1
|
da Silva AAF, Fiadeiro MB, Bernardino LI, Fonseca CSP, Baltazar GMF, Cristóvão ACB. "Lipopolysaccharide-induced animal models for neuroinflammation - An overview.". J Neuroimmunol 2024; 387:578273. [PMID: 38183948 DOI: 10.1016/j.jneuroim.2023.578273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
Neuroinflammation is a pathological mechanism contributing to neurodegenerative diseases. For in-depth studies of neuroinflammation, several animal models reported reproducing behavioral dysfunctions and cellular pathological mechanisms induced by brain inflammation. One of the most popular models of neuroinflammation is the one generated by lipopolysaccharide exposure. Despite its importance, the reported results using this model show high heterogeneity, making it difficult to analyze and compare the outcomes between studies. Therefore, the current review aims to summarize the different experimental paradigms used to reproduce neuroinflammation by lipopolysaccharide exposure and its respective outcomes, helping to choose the model that better suits each specific research aim.
Collapse
Affiliation(s)
- Ana Alexandra Flores da Silva
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | - Mariana Bernardo Fiadeiro
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal
| | | | | | | | - Ana Clara Braz Cristóvão
- CICS-UBI - Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal; NeuroSoV/Fastprinciple-Lda, UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Chaturvedi S, Tiwari V, Gangadhar NM, Rashid M, Sultana N, Singh SK, Shukla S, Wahajuddin M. Isoformononetin, a dietary isoflavone protects against streptozotocin induced rat model of neuroinflammation through inhibition of NLRP3/ASC/IL-1 axis activation. Life Sci 2021; 286:119989. [PMID: 34597609 DOI: 10.1016/j.lfs.2021.119989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
AIMS Isoformononetin (IFN), a methoxyl isoflavone present in most of human dietary supplements. However, being a highly potent antioxidant and anti-inflammatory molecule, its activity against neuronal oxidative stress and neuroinflammation has not been explored till now. The present study was inquested to assess the antioxidant, anti-apoptotic and anti-inflammatory activity of IFN against streptozotocin induced neuroinflammation in different brain regions of rat. MAIN METHODS Four groups of animals were subjected to treatment as control, toxic control (STZ; single intracerebrovascular injection), third group (STZ + IFN; 20 mg/kg p.o.), fourth group (IFN) for 14 days. The different brain regions of rats were evaluated for inflammatory, apoptotic and biochemical antioxidant markers. The brain tissues were further assessed for gene expression, immunohistochemical and western blotting examination for localization of inflammasome cascade expression that plays a pivotal role in neuroinflammation. KEY FINDINGS The modulation in oxidant/antioxidant status after exposure of STZ was significantly balanced after administration of IFN to rats. Further, IFN was also found to be an apoptotic agent as it modulates the apoptotic gene (Bax) and anti-apoptotic gene (BcL2) expression. IFN significantly curtailed the augmented protein expression of NLRP3, NLRP2, ASC, NFκBP65, IL-1β and caspase-1 due to STZ administration in cortex and hippocampus rat brain regions. SIGNIFICANCE The aforementioned results proclaim the neuroprotective functioning of IFN against STZ induced inflammation. IFN significantly prevents the neuroinflammation by decreasing the generation of ROS that reduces the activation of NLRP3/ASC/IL-1 axis thereby exerting neuroprotection as evidenced in rat model of STZ induced neuroninflammation.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Virendra Tiwari
- Division of Neuroscience and Ageing Biology, Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narwade Mahaveer Gangadhar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mamunur Rashid
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Kumar Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Singh L, Roy S, Kumar A, Rastogi S, Kumar D, Ansari MN, Saeedan AS, Singh M, Kaithwas G. Repurposing Combination Therapy of Voacamine With Vincristine for Downregulation of Hypoxia-Inducible Factor-1α/Fatty Acid Synthase Co-axis and Prolyl Hydroxylase-2 Activation in ER+ Mammary Neoplasia. Front Cell Dev Biol 2021; 9:736910. [PMID: 34869321 PMCID: PMC8637442 DOI: 10.3389/fcell.2021.736910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
The current study investigated the role of combination therapy with voacamine and vincristine in preventing mammary gland carcinoma through prolyl hydroxylase-2 activation. Prolyl hydroxylase-2 activation leads to the downregulation of hypoxia-inducible factor-1α and fatty acid synthase. Overexpression of hypoxia-inducible factor-1α and fatty acid synthase has been previously reported in solid tumors of the mammary gland. After screening a battery of natural compounds similar to vincristine, voacamine was selected as a possible prolyl hydroxylase-2 activator, and its activity was evaluated using a 7,12-dimethylbenz[a]anthracene-induced rat model. The combination therapy was evaluated for cardiac toxicity using a hemodynamic profile. Angiogenic markers were evaluated by carmine staining. Monotherapy and combination therapy were also evaluated for liver and kidney toxicity using hematoxylin and eosin staining. The antioxidant potential was delineated using oxidative stress markers. The serum metabolomic profile was studied using NMR spectroscopy, and the disruption of fatty acids was evaluated using gas chromatography. Western blotting of proteins involved in hypoxic pathways was performed to decipher the action of therapy at the molecular level. Immunoblotting analysis validated that combination therapy has potential toss with prolyl hydroxylase-2 activity and thus initiates proteolytic degradation of hypoxia-inducible factor-1α and its consequent effects. Combination therapy also stimulated programmed cell death (apoptosis) in rapidly dividing cancer cells. The present study explored the role of voacamine inactivation of prolyl hydroxylase-2, which can decrease the overexpression of hypoxia-inducible factor-1α and fatty acid synthase in mammary gland carcinoma cells.
Collapse
Affiliation(s)
- Lakhveer Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anurag Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shubham Rastogi
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dinesh Kumar
- Center for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mohd. Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
4
|
Tiwari V, Mishra A, Singh S, Mishra SK, Sahu KK, Parul, Kulkarni MJ, Shukla R, Shukla S. Protriptyline improves spatial memory and reduces oxidative damage by regulating NFκB-BDNF/CREB signaling axis in streptozotocin-induced rat model of Alzheimer's disease. Brain Res 2021; 1754:147261. [PMID: 33422534 DOI: 10.1016/j.brainres.2020.147261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023]
Abstract
Antidepressants are well known to exert their role via upregulation of brain derived neurotrophic factor (BDNF). BDNF has been reported to exerts its neuroprotective effect in rodent and primate models as well as in patients of Alzheimer's disease (AD). The aim of our study was to evaluate the effect of protriptyline (PRT), a tricyclic antidepressant, in streptozotocin (STZ)- induced rat model of AD. Total 10 µl of STZ was injected into each ventricle (1 mg/kg). PRT (10 mg/kg, i.p.) treatment was started 3-day post STZ administration and continued till 21 days. We found that STZ treatment significantly increased pTau, Aβ42 and BACE-1 expression, oxidative stress and neurodegeneration in hippocampus and cortex of adult rats. STZ induced impairment in spatial learning and retention memory was associated with increased NFκB and reduced CREB and BDNF expression in cortex and hippocampus. Interestingly, PRT treatment significantly reduced pTau, Aβ42 and BACE-1 levels, neurodegeneration, oxidative stress and glial activation, contributing to the improved spatial learning and retention memory in STZ treated rats. Moreover, PRT treatment significantly improved p-ERK/ERK ratio and enhanced BDNF and CREB levels by reducing NFκB and GFAP expression in STZ treated rats. Our data suggest that impaired NFκB and CREB signaling potentially contribute in AD pathogenesis by elevating oxidative stress and neuroinflammation mediated neurodegeneration. Our study has established protriptyline as a multi target molecule in pre-clinical model of AD and further investigations on PRT like molecules could pave way for further development of effective new treatments in neurodegenerative disorders.
Collapse
Affiliation(s)
- Virendra Tiwari
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Mishra
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Sonu Singh
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Neuroscience, School of Medicine, University of Connecticut (Uconn) Health Center, 263 Farmington Avenue, L-4078, Farmington, CT 06030, USA
| | - Sandeep Kumar Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U. P, India
| | - Kiran Kumari Sahu
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Mahesh J Kulkarni
- Proteomics Facility, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Rakesh Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, U. P, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Shishkina GT, Bannova AV, Komysheva NP, Dygalo NN. Anxiogenic-like effect of chronic lipopolysaccharide is associated with increased expression of matrix metalloproteinase 9 in the rat amygdala. Stress 2020; 23:708-714. [PMID: 32748675 DOI: 10.1080/10253890.2020.1793943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathways by which inflammatory stimuli influence behaviors can involve changes in neuronal plasticity, however, the evidence for this is still insufficient. This study aimed to evaluate the effects of chronic lipopolysaccharide (LPS) injected alone or together with tetracycline antibiotic doxycycline (Dox) on the levels of Iba-1, BDNF, Bcl-xL and MMP-9 in brain regions in relation to stress-induced behaviors in the elevated plus-maze (EPM). LPS injected to adult rats every 2 days for a total of 7 injections reduced body weight gain, increased spleen and adrenal weights, decreased locomotor activity, and increased anxiety-like behavior. These effects were associated with increased expression of Iba-1, a well-known marker for activated microglia, in most brain regions investigated. Co-treatment of LPS with Dox attenuated LPS-induced microglial activation and behavioral changes, supporting their relation to the neuroinflammation. LPS administration also produced pro-apoptotic changes in the brain. In the hypothalamus and striatum, the levels of anti-apoptotic protein Bcl-xL were decreased, whereas in the amygdala, a significant increase in MMP-9 protein levels was observed. The levels of Iba-1 as well as MMP-9 in the amygdala positively correlated with the numbers of defecation. The data suggest that mechanisms of anxiety associated with neuroinflammation may involve the increase in MMP-9 levels in the amygdala.
Collapse
Affiliation(s)
- Galina T Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Anita V Bannova
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Natalya P Komysheva
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Nikolay N Dygalo
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
6
|
Pal AK, Nandave M, Kaithwas G. Chemoprophylactic activity of nitazoxanide in experimental model of mammary gland carcinoma in rats. 3 Biotech 2020; 10:338. [PMID: 32670738 PMCID: PMC7343672 DOI: 10.1007/s13205-020-02332-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The current study focuses on the evaluation of the chemoprophylactic activity of nitazoxanide against the mammary gland carcinoma in experimental rats. The experimental protocol involves total 50 female Wistar albino rats of body weight 120-150 g, which were randomly categorized into five groups; Normal control (1% w/v carboxymethyl cellulose, p.o.); Toxic control (N-methyl-N-nitrosourea, MNU, 47 mg/kg i.v.); Standard (MNU, 47 mg/kg i.v. + tamoxifen, 1 mg/kg p.o.); Treatment 1 (MNU, 47 mg/kg i.v. + NTZ low-dose, 25 mg/kg p.o.); and Treatment 2 (MNU, 47 mg/kg, i.v. + NTZ high-dose, 50 mg/kg p.o.). The mammary gland carcinoma was induced by a single tail vein intravenous injection of MNU at a 47 mg/kg dose. Seven days after MNU administration, daily dosing of nitazoxanide and tamoxifen was initiated till 110th day in respective groups. The MNU toxicity was apparent with the altered electrocardiogram and heart rate variability, increased number of alveolar bud count, differentiation score, and upregulated antioxidant parameters. Nitazoxanide treatment restored the histological architecture in rats along with the reduction of alveolar buds and downregulation of oxidative stress markers as well as inflammatory markers. Therefore, nitazoxanide can be utilized as a potential chemoprophylactic agent against mammary gland carcinoma induced by MNU.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, MB Road, New Delhi, 110017 India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, MB Road, New Delhi, 110017 India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Rae Bareli Road, Lucknow, 226025 India
| |
Collapse
|
7
|
Chaturvedi S, Malik MY, Rashid M, Singh S, Tiwari V, Gupta P, Shukla S, Singh S, Wahajuddin M. Mechanistic exploration of quercetin against metronidazole induced neurotoxicity in rats: Possible role of nitric oxide isoforms and inflammatory cytokines. Neurotoxicology 2020; 79:1-10. [DOI: 10.1016/j.neuro.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
|
8
|
Saeedan AS, Rastogi S, Ansari MN. Roflumilast counteracts DMH-induced preneoplastic colon damage in albino Wistar rats. Hum Exp Toxicol 2020; 39:1545-1555. [PMID: 32524861 DOI: 10.1177/0960327120931165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The study explored the chemoprophylactic potential of roflumilast against 1,2-dimethylhydrazine (DMH) actuated preneoplastic colon damage in albino Wistar rats. METHODS Animals were arbitrarily divided into five groups of six animals each. DMH was used to induce preneoplastic colon damage (20 mg/kg/7 days, subcutaneously, for 42 days). Roflumilast was administered subcutaneously at two doses (1 and 5 mg/kg/day, from day 28 to 42). At the end of the study, the animals were recorded for the electrocardiographic changes and heart rate variability (HRV) paradigms on 42nd day, using PowerLab system. Blood samples were collected from all the animals to measure hydrogen sulfide (H2S) and nitric acid. The colon tissue was dissected out and analyzed for inflammatory markers, biochemical parameters including, superoxide dismutase, thiobarbituric acid reactive substances, catalase, and glutathione reductase and histopathology. RESULTS DMH caused derangement of HRV factors, abnormal antioxidant markers, and elevated levels of inflammatory markers. H2S and nitric oxide levels upsurge in DMH-treated rats and promoted preneoplastic damage. Histopathologically, loss of crypts, goblet cells, and distorted lamina propria were observed in toxic group. Treatment with roflumilast was able to curtail down oxidative stress and inflammatory markers and stabilitate the hemodynamic derangements as well as was able to restore the normal architecture of colonic mucosa. CONCLUSION The findings from the present study conclude that treatment with roflumilast positively modulates the preneoplastic colon damage.
Collapse
Affiliation(s)
- A S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - S Rastogi
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - M N Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Roy S, Singh M, Rawat A, Kumar D, Kaithwas G. Mitochondrial apoptosis and curtailment of hypoxia-inducible factor-1α/fatty acid synthase: A dual edge perspective of gamma linolenic acid in ER+ mammary gland cancer. Cell Biochem Funct 2020; 38:591-603. [PMID: 32207176 DOI: 10.1002/cbf.3513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Gamma linolenic acid is a polyunsaturated fatty acid having selective anti-tumour properties with negligible systemic toxicity. In the present study, the anti-cancer potential of gamma linolenic acid and its effects on mitochondrial as well as hypoxia-associated marker was evaluated. The effect of gamma linolenic acid was scrutinised against ER + MCF-7 cells by using fluorescence microscopy, JC-1 staining, dot plot assay and cell cycle analysis. The in vitro results were also confirmed using carcinogen (n-methyl-n-nitrosourea) induced in vivo model. The early and late apoptotic signals in the conjugation with mitochondrial depolarisation were found once scrutinised through mitochondrial membrane potential and life death staining after gamma linolenic acid treatment. Gamma linolenic acid arrested the cell cycle in G0/G1 phase with the majority of cell populations in the early apoptotic stage. The translocation of phosphatidylserine was studied through annexin-V FITC dot plot assay. The markers of cellular proliferation (decreased alveolar bud count, histopathological architecture restoration and loss of tumour micro-vessels) were diminished after gamma linolenic acid treatment. Gamma linolenic acid ameliorates the biological effects of n-methyl-n-nitrosourea persuading the mitochondrial mediated death pathway and impeding the hypoxic microenvironment to make a halt in palmitic acid synthesis. SIGNIFICANCE: The present study elaborates the effect of gamma linolenic acid on mammary gland cancer by following mitochondrial-mediated death apoptosis pathway. Gamma linolenic acid also inhibits cell-wall synthesis by the curtailment of HIF-1α and FASN level in mammary gland cancer.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Atul Rawat
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Siard-Altman MH, Harris PA, Moffett-Krotky AD, Ireland JL, Betancourt A, Barker VD, McMurry KE, Reedy SE, Adams AA. Relationships of inflamm-aging with circulating nutrient levels, body composition, age, and pituitary pars intermedia dysfunction in a senior horse population. Vet Immunol Immunopathol 2020; 221:110013. [PMID: 32058159 DOI: 10.1016/j.vetimm.2020.110013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
Similarly to aged humans, senior horses (≥20 years) exhibit chronic low-grade inflammation systemically, known as inflamm-aging. Inflamm-aging in the senior horse has been characterized by increased circulating inflammatory cytokines as well as increased inflammatory cytokine production by lymphocytes and monocytes in response to a mitogen. Little is currently known regarding underlying causes of inflamm-aging. However, senior horses are also known to present with muscle wasting and often the endocrinopathy pituitary pars intermedia dysfunction (PPID). Despite the concurrence of these phenomena, the relationships inflamm-aging may have with measures of body composition and pituitary function in the horse remain unknown. Furthermore, nutrition has been a focus of research in an attempt to promote health span as well as life span in senior horses, with some nutrients, such as omega-3 fatty acids, having known anti-inflammatory effects. Thus, an exploratory study of a population of n = 42 similarly-managed senior horses was conducted to determine relationships between inflamm-aging and measures of circulating nutrients, body composition, age, and PPID. Serum was collected to determine vitamin, mineral, and fatty acid content. Peripheral blood mononuclear cells were also isolated to determine inflammatory cytokine production of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) following stimulation with a mitogen, as well as to determine gene expression of interleukin(IL)-1β, IL-6, IL-10, IFN-γ, and TNF-α. Serum IL-6 and C-reactive protein were determined by enzyme-linked immunosorbent assay. Whole blood was collected for hematological and biochemical analysis. Body composition was evaluated via ultrasound and muscle scoring for all 42 horses as well as by deuterium oxide dilution for a subset of n = 10 horses. Pituitary function was evaluated by measuring basal adrenocorticotropin hormone concentrations as well as by thyrotropin releasing hormone stimulation testing (to determine PPID status). Results showed various relationships between inflammatory markers and the other variables measured. Most notably, docosadienoic acid (C22:2n6c), docosapentaenoic acid (C22:5n3c), and folate were positively associated with numerous inflammatory parameters (P ≤ 0.05). Although no relationships were found between inflamm-aging and PPID, being positive for PPID was negatively associated with vitamin B12 (P ≤ 0.01). No relationships between inflammation and body composition were found. Even within this senior horse population, age was associated with multiple parameters, particularly with numerous inflammatory cytokines and fatty acids. In summary, inflamm-aging exhibited relationships with various other parameters examined, particularly with certain fatty acids. This exploratory study provides insights into physiological changes associated with inflamm-aging in the senior horse.
Collapse
Affiliation(s)
| | - Patricia A Harris
- Equine Studies Group, WALTHAM Petcare Science Institute, Waltham-on-the-Wolds, Melton Mowbray, LE14 4RT, UK
| | | | - Joanne L Ireland
- Equine Clinical Sciences, Department of Health and Life Sciences, University of Liverpool, Neston, Wirral, CH64 7TE, UK
| | - Alejandra Betancourt
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Virginia D Barker
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Kellie E McMurry
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Stephanie E Reedy
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Amanda A Adams
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| |
Collapse
|
11
|
Singh M, Kasna S, Roy S, Aldosary S, Saeedan AS, Ansari MN, Kaithwas G. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer 2019; 19:996. [PMID: 31651285 PMCID: PMC6814136 DOI: 10.1186/s12885-019-6152-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study evaluates the anti-cancer effects of Tadalafil (potent PDE-5 inhibitor) in female albino wistar rats against n-methyl n-nitrosourea induced mammary gland carcinogenesis. METHODS The animals were selected and randomly divided among four groups and each group contains six animals per group. The animal tissue and serum samples were evaluated for the presence of antioxidant parameters and the cellular morphology was studied using carminic staining, haematoxylin staining and scanning electron microscopy followed by immunoblotting analysis. RESULTS On the grounds of hemodynamic recordings and morphology, n-methyl n-nitrosourea treated group showed distorted changes along with distorted morphological parameters. For morphological analysis, the mammary gland tissues were evaluated using scanning electron microscopy, whole mount carmine staining, haematoxylin and eosin staining. The serum samples were evaluated for the evaluation of oxidative stress markers and inflammatory markers. The level of caspase 3 and 8 were also evaluated for the estimation of apoptosis. The fatty acid profiling of mammary gland tissue was evaluated using fatty acid methyl esters formation. The mitochondrial mediated apoptosis and inflammatory markers were evaluated using immunoblotting assay. CONCLUSION The results confirm that Tadalafil treatment restored all the biological markers to the normal and its involvement in mitochondrial mediated death apoptosis pathway along with inhibition of inflammatory markers.
Collapse
Affiliation(s)
- Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sweta Kasna
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohd. Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| |
Collapse
|
12
|
Yadav RK, Tripathi CB, Saraf SA, Ansari MN, Saeedan AS, Aldosary S, Rajinikanth PS, Kaithwas G. Alpha-linolenic acid based nano-suspension protect against lipopolysaccharides induced mastitis by inhibiting NFκBp65, HIF-1α, and mitochondria-mediated apoptotic pathway in albino Wistar rats. Toxicol Appl Pharmacol 2019; 377:114628. [PMID: 31207257 DOI: 10.1016/j.taap.2019.114628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/30/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022]
|
13
|
Devi U, Singh M, Roy S, Gupta PS, Ansari MN, Saeedan AS, Kaithwas G. Activation of prolyl hydroxylase-2 for stabilization of mitochondrial stress along with simultaneous downregulation of HIF-1α/FASN in ER + breast cancer subtype. Cell Biochem Funct 2019; 37:216-227. [PMID: 30950543 DOI: 10.1002/cbf.3389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/05/2022]
Abstract
The present study was undertaken to inquest the chemical activation of prolyl hydroxylase-2 for the curtailment of hypoxia-inducible factor-1α and fatty acid synthase. It was well documented that hypoxia-inducible factor-1α and fatty acid synthase were overexpressed in mammary gland carcinomas. After screening a battery of compounds, BBAP-2 was retrieved as a potential prolyl hydroxylase-2 activator and validates its activity using ER + MCF-7 cell line and n-methyl-n-nitrosourea-induced rat in vivo model, respectively. BBAP-2 was palpable for the morphological characteristics of apoptosis along with changes in the mitochondrial intergrity as visualized by acridine orange/ethidium bromide and JC-1 staining against ER + MCF-7 cells. BBAP-2 also arrest the cell cycle of ER + MCF-7 cells at G2/M phase. Afterward, BBAP-2 has scrutinized against n-methyl-n-nitrosourea-induced mammary gland carcinoma in albino Wistar rats. BBAP-2 restored the morphological architecture when screened through carmine staining, haematoxylin and eosin staining, and scanning electron microscopy. BBAP-2 also delineated the markers of oxidative stress favourably. The immunoblotting and mRNA expression analysis validated that BBAP-2 has a potentialty activate the prolyl hydroxylase-2 with sequential downregulating effect on hypoxia-inducible factor-1α and its downstream checkpoint. BBAP-2 also fostered apoptosis through mitochondrial-mediated death pathway. The present study elaborates the chemical activation of prolyl hydroxylase-2 by which the increased expression of HIF-1α and FASN can be reduced in mammary gland carcinoma.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural, Technology and Sciences, Allahabad, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom University of Agricultural, Technology and Sciences, Allahabad, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
14
|
Roy S, Singh M, Sammi SR, Pandey R, Kaithwas G. ALA-mediated biphasic downregulation of α-7nAchR/HIF-1α along with mitochondrial stress modulation strategy in mammary gland chemoprevention. J Cell Physiol 2018; 234:4015-4029. [PMID: 30221357 DOI: 10.1002/jcp.27168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
The study elucidates the effect of ɑ-linolenic acid (ALA) on mitochondrial stress, hypoxic cancer microenvironment, and intervention of cholinergic anti-inflammatory pathway using N-methyl-N-nitrosourea (MNU) induced estrogen receptor (ER+) mammary gland carcinoma and Caenorhabditis elegans model, respectively. The efficacy of ALA was scrutinized in vivo and in vitro using various experiments like hemodynamic studies, morphological analysis, antioxidants parameters, immunoblotting, and quantitative reverse transcription polymerase chain reaction. The effect of ALA was also validated using C. elegans worms. ALA administration had a positive effect on tissue architecture of the malignancy when scrutinized through the whole mount carmine staining, hematoxylin and eosin staining, and scanning electron microscopy. The proteomic and genomic checkpoint revealed the participation of mitochondrial dysfunction, alteration of hypoxic microenvironment, and involvement of cholinergic anti-inflammatory response after treatment with ALA. ALA treatment has also increased the level of synaptic acetylcholine and acetylcholine esterase with a significant decrease in lipid content. It was concluded that ALA persuaded the mitochondrial stress, activation of downstream cholinergic anti-inflammatory markers, and favorable regulation of hypoxia microenvironment through inhibition of fatty acid synthase and sterol regulatory element-binding protein.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shreesh Raj Sammi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
15
|
Al-Saeedan AS, Gautam V, Ansari MN, Singh M, Yadav RK, Rawat JK, Devi U, Gautam S, Roy S, Kaithwas G. Revisiting the systemic lipopolysaccharide mediated neuroinflammation: Appraising the effect of l-cysteine mediated hydrogen sulphide on it. Saudi Pharm J 2018; 26:520-527. [PMID: 29844724 PMCID: PMC5961749 DOI: 10.1016/j.jsps.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
The present research was ventured to examine the effect of l-cysteine on neuro-inflammation persuaded by peripheral lipopolysaccharides (LPS, 125 μg/kg, i.p.) administration. No behavioral, biochemical, and inflammatory abnormality was perceived in the brain tissues of experimental animals after LPS administration. l-cysteine precipitated marginal symptoms of toxicity in the brain tissue. Similar pattern of wholesome effect of LPS were perceived when evaluated through the brain tissue fatty acid profile, histopathologically and NF-ĸBP65 protein expression. LPS was unsuccessful to alter the levels of hydrogen sulphide (H2S), cyclooxygenase (COX) and lipoxygenase (LOX) enzyme in brain tissue. LPS afforded significant peripheral toxicity, when figured out through inflammatory markers (COX, LOX), gaseous signaling molecules nitric oxide (NO), H2S, liver toxicity (SGOT, SGPT), and inflammatory transcription factor (NF-ĸBP65) and l-cysteine also provided a momentous protection against the same as well. The study inculcated two major finding, firstly LPS (i.p.) cannot impart inflammatory changes to brain and secondly, l-cysteine can afford peripheral protection against deleterious effect of LPS (i.p.)
Collapse
Affiliation(s)
- Abdulaziz S Al-Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Varsha Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| | - Mohd Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| | - Rajnish K Yadav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| | - Jitendra K Rawat
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| | - Uma Devi
- Department of Pharmaceutical Sciences, FHMSIASM SHIATS-Deemed University (Formerly Allahabad Agriculture Institute), Allahabad, UP, India
| | - Swetlana Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, UP, India
| |
Collapse
|
16
|
Alpha-linolenic acid stabilizes HIF-1 α and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget 2017; 8:70049-70071. [PMID: 29050261 PMCID: PMC5642536 DOI: 10.18632/oncotarget.19551] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/12/2017] [Indexed: 12/25/2022] Open
Abstract
Alpha linolenic acid is an essential polyunsaturated fatty acid and is reported to have the anti-cancer potential with no defined hypothesis or mechanism/s. Henceforth present study was in-quested to validate the effect of alpha linolenic acid on mitochondrial apoptosis, hypoxic microenvironment and de novo fatty acid synthesis using in-vitro and in-vivo studies. The IC50 value of alpha linolenic acid was recorded to be 17.55μM against ER+MCF-7 cells. Treatment with alpha linolenic acid was evident for the presence of early and late apoptotic signals along with mitochondrial depolarization, when studied through acridine orange/ethidium bromide and JC-1 staining. Alpha linolenic acid arrested the cell cycle in G2/M phase. Subsequently, the in-vivo efficacy was examined against 7, 12-dimethylbenz anthracene induced carcinogenesis. Treatment with alpha linolenic acid demarcated significant effect upon the cellular proliferation as evidenced through decreased in alveolar bud count, restoration of the histopathological architecture and loss of tumor micro vessels. Alpha linolenic acid restored the metabolic changes to normal when scrutinized through 1H NMR studies. The immunoblotting and qRT-PCR studies revealed participation of mitochondrial mediated death apoptosis pathway and curtailment of hypoxic microenvironment after treatment with alpha linolenic acid. With all above, it was concluded that alpha linolenic acid mediates mitochondrial apoptosis, curtails hypoxic microenvironment along with inhibition of de novo fatty acid synthesis to impart anticancer effects.
Collapse
|
17
|
Verma A, Ahmed B, Anwar F, Rahman M, Patel DK, Kaithwas G, Rani R, Bhatt PC, Kumar V. Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-κB pathway. Inflammopharmacology 2017; 25:159-175. [DOI: 10.1007/s10787-017-0310-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
|
18
|
Lopes PC. LPS and neuroinflammation: a matter of timing. Inflammopharmacology 2016; 24:291-293. [PMID: 27645902 DOI: 10.1007/s10787-016-0283-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/17/2023]
Abstract
Lipopolysaccharide (LPS) administration has been repeatedly shown to elicit central inflammation, regardless of the route of administration. In a recent study, Tiwari et al. (Inflammopharmacology 10.1007/s10787-016-0274-3 , 2016) dispute the potential of peripheral administration of LPS to induce neuroinflammation. Here, I summarise literature indicating that the neuroinflammatory effects of LPS are time dependent, and suggest that their findings can be explained by the time at which they chose to measure neuroinflammation.
Collapse
Affiliation(s)
- Patricia C Lopes
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| |
Collapse
|