptoms. Melatonin, as the main secretory product of the pineal gland, has been evidenced to show various physiological functions, including effects of immunoregulation, capability of antioxidation, moderation of autophagy, suppressive activities of apoptosis, regulative capacity of exosomes, properties of anti-infection, and improvement of sleep. The beneficial effects of melatonin have been already validated in some autoimmune diseases such as multiple sclerosis (MS), type 1 diabetes mellitus (T1DM), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD). However, our previous research firstly revealed that melatonin might inhibit pathogenic responses of peripheral Th17 and double-negative (DN) T cells in pSS. More importantly, melatonin administration alleviated the development of pSS in animal models with reduced infiltrating lymphocytes, improved functional activity of salivary gland, and decreased production of inflammatory factors as well as autoantibodies. Owing to the important biological properties reported in melatonin are characteristics closely related to the treatment of pSS; the potential role and underlying mechanisms of melatonin in the administration of pSS are certainly worth further investigations. Consequently, the aim of this review is to give a deep insight to the therapeutic potency of melatonin for pSS.
Collapse
Affiliation(s)
- Yi Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, China.
| |
Collapse
|
7
|
Shi D, Li Y, Shi X, Yao M, Wu D, Zheng Y, Lin Q, Yang Y. Transcriptional expression of CXCL10 and STAT1 in lupus nephritis and the intervention effect of triptolide. Clin Rheumatol 2023; 42:539-548. [PMID: 36374433 PMCID: PMC9873713 DOI: 10.1007/s10067-022-06400-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study screened out the key genes associated with the occurrence and development of lupus nephritis (LN) using bioinformatics methods, and then explored the expression of key genes in LN and the inhibitory effect of triptolide. METHODS The GEO2R online tool in the GEO database was used to perform differential analysis of gene expression in LN tissues and normal kidney tissues. The GO function and KEGG pathway enrichment analysis of differentially expressed genes (DEGs), STRING, and Cytoscape software were used to build a protein-protein interaction network (PPI) to screen out the Hub gene. Mouse glomerular mesangial cells (MMC) were randomly divided into a control group, an interferon-γ (IFN-γ) stimulation group, and a triptolide intervention group. The relative expression of CXCL10 mRNA in each group was detected by real-time fluorescent quantitative PCR (RT-PCR). CXCL10 secretion was detected by enzyme-linked immunosorbent assay (ELISA), and Western blot was used to detect the expression of the JAK/STAT1 signaling pathway-related proteins STAT1 and p-STAT1 in each group. RESULTS Bioinformatics showed that there were 22 DEGs expression differences in the GEO database. The GO enrichment analysis showed that biological process (BP) such as the type I interferon signaling pathway, innate immune response, IFN-γ-mediated signaling pathway, virus defense response, and immune response were significantly regulated by DEGs. Through the combination of String database analysis and cytoscape software, it was found that STAT1 and CXCL10 are closely related to LN. Experimental results showed that IFN-γ induces the expression of CXCL10 mRNA and protein by activating the JAK/STAT1 signaling pathway, while triptolide inhibits the expression of CXCL10 mRNA and protein by inhibiting the JAK/STAT1 signaling pathway. CONCLUSION STAT1 and CXCL10 are the key genes in the occurrence and development of LN. IFN-γ induces the expression of CXCL10 by activating the JAK/STAT1 signaling pathway, while triptolide inhibits the expression of CXCL10 by blocking the JAK/STAT1 signaling pathway. Inhibition of the JAK/STAT1 signaling pathway and CXCL10 expression is expected to become a potential target for the treatment of LN. Key Points • Bioinformatics showed that there were 22 DEGs expression differences in the GEO database. • Through the combination of String database analysis and Cytoscape software, it was found that STAT1 and CXCL10 are closely related to LN. • Experimental results showed that IFN-γ induces the expression of CXCL10 mRNA and protein by activating the JAK/STAT1 signaling pathway, while triptolide inhibits the expression of CXCL10 mRNA and protein by inhibiting the JAK/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Dongliang Shi
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaomei Shi
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dan Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yuhui Zheng
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qing Lin
- Department of Clinical Laboratory, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yinghong Yang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
8
|
Regulation of MMP9 transcription by ETS1 in immortalized salivary gland epithelial cells of patients with salivary hypofunction and primary Sjögren's syndrome. Sci Rep 2022; 12:14552. [PMID: 36008454 PMCID: PMC9411565 DOI: 10.1038/s41598-022-18576-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/16/2022] [Indexed: 12/21/2022] Open
Abstract
Primary Sjögren’s syndrome (pSS) patients exhibit enhanced degradation of the salivary epithelium initially through MMP9 overexpression. We assessed the expression of MMP9 and an associated transcription factor, ETS1, in primary salivary gland epithelial cells (SGECs) and investigated potential regulatory mechanism(s) in immortalized SGECs. SGECs and iSGECs were derived from pSS and/or xerostomic “sicca” patients. siRNA knockdown of ETS1 in iSGECs was performed to determine MMP9 mRNA (qRT-PCR) and protein expression (ELISA). ETS1 binding to MMP9 promoter was assessed by luciferase activity and binding confirmed by mutagenesis and ChIP. Effects of ETS1 overexpression on progenitor and Epithelial-Mesenchymal transition (EMT) associated markers were determined by Western blot. Expression of ETS1 and its phosphorylated form in iSGECs was determined by immunofluorescence microscopy. ETS1 and MMP9 were overexpressed in SGECs of pSS and non-pSS sicca patients with salivary gland lymphocytic infiltration compared to non-pSS sicca patients without infiltration. ETS1 siRNA knockdown reduced both MMP9 mRNA and protein levels. ETS1 overexpression affected the expression of EMT and progenitor cell markers. Lastly, ETS1 bound the MMP9 promoter within the DNA region of −296 bp to −339 bp. ETS1 may impair salivary function through direct transcriptional control of the MMP9 promoter. ETS1 upregulation may also affect other factors involved in repair of the dysfunctional pSS salivary epithelium.
Collapse
|
9
|
The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome—A Pilot Study. J Clin Med 2021; 11:jcm11010003. [PMID: 35011744 PMCID: PMC8745422 DOI: 10.3390/jcm11010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022] Open
Abstract
The upregulation of IFN pathways and their stimulated genes is associated with primary Sjögren’s syndrome (pSS). The recent studies also indicate the involvement of interferon γ (IFNγ) in the pathogenesis of pSS. The study aimed to assess the clinical and immunological activity depending on the concentration of IFNγ in the peripheral blood in pSS patients. Methods: The study group consisted of patients over 18 years of age with a confirmed diagnosis of pSS. Based on the collected data, disease activity was assessed using the EULAR Sjögren’s syndrome disease activity index (ESSDAI) and the EULAR Sjögren’s syndrome patient reported index (ESSPRI). Results: Among 40 pSS patients, 33 (82%) showed increased levels of IFNγ. The group with positive IFNγ was younger (43 years) than the group with negative IFNγ (57 years) (p < 0.05). In the positive IFNγ group, the time to diagnosis was shorter (p < 0.05). There was a difference in ESSDAI among patients with and without IFNγ (p < 0.05). There were no differences between the groups in ESSPRI and the presence of cryoglobulins, specific anti-SSA, and anti-SSB antibodies and in C3 and C4 hypocomplementemia. RF occurred in both groups with a similar frequency (p = 0.6), but in patients with IFNγ presence, significantly higher RF titers were observed (34.9 vs. 10.5; p < 0.05). Conclusion: In the group of patients with positive IFNγ, the mean value of RF and ESSDAI was higher. This group was also younger than patients with pSS without IFNγ.
Collapse
|
10
|
Hu P, Ming B, Wu X, Cai S, Tang J, Dong Y, Zhou T, Tan Z, Zhong J, Zheng F, Dong L. Intratracheal Poly(I:C) Exposure Accelerates the Immunological Disorder of Salivary Glands in Sjogren's-Like NOD/ShiLtJ Mice. Front Med (Lausanne) 2021; 8:645816. [PMID: 33928105 PMCID: PMC8076562 DOI: 10.3389/fmed.2021.645816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/22/2021] [Indexed: 12/02/2022] Open
Abstract
Evidences have suggested that Sjogren's syndrome (SS) is associated with viral infection. The aim of this study was to investigate the involvement of respiratory viral poly(I:C) in the pathogenesis of SS and potential mechanisms using a SS-like NOD/ShiLtJ (NOD) mouse model. 5-week female NOD mice were intratracheally administered poly(I:C) every other day for 5 times to mimic viral infection. Pilocarpine induced saliva secretion was determined every 8 days. Submandibular glands (SMG) and lungs were harvested for the detection of pathological changes. We found that intratracheal administration of poly(I:C) significantly advanced and enhanced the reduction of saliva flow rate in NOD mice. Furthermore, poly(I:C) treatment aggravated the histopathological lesions and inflammatory cells infiltration in SMG. Accompanied by elevated expression of IFN cytokines and IL-33, Th1 activation was enhanced in SMG of poly(I:C)-treated NOD mice, but Th17 cells activation was unchanged among the groups. In addition, intratracheal poly(I:C) exposure promoted the expression of IL-33 and increased T cells proportion in the lung, which were consistent with the change in SMG. Therefore, intratracheal poly(I:C) exposure aggravated the immunological and function disorder of SMG in NOD mice.
Collapse
Affiliation(s)
- Peng Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaozhe Cai
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungen Tang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zhou
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Jiang Y, Zhao X, Yu J, Wang Q, Wen C, Huang L. Deciphering potential pharmacological mechanism of Sha-Shen-Mai-Dong decoction on primary Sjogren's syndrome. BMC Complement Med Ther 2021; 21:79. [PMID: 33648502 PMCID: PMC7923330 DOI: 10.1186/s12906-021-03257-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Background Sha-Shen-Mai-Dong decoction (SSMD) is a classical prescription widely used in primary Sjogren’s Syndrome (pSS) therapy. This study aims to explore the potential pharmacological mechanism of SSMD on pSS. Methods Active components of SSMD were obtained from Traditional Chinese Medicine Integrative Database and Traditional Chinese Medicine Systems Pharmacology databases and targets of SSMD were predicted by Pharmmapper and STITCH database. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out to explore the function characteristics of SSMD. The expression matrix of microarray of pSS was obtained from Gene Expression Omnibus and we obtained 162 differentially expressed genes (DEGs). Protein-protein interaction (PPI) networks were constructed to identify the hub targets. Principal component analysis (PCA) and molecular docking were conducted to further elucidate the possibility of SSMD for pSS. Results SSMD contained a total of 1056 active components, corresponding to 88 targets, among which peripheral myelin protein 2(PMP2), androgen receptor (AR) and glutamic acid decarboxylase 1(GAD1) are associated with multiple active components in SSMD and may be the core targets. Moreover, these targets were closely related to tissue pathological injury in SS, such as lacrimal gland, salivary gland and nervous system injury. GO and KEGG analysis showed that 88 targets enriched in REDOX process, transcriptional regulation and negative regulation of apoptosis process. Besides, SSMD may influence the cell proliferation, gene transcription through regulating Ras and cAMP-related signaling pathways. In addition, SSMD may show effects on immune regulation, such as macrophage differentiation, Toll-like receptor 4 signaling pathway and T-helper 1 in SS. Moreover, PPI network suggested that FN1, MMP-9 may be the hub targets in SSMD. Result of PCA and molecular docking analysis further determined the feasibility of SSMD in treating pSS. Conclusion SSMD can regulate multiple biological processes by virtue of its multiple active components, thus showing prominent advantage in the treatment of pSS. The discovery of active ingredients and targets in SSMD provides valuable resources for drug research and development for pSS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03257-7.
Collapse
Affiliation(s)
- Yuepeng Jiang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Xiaoxuan Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jie Yu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Qiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| | - Lin Huang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310058, China.
| |
Collapse
|