1
|
Wang S, Chen X, Wang K, Yang S. The Regulatory Role of NcRNAs in Pyroptosis and Disease Pathogenesis. Cell Biochem Biophys 2025:10.1007/s12013-025-01720-7. [PMID: 40249522 DOI: 10.1007/s12013-025-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
Non-coding RNAs (ncRNAs), as critical regulators of gene expression, play a pivotal role in the modulation of pyroptosis and exhibit a close association with a wide range of diseases. Pyroptosis is a form of programmed cell death mediated by inflammasomes, characterized by cell membrane perforation, release of inflammatory cytokines, and a robust immune response. Recent studies have revealed that ncRNAs influence the initiation and execution of pyroptosis by regulating the expression of pyroptosis-related genes or modulating associated signaling pathways. This review systematically summarizes the molecular mechanisms and applications of ncRNAs in diseases such as cancer, infectious diseases, neurological disorders, cardiovascular diseases, and metabolic disorders. It further explores the potential of ncRNAs as diagnostic biomarkers and therapeutic targets, elucidates the intricate interactions among ncRNAs, pyroptosis, and diseases, and provides novel strategies and directions for the precision treatment of related diseases.
Collapse
Affiliation(s)
- Shaocong Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Zhang Y, Wang D, Wu X, Zhao T, He M, He Y, Meng C. Targeting the lncRNA GAS5/TLR4/NLRP3 signaling cascade inhibits endometrial stromal cell pyroptosis and prevents the progression of intrauterine adhesions. J Reprod Immunol 2025; 168:104450. [PMID: 39951898 DOI: 10.1016/j.jri.2025.104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Intrauterine adhesion (IUA) poses a serious threat to women's health, and its specific pathogenesis has not yet been elucidated. Our study found through high-throughput sequencing that differentially expressed genes of the endometrial tissues from healthy individuals or IUA patients were enriched in the toll-like receptor (TLR), nuclear factor-kappa B (NF-kB), and nucleotide-binding oligomerization domain-like receptor (NLR) signaling pathways. Meanwhile, we observed that compared to the controls, long non-coding RNA (lncRNA) growth arrest-specific transcripts 5 (GAS5) was significantly upregulated in the endometrial tissue of IUA patients and scratching/lipopolysaccharide (LPS)-induced IUA model mice. Subsequently, results from the functional verification assay, including hematoxylin-eosin staining, enzyme-linked immunosorbent assay, and western blot, showed that knockdown of GAS5 improved endometrial injury and uterine adhesions, decreased the levels of TIMP1, α-SMA, Vimentin, and COL1A1, but elevated MMP9 level to reduce excessive accumulation of extracellular matrix (ECM), and inhibited the expression of NLRP3, cleaved caspase-1, GSDMD, and nuclear p65 to ameliorate pyroptosis in IUA model mice. As confirmed by bioinformatics analysis and dual luciferase reporter gene system, GAS5 sponged microRNA (miR)-205-5p to upregulate TLR4, further activating the NF-kB and NLRP3 signaling in endometrial stromal cells (ESCs). The in vitro functional recovery experiments suggested that GAS5 knockdown alleviated LPS-induced activation of the NF-kB and NLRP3 signaling, pyroptotic cell death, and ECM deposition in ESCs, which was counteracted by overexpressing TLR4 and NLRP3. In a word, our study proved that targeting the GAS5/TLR4/NLRP3 signaling cascade inhibits ESCs pyroptosis and prevents the progression of IUA, providing promising therapeutic strategies for IUA disease.
Collapse
Affiliation(s)
- Yifeng Zhang
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Dongjie Wang
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Xiaomei Wu
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Ting Zhao
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Ming He
- Kunming Medical University, Kunming, Yunan 650500, China.
| | - Yunyu He
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| | - Chunmei Meng
- Gynecology Department, Yunnan First People's Hospital, Kunming, Yunan 650032, China; The Affiliated Hospital of Kunming University of Science and technology, Kunming, Yunan 650032, China.
| |
Collapse
|
3
|
Wang L, Zhao R, Xiao K, Zhou Y, Liu Q, Yu K. Long non-coding RNA NRIR inhibits osteogenesis in peri-implantitis by promoting NLRP3 inflammasome-mediated macrophage pyroptosis. Int Immunopharmacol 2025; 148:114180. [PMID: 39874847 DOI: 10.1016/j.intimp.2025.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Peri-implantitis is an inflammatory bone disease that seriously affects the health of dental implants. Pyroptosis plays an important role in peri-implantitis and inhibition of pyroptosis may point out a new direction for treating the disease. The long non-coding RNA Negative Regulator of Interferon Response (lncRNA NRIR) is closely related to peri-implantitis and may be involved in the process of pyroptosis. The aim of this study was to explore the regulatory mechanism of NRIR in peri-implantitis. METHODS The expression levels of NRIR and its target gene Cytidine Monophosphate Kinase 2 (CMPK2) in the gingiva surrounding infected implants were explored using bioinformatics analysis. Lipopolysaccharide (LPS)-stimulated macrophage pyroptosis model and a rat model of LPS-induced peri-implantitis were constructed. We used small interfering RNA (siRNA) and plasmids to regulate the expression of NRIR and CMPK2 in macrophages. We used various ways to evaluate inflammation, pyroptosis, osteogenic differentiation, including RT-qPCR, Western blotting, ELISA, Immunofluorescence staining, ALP activity, ARS staining, and Immunohistochemical analysis. RESULTS Initially, we used bioinformatics method to identify high expression of NRIR and CMPK2 in the gingiva surrounding infected implants. Both the knockdown of NRIR and CMPK2 could markedly suppress the expression of NLRP3 inflammasome and the release of interleukin-1β (IL-1β) in LPS-stimulated THP-1-derived macrophages. Meanwhile, upregulation of CMPK2 reversed the negative effects of downregulation of NRIR on macrophage pyroptosis. Functionally, NRIR knockdown in macrophages promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Notably, we identified that IL-1β protein could reverse this trend. Mechanistically, NRIR regulated NLRP3 inflammasome-mediated pyroptosis of macrophages through the NF-κB pathway. Furthermore, the in vivo experiments demonstrated that silencing NRIR inhibited the expression of NLRP3 inflammasome and IL-1β, but promoted the expression of osteogenic differentiation related factors in tissue surrounding the implants. CONCLUSION This study demonstrated that NRIR played a crucial role in the crosstalk between macrophage pyroptosis and BMSCs osteogenic differentiation, thus providing a possible therapeutic target against inflammatory bone disease including peri-implantitis.
Collapse
Affiliation(s)
- Lan Wang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Renshengjie Zhao
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Keming Xiao
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Yang Zhou
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Qiqi Liu
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Ke Yu
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
4
|
Ma J, Wang Y, Xu W, Wang H, Wan Z, Guo J. Macrophage pyroptosis in atherosclerosis: therapeutic potential. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39953798 DOI: 10.3724/abbs.2025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques in arterial walls, leading to cardiovascular events such as myocardial infarction and stroke. Macrophage pyroptosis, a form of programmed cell death driven by the NLRP3 inflammasome and caspase-1 activation, plays a critical role in the progression and destabilization of atherosclerotic plaques. This review explores the molecular mechanisms underlying macrophage pyroptosis and their significant contributions to AS pathogenesis. Recent advancements have highlighted the therapeutic potential of targeting key components of the pyroptotic pathway, including the use of nanotechnology to increase drug delivery specificity. These strategies are promising for reducing inflammation, stabilizing plaques, and mitigating the clinical impact of AS. Future studies should focus on translating these findings into clinical applications to develop effective treatments that can halt or reverse AS progression by modulating macrophage pyroptosis.
Collapse
Affiliation(s)
- Jianying Ma
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou 434020, China
| | - Yixian Wang
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Wenna Xu
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Hanjing Wang
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Zhengdong Wan
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
5
|
Huang L, Ye Y, Sun Y, Zhou Z, Deng T, Liu Y, Wu R, Wang K, Yao C. LncRNA H19/miR-107 regulates endothelial progenitor cell pyroptosis and promotes flow recovery of lower extremity ischemia through targeting FADD. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167323. [PMID: 38925483 DOI: 10.1016/j.bbadis.2024.167323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Peripheral artery disease (PAD) is an ischemic disease with a rising incidence worldwide. The lncRNA H19 (H19) is enriched in endothelial progenitor cells (EPCs), and transplantation of pyroptosis-resistant H19-overexpressed EPCs (oe-H19-EPCs) may promote vasculogenesis and blood flow recovery in PAD, especially with critical limb ischemia (CLI). METHODS EPCs isolated from human peripheral blood was characterized using immunofluorescence and flow cytometry. Cell proliferation was determined with CCK8 and EdU assays. Cell migration was assessed by Transwell and wound healing assays. The angiogenic potential was evaluated using tube formation assay. The pyroptosis pathway-related protein in EPCs was detected by western blot. The binding sites of H19 and FADD on miR-107 were analyzed using Luciferase assays. In vivo, oe-H19-EPCs were transplanted into a mouse ischemic limb model, and blood flow was detected by laser Doppler imaging. The transcriptional landscape behind the therapeutic effects of oe-H19-EPCs on ischemic limbs were examined with whole transcriptome sequencing. RESULTS Overexpression of H19 in EPCs led to an increase in proliferation, migration, and tube formation abilities. These effects were mediated through pyroptosis pathway, which is regulated by the H19/miR-107/FADD axis. Transplantation of oe-H19-EPCs in a mouse ischemic limb model promoted vasculogenesis and blood flow recovery. Whole transcriptome sequencing indicated significant activation of vasculogenesis pathway in the ischemic limbs following treatment with oe-H19-EPCs. CONCLUSIONS Overexpression of H19 increases FADD level by competitively binding to miR-107, leading to enhanced proliferation, migration, vasculogenesis, and inhibition of pyroptosis in EPCs. These effects ultimately promote the recovery of blood flow in CLI.
Collapse
Affiliation(s)
- Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanchen Ye
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunhao Sun
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tang Deng
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunyan Liu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ridong Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B, Chen P. Pyroptosis in health and disease: mechanisms, regulation and clinical perspective. Signal Transduct Target Ther 2024; 9:245. [PMID: 39300122 DOI: 10.1038/s41392-024-01958-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Pyroptosis is a type of programmed cell death characterized by cell swelling and osmotic lysis, resulting in cytomembrane rupture and release of immunostimulatory components, which play a role in several pathological processes. Significant cellular responses to various stimuli involve the formation of inflammasomes, maturation of inflammatory caspases, and caspase-mediated cleavage of gasdermin. The function of pyroptosis in disease is complex but not a simple angelic or demonic role. While inflammatory diseases such as sepsis are associated with uncontrollable pyroptosis, the potent immune response induced by pyroptosis can be exploited as a therapeutic target for anti-tumor therapy. Thus, a comprehensive review of the role of pyroptosis in disease is crucial for further research and clinical translation from bench to bedside. In this review, we summarize the recent advancements in understanding the role of pyroptosis in disease, covering the related development history, molecular mechanisms including canonical, non-canonical, caspase 3/8, and granzyme-mediated pathways, and its regulatory function in health and multiple diseases. Moreover, this review also provides updates on promising therapeutic strategies by applying novel small molecule inhibitors and traditional medicines to regulate pyroptosis. The present dilemmas and future directions in the landscape of pyroptosis are also discussed from a clinical perspective, providing clues for scientists to develop novel drugs targeting pyroptosis.
Collapse
Affiliation(s)
- Yifan Liu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Oncology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Renjie Pan
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Yuzhen Ouyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
- Department of Neurology, Xiangya Hospital, Central South University, 87th Xiangya road, Changsha, 410008, Hunan province, China
| | - Wangning Gu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Tengfei Xiao
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hongmin Yang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Ling Tang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Bo Xiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| | - Pan Chen
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, China.
| |
Collapse
|
7
|
Khojali WMA, Khalifa NE, Alshammari F, Afsar S, Aboshouk NAM, Khalifa AAS, Enrera JA, Elafandy NM, Abdalla RAH, Ali OHH, Syed RU, Nagaraju P. Pyroptosis-related non-coding RNAs emerging players in atherosclerosis pathology. Pathol Res Pract 2024; 255:155219. [PMID: 38401375 DOI: 10.1016/j.prp.2024.155219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Globally, atherosclerosis a persistent inflammatory condition of the artery walls continues to be the primary cause of cardiovascular illness and death. The ncRNAs are important regulators of important signalling pathways that affect pyroptosis and the inflammatory environment in atherosclerotic plaques. Comprehending the complex interaction between pyroptosis and non-coding RNAs (ncRNAs) offers fresh perspectives on putative therapeutic targets for ameliorating cardiovascular problems linked to atherosclerosis. The discovery of particular non-coding RNA signatures linked to the advancement of atherosclerosis could lead to the creation of novel biomarkers for risk assessment and customised treatment approaches. A thorough investigation of the regulatory networks regulated by these non-coding RNAs has been made possible by the combination of cutting-edge molecular methods and bioinformatics tools. Studying pyroptosis-related ncRNAs in detail appears to be a promising way to advance our understanding of disease pathophysiology and develop focused therapeutic methods as we work to unravel the complex molecular tapestry of atherosclerosis. This review explores the emerging significance of non-coding RNAs (ncRNAs) in the regulation of pyroptosis and their consequential impact on atherosclerosis pathology.
Collapse
Affiliation(s)
- Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman 14415, Republic of the Sudan
| | - Nasrin E Khalifa
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11115, Republic of the Sudan
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Jerlyn Apatan Enrera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Nancy Mohammad Elafandy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Randa Abdeen Husien Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Omar Hafiz Haj Ali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - Potnuri Nagaraju
- Department of Pharmaceutics, Mandesh Institute of Pharmaceutical Science and Research Center, Maharashtra, India
| |
Collapse
|
8
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang Y, Liang J. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov 2024; 10:76. [PMID: 38355574 PMCID: PMC10866971 DOI: 10.1038/s41420-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/β-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
9
|
Wu Q, Huang F. LncRNA H19: a novel player in the regulation of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1238981. [PMID: 37964955 PMCID: PMC10641825 DOI: 10.3389/fendo.2023.1238981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetic kidney disease (DKD), one of the most severe complications of diabetes mellitus (DM), has received considerable attention owing to its increasing prevalence and contribution to chronic kidney disease (CKD) and end-stage kidney disease (ESRD). However, the use of drugs targeting DKD remains limited. Recent data suggest that long non-coding RNAs (lncRNAs) play a vital role in the development of DKD. The lncRNA H19 is the first imprinted gene, which is expressed in the embryo and down-regulated at birth, and its role in tumors has long been a subject of controversy, however, in recent years, it has received increasing attention in kidney disease. The LncRNA H19 is engaged in the pathological progression of DKD, including glomerulosclerosis and tubulointerstitial fibrosis via the induction of inflammatory responses, apoptosis, ferroptosis, pyroptosis, autophagy, and oxidative damage. In this review, we highlight the most recent research on the molecular mechanism and regulatory forms of lncRNA H19 in DKD, including epigenetic, post-transcriptional, and post-translational regulation, providing a new predictive marker and therapeutic target for the management of DKD.
Collapse
Affiliation(s)
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Hu B, Chen W, Zhong Y, Tuo Q. The role of lncRNA-mediated pyroptosis in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1217985. [PMID: 37396588 PMCID: PMC10313127 DOI: 10.3389/fcvm.2023.1217985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. Pyroptosis is a unique kind of programmed cell death that varies from apoptosis and necrosis morphologically, mechanistically, and pathophysiologically. Long non-coding RNAs (LncRNAs) are thought to be promising biomarkers and therapeutic targets for the diagnosis and treatment of a variety of diseases, including cardiovascular disease. Recent research has demonstrated that lncRNA-mediated pyroptosis has significance in CVD and that pyroptosis-related lncRNAs may be potential targets for the prevention and treatment of specific CVDs such as diabetic cardiomyopathy (DCM), atherosclerosis (AS), and myocardial infarction (MI). In this paper, we collected previous research on lncRNA-mediated pyroptosis and investigated its pathophysiological significance in several cardiovascular illnesses. Interestingly, certain cardiovascular disease models and therapeutic medications are also under the control of lncRNa-mediated pyroptosis regulation, which may aid in the identification of new diagnostic and therapy targets. The discovery of pyroptosis-related lncRNAs is critical for understanding the etiology of CVD and may lead to novel targets and strategies for prevention and therapy.
Collapse
Affiliation(s)
| | | | | | - Qinhui Tuo
- Correspondence: Yancheng Zhong Qinhui Tuo
| |
Collapse
|
11
|
Zhu X, Tang H, Yang M, Yin K. N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends Endocrinol Metab 2023; 34:66-84. [PMID: 36586778 DOI: 10.1016/j.tem.2022.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
N6-methyladenosine (m6A) is one of the most prevalent internal transcriptional modifications. Evidence has highlighted changes in m6A in metabolic disorders and various metabolic diseases. However, the precise mechanisms of these m6A changes in such conditions are not understood. Macrophages are crucial for the innate immune system and exert either beneficial or harmful roles in metabolic disease. Notably, m6A was found to be closely related to macrophage phenotype and dysfunction. In this review, we summarize m6A in macrophage function from the perspective of macrophage development, activation, and polarization, pyroptosis, and metabolic disorders. Furthermore, we discuss how m6A-mediated macrophage function affects metabolic diseases, including atherosclerosis and nonalcoholic fatty liver disease (NAFLD). Finally, we discuss challenges and prospects for m6A in macrophage and metabolic diseases with the aim of providing guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China
| | - HaoJun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Min Yang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541100, China; Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, Guangxi 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
12
|
Mo X, Hu D, Li Y, Nai A, Ma F, Bashir S, Jia G, Xu M. A novel pyroptosis-related prognostic lncRNAs signature, tumor immune microenvironment and the associated regulation axes in bladder cancer. Front Genet 2022; 13:936305. [PMID: 36003338 PMCID: PMC9393225 DOI: 10.3389/fgene.2022.936305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system. Pyroptosis is a host programmed cell death. However, the effects of pyroptosis-related lncRNAs (PRLs) on BC have not yet been completely elucidated. In this study, a prognostic PRLs model and two ceRNA networks were established using sufficient bioinformatics analysis and preliminary RT-qPCR validation in vitro. 6 PRLs were identified to construct a prognostic model. Then, the prognostic model risk score was verified to be an effective independent factor (Training cohort: Univariate analysis: HR = 1.786, 95% Cl = 1.416-2.252, p < 0.001; multivariate analysis: HR = 1.664, 95% Cl = 1.308-2.116, p < 0.001; testing cohort: Univariate analysis: HR = 1.268, 95% Cl = 1.144-1.405, p < 0.001; multivariate analysis: HR = 1.141, 95% Cl = 1.018-1.280, p = 0.024). Moreover, ROC and nomogram were performed to assess the accuracy of this signature (1-year-AUC = 0.764, 3-years-AUC = 0.769, 5-years-AUC = 0.738). Consequently, we evaluated the survival curves of these 6 lncRNAs using Kaplan–Meier survival analysis, demonstrating that MAFG-DT was risk lncRNA, while OCIAD1-AS1, SLC25A25-AS1, SNHG18, PSMB8-AS1 and TRM31-AS1 were protective lncRNAs. We found a strong correlation between PRLs and tumor immune microenvironment by Pearson’s correlation analysis. As for sensitivity of anti-tumor drugs, the high-risk group was more sensitive to Sorafenib, Bicalutamide and Cisplatin, while the low-risk group was more sensitive to AKT.inhibitor.VIII, Salubrinal and Lenalidomide, etc. Meanwhile, we identified lncRNA OCIAD1-AS1/miR-141-3p/GPM6B and lncRNA OCIAD1-AS1/miR-200a-3p/AKAP11 regulatory axes, which may play a potential role in the progression of BC.
Collapse
Affiliation(s)
- Xiaocong Mo
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Centre, The Fist Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yin Li
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Aitao Nai
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Feng Ma
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shoaib Bashir
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Guoxia Jia
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Correspondence: Meng Xu,
| |
Collapse
|
13
|
Xu C, Chen L, Wang RJ, Meng J. LncRNA KCNQ1OT1 knockdown inhibits ox-LDL-induced inflammatory response and oxidative stress in THP-1 macrophages through the miR-137/TNFAIP1 axis. Cytokine 2022; 155:155912. [DOI: 10.1016/j.cyto.2022.155912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
|