1
|
Zhang X, Wu L, Gu L, Jiang Q, He Z, Qi Y, Zheng X, Xu T. Dietary areca nut extract supplementation modulates the growth performance and immunity of Jiaji ducks (Cairina moschata). Poult Sci 2025; 104:104971. [PMID: 40101514 PMCID: PMC11960628 DOI: 10.1016/j.psj.2025.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
Areca nut extract (ANE) has a variety of pharmacological effects on animals. Here, we investigated the influence of ANE on the slaughter performance and immune function of Jiaji ducks. One hundred and fifty 42-day-old healthy Jiaji ducks were randomly divided into 2 groups (5 replicates of 15 ducks each), named DCK group (control) and DNT group (treatment), respectively. Ducks in the DCK group were fed a basal diet and ducks in the DNT group were fed a basal food supplemented with 0.08 g ANE per kg of basal diet. Additionally, using proteomics, untargeted metabolomics, and metagenomics, we analyzed the impact of ANE on the protein profile of the spleen, the composition of plasma metabolites, and the structure of the cecal microbiota. The results showed that the dietary inclusion of ANE significantly increased the slaughter rate of Jiaji ducks. Proteomic analysis revealed 78 differentially expressed proteins in the spleens of ANE-treated birds, including 54 proteins up-regulated and 24 proteins down-regulated in the DNT group, mainly enriched in cell adhesion molecules and glutathione metabolic pathways. Untargeted metabolomic analysis revealed that 117 serum metabolites were differentially regulated between the ANE and DCK groups; meanwhile, KEGG pathway analysis indicated that these metabolites were mainly involved in arachidonic acid metabolism, phospholipase D signaling pathway and eicosanoids. Furthermore, a metagenomic analysis showed that the genus Methanobrevibacter was significantly downregulated in the ANE supplementation group. Combined, the results of the metagenomic and metabolomic analyses showed that the relative abundance of Prevotella was significantly lower in the ANE group than in the DCK group and that Prevotella was negatively correlated with the levels of the anti-inflammatory compound hydrocinnamic acid and the lipid metabolism regulator ganoderic acid A. This study provides a reference for the application of ANE as a supplement in the diet of Jiaji ducks.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, China.
| | - Lehuan Wu
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, China
| | - Lihong Gu
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Qicheng Jiang
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Zhongchun He
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Yanxia Qi
- College of Animal Science and Technology, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, China
| | - Xinli Zheng
- Hainan Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Medicine, Haikou, Hainan 571100, China
| | - Tieshan Xu
- Chinese Academy of Tropical Agricultural Sciences, Institute of Tropical Crop Varieties Resources, Haikou, Hainan 571101, China
| |
Collapse
|
2
|
Sui Q, Zhu C, Shi S, Xu J, Zhang J, Wang A, Chen P, Liang G, Zhang Y. Ganoderic acid A: an in-depth review of pharmacological effects and molecular docking analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119868. [PMID: 40316150 DOI: 10.1016/j.jep.2025.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderic acid A (GAA, C30H44O7) is one of the most abundant and active components of Ganoderic acids (GAs). GAs are highly oxidized tetracyclic triterpenoid compounds mainly derived from Ganoderma lucidum (Curtis) P. Karst (Chinese: ). GAA is primarily isolated from the fruiting body of Ganoderma lucidum. Modern pharmacological investigations have established the broad pharmacological effects of GAA, highlighting its notable influence on managing various conditions, including inflammatory diseases, neurodegenerative diseases, and cancer. This review provides a comprehensive summary of GAA's pharmacological activities. MATERIAL AND METHODS The literature in this review were searched in PubMed and China National Knowledge Infrastructure (CNKI) using the keywords "Ganoderic acid A″, "Pharmacology" and "Pharmacokinetics". The literature cited in this review dates from 2000 to 2024. RESULTS According to the data, GAA exerts anti-inflammatory, antioxidant, antitumor, neuropsychopharmacological, hepatoprotective, cardiovascular, renoprotective, and lung protective effects by regulating a variety of signal transduction pathways, such as nuclear factor kappa-B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), Toll-like receptor 4 (TLR4), nuclear factor erythroid 2-related factor-2 (Nrf2), phosphoinositide-3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and Notch. Given its promising pharmacological activity, GAA holds excellent potential for treating human diseases. The pharmacokinetic properties of GAA have also been reviewed, revealing low bioavailability but high absorption and elimination rates. In addition, network pharmacology and molecular docking analyses verified that GAA plays a role in multiple diseases through MAPK3, tumor necrosis factor (TNF), caspase-3 (CASP3), peroxisome proliferator-activated receptor gamma (PPARG), and β-catenin (CTNNB1) signaling pathways. CONCLUSION GAA plays a pivotal role in various pathological and physiological processes, boasting broad application prospects. Furthermore, the network pharmacological results reveal the mechanisms of GAA in the treatment of multiple diseases. In the future, it is necessary to conduct further experiments to elucidate its specific mechanism of action, thus laying the foundation for the scientific utilization of GAA.
Collapse
Affiliation(s)
- Qi Sui
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Chengkai Zhu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Sha Shi
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jiaqi Xu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jingnan Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Ao Wang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Chen
- Department of Pharmacy, School of Medicine, Hangzhou City University, 50 Huzhou Rd, Hangzhou, Zhejiang, 310015, China.
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China; Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
3
|
Hou L, Song S, Xiao B, Li Z, Zhang B, Feng X, Mo B, Yao D. Deficiency of Toll-like receptor 4 attenuates airway inflammation and remodeling in an ovalbumine-induced mouse asthma model. J Thorac Dis 2025; 17:1491-1501. [PMID: 40223965 PMCID: PMC11986784 DOI: 10.21037/jtd-24-1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
Background Previous research has demonstrated elevated levels of Toll-like receptor 4 (TLR4) in the lung tissues of asthmatic mice compared to healthy counterparts, with a notable association between asthmatic inflammation and the sustained activation of the nuclear factor kappa-B (NF-κB) pathway. The specific role of TLR4 in modulating airway inflammation and remodeling, however, remains unclear. This study aimed to explore the impact of TLR4 deficiency on airway inflammation and remodeling in an ovalbumin (OVA)-induced mouse asthma model and to elucidate the underlying mechanisms involved. Methods To induce murine airway remodeling, an acute OVA sensitization and challenge protocol was employed. Pathological alterations in the lung tissues were assessed using hematoxylin and eosin, periodic acid-Schiff, and Masson trichrome staining. Results Our findings indicated that there were significant reductions in inflammatory cell infiltration in TLR4 knockout (KO) mice, including eosinophils, lymphocytes, neutrophils and the levels of Th2 cytokines interleukin-4, 5, 13 (IL-4, IL-5, IL-13), while showing increased expression of Th1 cytokines [interferon-gamma (IFN-γ)] and a higher T-bet/GATA-3 ratio. Furthermore, TLR4 deficiency markedly decreased airway mucous production, collagen deposition and airway smooth muscle thickness, all of which are strongly associated with airway remodeling. Additionally, TLR4 KO enhanced inhibitor of NF-κB (IκB) protein expression in lung tissues, suggesting an inhibition of the TLR4/NF-κB pathway. Conclusions These results demonstrate that TLR4 deficiency attenuates airway inflammation and remodeling, potentially through the inhibition of the TLR4/NF-κB signaling pathway in an OVA-induced mouse asthma model.
Collapse
Affiliation(s)
- Lixia Hou
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China
- The Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Sijia Song
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Xuchang, Xuchang, China
| | - Bo Xiao
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhimei Li
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Bingxi Zhang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xinru Feng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- The Laboratory of Respiratory Disease, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Biwen Mo
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China
| | - Dong Yao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Key Laboratory of Respiratory Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China
| |
Collapse
|
4
|
Ren K, Niu B, Liang H, Xi C, Song M, Chen J, Zhao F, Cao Z. Zhichuanling injection improves bronchial asthma by attenuation airway inflammation and epithelia-mesenchymal transition. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119540. [PMID: 40020793 DOI: 10.1016/j.jep.2025.119540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhichuanling (ZCL) Injection, is a compound formulation containing extracts of mahuang (Herba Ephedrae, dried stem or aerial part of Ephedra sinica Stapf), bitter almond (Semen Armeniacae Amarum, seeds of Prunus armeniaca var. sibirica (L.) K. Koch), yangjinhua (flower of Datura metel L.) and Fructus Forsythiae (fruits of Forsythia suspensa (Thunb.) Vahl). Intramuscular injection of ZCL has been used in the clinical practice to control asthma. The aerosol inhalation of ZCL has been shown to be effective on allergic bronchial asthma. However, the underlying mechanisms remain established. AIM OF THE STUDY To investigate the underling mechanism by which ZCL inhibits the pathogenesis of bronchial asthma. METHODS The guinea pig tracheal rings and human bronchial epithelial (16HBE) cells were used to assess ZCL's impact on acetylcholine (Ach) induced tracheal contraction, tumor necrosis factor α (TNF-α) induced bronchial inflammation, and transforming growth factor-β1 (TGF-β1) induced airway remodeling. Cell viability and gene expression were assessed using MTT assays, qPCR. RNA-seq (gene expression analysis) was employed to explore the novel mechanisms of ZCL in OVA-induced bronchial asthma. RESULTS In this study, we found that ZCL reduces Ach-induced contraction of isolated guinea pig trachea, suppress TNF-α-induced interleukin (IL)-1β, IL-6, and IL-8 and TGF-β1-induced E-cadherin, α-SMA, Vimentin, N-cadherin mRNA expression in the 16HBE. Transcriptomic analysis of lung tissue from mice with OVA-induced bronchial asthma suggests that ZCL may alleviate asthma symptoms by modulating BPIFA1, HIF3Α, CTXN3, GRFA3, PPEF1, KSR2, and CDSN. CONCLUSION ZCL alleviates asthma by suppressing tracheal contractions, inflammation, and epithelial-to-mesenchymal transition. ZCL effect on asthma is likely through the upregulation of BPIFA1 expression thus providing the molecular insight for the treatment of asthma. The findings suggest that ZCL holds promise as a asthma therapeutic approach, and further research is needed to explore its full clinical potential. Future studies should focus on optimizing dosage, evaluating long-term efficacy, and investigating potential synergistic effects with existing treatments to enhance asthma management and patient outcomes.
Collapse
Affiliation(s)
- Kerui Ren
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo Niu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Huaduan Liang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Chuchu Xi
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Mengmeng Song
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jingyi Chen
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Lianyungang, 222001, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
5
|
Wang S, Wang L, Shangguan J, Jiang A, Ren A. Research Progress on the Biological Activity of Ganoderic Acids in Ganoderma lucidum over the Last Five Years. Life (Basel) 2024; 14:1339. [PMID: 39459639 PMCID: PMC11509451 DOI: 10.3390/life14101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a traditional edible and medicinal mushroom in China. The main bioactive components in G. lucidum include triterpenoids, polysaccharides, steroids, and sterols. Ganoderic acids (GAs) are one of the most abundant triterpenoids found in G. lucidum, garnering significant attention from researchers in the fields of medicine and health care. We summarize the extensive studies on the physiological function of GAs in anti-cancer, anti-inflammatory, radiation protection, anti-aging, liver protection, anti-microbial, and neuroprotection areas, among others. This review provides a comprehensive overview of the recent advances in the bioactivities and pharmacological mechanisms of GAs, aiming to delineate the current research directions and the state of the art in this field. This analysis helps to rapidly identify new bioactivities of GAs and understand their mechanisms, leading to more effective treatments for various diseases.
Collapse
Affiliation(s)
| | | | | | - Ailiang Jiang
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.W.); (L.W.); (J.S.)
| |
Collapse
|
6
|
Liu Y, Feng X, Wang J, Li M. Neuroprotective Effect of Ganoderic Acid against Focal Ischemic Stroke Induced by Middle Cerebral Artery Occlusion in the Rats via Suppression of Oxidative Stress and Inflammation. DOKL BIOCHEM BIOPHYS 2024; 518:361-371. [PMID: 39023671 DOI: 10.1134/s1607672924600313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Stroke is recognized as a leading cause of disability and mortality worldwide, posing a significant challenge, particularly in developing countries. The current study aimed to evaluate the neuroprotective effect of Ganoderic acid (GA) against focal ischemic stroke in rats. MATERIAL AND METHODS Swiss Wistar rats were used for the current study. The rats were subjected to middle cerebral artery occlusion (MCAO) to simulate transient focal ischemia, followed by reperfusion. Various neurological parameters, including infarct size, neurological deficit score, brain water content, Evans blue leakage, nitric oxide (NO), inducible nitric oxide synthase (iNOS), lactate dehydrogenase (LDH), antioxidant levels, inflammatory cytokines, apoptosis markers, inflammatory parameters, and matrix metalloproteinases (MMP) levels, were estimated. Additionally, mRNA expressions were evaluated in the brain tissue. RESULTS Dose dependently treatment of GA significantly (P < 0.001) suppressed the infarct size, neurological deflects score, brain water, evans blue leakage, NO, iNOS, LDH, C-X-C chemokine receptor type 4 (CXCR-4), monocyte chemoattractant protein-1 (MCP-1), S100 calcium-binding protein B (S-100β) and K+-Cl- cotransporter 1 (KCC1) positive cells. GA altered the level of oxidative stress parameters like Total antioxidant capacity (T-AOC), 8-hydroxy-2'-deoxyguanosine (8-OhdG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione (GSH), malonaldehyde (MDA); cytokines viz., tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), IL-1β, IL-6, IL-9, IL-10; inflammatory parameters such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin (PGE2), Nuclear factor kappa B (NF-κB); apoptosis parameters like B-cell leukemia/lymphoma 2 protein (Bcl-2), Bcl-2-associated protein x (Bax), Caspase-3; matrix metallopeptidase (MMP) parameters like MMP-2, MMP-3, and MMP-9, respectively. GA remarkably suppressed the mRNA expression of TRL-4, Syndecan-1, CSF, Aquaporin-1, OCT3, and RFX1. CONCLUSION Ganoderic acid exhibited the protection against the cerebral ischemia reperfusion via multiple mechanism.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China.
| | - Xuemei Feng
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China
| | - Juan Wang
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China
| | - Mingfen Li
- Department of Neurology, Yibin No. 4 People's Hospital, Yibin Sichuan, China
| |
Collapse
|
7
|
Qiao L, Li SM, Liu JN, Duan HL, Jiang XF. Revealing the regulation of allergic asthma airway epithelial cell inflammation by STEAP4 targeting MIF through machine learning algorithms and single-cell sequencing analysis. Front Mol Biosci 2024; 11:1427352. [PMID: 39176391 PMCID: PMC11338762 DOI: 10.3389/fmolb.2024.1427352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Asthma comprises one of the most common chronic inflammatory conditions, yet still lacks effective diagnostic markers and treatment targets. To gain deeper insights, we comprehensively analyzed microarray datasets of airway epithelial samples from asthmatic patients and healthy subjects in the Gene Expression Omnibus database using three machine learning algorithms. Our investigation identified a pivotal gene, STEAP4. The expression of STEAP4 in patients with allergic asthma was found to be reduced. Furthermore, it was found to negatively correlate with the severity of the disease and was subsequently validated in asthmatic mice in this study. A ROC analysis of STEAP4 showed the AUC value was greater than 0.75. Functional enrichment analysis of STEAP4 indicated a strong correlation with IL-17, steroid hormone biosynthesis, and ferroptosis signaling pathways. Subsequently, intercellular communication analysis was performed using single-cell RNA sequencing data obtained from airway epithelial cells. The results revealed that samples exhibiting low levels of STEAP4 expression had a richer MIF signaling pathway in comparison to samples with high STEAP4 expression. Through both in vitro and in vivo experiments, we further confirmed the overexpression of STEAP4 in airway epithelial cells resulted in decreased expression of MIF, which in turn caused a decrease in the levels of the cytokines IL-33, IL-25, and IL-4; In contrast, when the STEAP4 was suppressed in airway epithelial cells, there was an upregulation of MIF expression, resulting in elevated levels of the cytokines IL-33, IL-25, and IL-4. These findings suggest that STEAP4 in the airway epithelium reduces allergic asthma Th2-type inflammatory reactions by inhibiting the MIF signaling pathway.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shi-meng Li
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-nian Liu
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-lei Duan
- Department of Digestive, Weihai Municipal Hospital, Weihai, Shandong, China
| | - Xiao-feng Jiang
- Department of Clinical Laboratory, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
8
|
Zhang XT, Ji CL, Fu YJ, Yang Y, Xu GY. Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders. Biosci Rep 2024; 44:BSR20232068. [PMID: 38904095 PMCID: PMC11292473 DOI: 10.1042/bsr20232068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Learning and memory impairment (LMI), a common degenerative central nervous system disease. Recently, more and more studies have shown that Ganoderma lucidum (GL) can improve the symptoms of LMI. The active ingredients in GL and their corresponding targets were screened through TCMSP (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform) and BATMAN-TCM (Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine) databases, and the potential LMI targets were searched for through GeneCard (GeneCards Human Gene Database) and DrugBank. Then, we construct a 'main active ingredient-target' network and a protein-protein interaction (PPI) network diagram.The GO (Gene Ontology) functional enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotation analysis were performed on the common targets through DAVID (Database for Annotation Visualization and Integrated Discovery) to clarify the potential molecular mechanism of action of active ingredients in GL. The tumor necrosis factor (TNF) protein was verified by Western blot; Twenty one active ingredients in GL and 142 corresponding targets were screened out, including 59 targets shared with LMI. The 448 biological processes shown by the GO functional annotation results and 55 signal pathways shown by KEGG enrichment analysis were related to the improvement of LMI by GL, among which the correlation of Alzheimer's disease pathway is the highest, and TNF was the most important protein; TNF can improve LMI. GL can improve LMI mainly by 10 active ingredients in it, and they may play a role by regulating Alzheimer's disease pathway and TNF protein.
Collapse
Affiliation(s)
- Xiao-tian Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130000, People’s Republic of China
| | - Chun-lei Ji
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yu-juan Fu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Yue Yang
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| | - Guang-yu Xu
- Specialty in Pharmaceutical Analysis, College of Pharmacy, Beihua University, Jilin, Jilin 132013, People’s Republic of China
| |
Collapse
|
9
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
10
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
11
|
Ebrahim Soltani Z, Badripour A, Haddadi NS, Elahi M, Kazemi K, Afshari K, Dehpour A. Allergic rhinitis in BALB/c mice is associated with behavioral and hippocampus changes and neuroinflammation via the TLR4/ NF-κB signaling pathway. Int Immunopharmacol 2022; 108:108725. [DOI: 10.1016/j.intimp.2022.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022]
|
12
|
Liang R, Yuan Y, Bai Y, Liu X, Chen J, Jiang D, Meng D, Chen G, Li B, Zhou L, Guo W. Neobavaisoflavone inhibits allergic inflammatory responses by suppressing mast cell activation. Int Immunopharmacol 2022; 110:108953. [PMID: 35724607 DOI: 10.1016/j.intimp.2022.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
Neobavaisoflavone (NBIF), a monomolecular compound extracted from Psoralea corylifolia (Leguminosae), is commonly used in traditional Chinese medicine for multiple purposes. NBIF is known to exert anti-fungal and anti-tumor effects, and promote bone formation. Whether NBIF exhibits anti-allergic effects by regulating mast cell activation remains unclear. Therefore, we designed this study to investigate the anti-allergic effects of NBIF on IgE/Ag-induced mouse bone marrow-derived mast cells and ovalbumin-induced asthma, and the passive systemic anaphylaxis (PSA) reaction in mice. Our results showed that NBIF suppresses the production of leukotriene C4, prostaglandin D2 and inflammatory cytokines, and decreases the degranulation of BMMCs stimulated by IgE/Ag. A thorough investigation ascertained that NBIF suppresses the phosphorylation of mitogen-activated protein kinases, and represses the nuclear factor-κB-related signaling pathway. In addition, the oral administration of NBIF in mice inhibited the IgE-induced PSA reaction in a dose-dependent manner. Overall, we provide new insights into how NBIF regulates the IgE/Ag-mediated signaling pathways. Moreover, our investigation promotes the potential use of NBIF in treating allergy and asthma.
Collapse
Affiliation(s)
- Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaqin Yuan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yakun Bai
- Henan Key Laboratory of Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of ZhengZhou University, Henan, China
| | - Xinnan Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieqiong Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Jiang
- Research Center, Shanghai Archgene Biotechnology Co., Ltd., Shanghai 200233, China
| | - Dehua Meng
- Department of Orthopaedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangjie Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, Guangdong 518036, China.
| | - Luxian Zhou
- Research Center, Shanghai Archgene Biotechnology Co., Ltd., Shanghai 200233, China.
| | - Wenzhi Guo
- Henan Key Laboratory of Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of ZhengZhou University, Henan, China.
| |
Collapse
|
13
|
Xiao S, Wang Q, Gao H, Zhao X, Zhi J, Yang D. Dexmedetomidine alleviates airway hyperresponsiveness and allergic airway inflammation through the TLR4/NF‑κB signaling pathway in mice. Mol Med Rep 2022; 25:74. [PMID: 35014685 PMCID: PMC8778652 DOI: 10.3892/mmr.2022.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dexmedetomidine (DEX) suppresses inflammatory responses and protects against organ injury. The aim of the present study was to investigate the effect of DEX on airway hyperresponsiveness (AHR) and allergic airway inflammation, as well as its underlying mechanism of action in a murine model of ovalbumin (OVA)-induced asthma. A total of 30 female BALB/c mice were divided into 6 groups (n=5 mice/group): Control, OVA, OVA + DEX (20, 30 or 50 µg/kg) and OVA + TAK-242 [a toll-like receptor 4 (TLR4) inhibitor]. The mice were intraperitoneally injected with 20, 30 or 50 µg/kg DEX 1 h before OVA challenge. AHR to inhaled methacholine (Mch) was measured, and the mice were sacrificed 24 h after the last challenge. AHR following Mch inhalation was measured using the FlexiVent apparatus. Hematoxylin and eosin, periodic acid-Schiff and Wright-Giemsa staining was performed to evaluate inflammatory cell infiltration in the lung tissue. The levels of IL-4, IL-5 and IL-13 in the bronchoalveolar lavage fluid were analyzed using ELISA, and their mRNA expression levels in the lung tissue were examined using reverse transcription-quantitative PCR. The protein expression of TLR4, NF-κB and phosphorylated (p)NF-κB in the lung tissue was also detected using immunohistochemistry. In the murine OVA-induced asthma model, DEX decreased AHR following Mch inhalation and reduced the infiltration of inflammatory cells. IL-4, IL-5 and IL-13 levels in the bronchoalveolar lavage fluid were significantly lower following DEX treatment. Furthermore, DEX treatment inhibited the expression of TLR4, NF-κB and p-NF-κB in the lung tissue and exhibited a similar effect to TAK-242 treatment. In conclusion, DEX may attenuate AHR and allergic airway inflammation by inhibiting the TLR4/NF-κB pathway. These results suggested that DEX may represent a potential anti-inflammatory agent for the treatment and management of patients with asthma.
Collapse
Affiliation(s)
- Shilin Xiao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Qianyu Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Huibin Gao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Xumin Zhao
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Juan Zhi
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Dong Yang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|