1
|
Mookkan M, Kandasamy S, Al-Odayni AB, Abduh NAY, Srinivasan S, Revannasidappa BC, Kumar V, Chinnasamy K, Aravindhan S, Shankar MK. A Structural and In Silico Investigation of Potential CDC7 Kinase Enzyme Inhibitors. ACS OMEGA 2023; 8:47187-47200. [PMID: 38107948 PMCID: PMC10719926 DOI: 10.1021/acsomega.3c07059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
A crucial role in the regulation of DNA replication is played by the highly conserved CDC kinase. The CDC7 kinase could serve as a target for therapeutic intervention in cancer. The primary heterocyclic substance is pyrazole, and its derivatives offer great potential as treatments for cancer cell lines. Here, we synthesized the two pyrazole derivatives: 4-(2-(4-chlorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-1) and 4-(2-(2,4-difluorophenyl)hydrazinyl)-5-methyl-2-tosyl-1H-pyrazol-3(2H)-one (PYRA-2). The structural confirmation of both the compounds at the three-dimensional level is characterized using single crystal X-ray diffraction and density functional theory. Furthermore, the in silico chemical biological properties were derived using molecular docking and molecular dynamics (MD) simulations. PYRA-1 and PYRA-2 crystallize in the P-1 (a = 8.184(9), b = 14.251(13), c = 15.601(15), α = 91.57(8), β = 97.48(9), 92.67(9), V = 1801.1(3) 3, and Z = 2) and P21/n (a = 14.8648(8), b = 8.5998(4), c = 15.5586(8), β = 116.47(7), V = 1780.4(19) 3, and Z = 4), space groups, respectively. In both PYRA-1 and PYRA-2 compounds, C-H···O intermolecular connections are common to stabilize the crystal structure. In addition, short intermolecular interactions stabilizes with C-H···π and π-π stacking. Crystal packing analysis was quantified using Hirshfeld surface analysis resulting in C···H, O···H, and H···H contacts in PYRA-1 exhibiting more contribution than in PYRA-2. The conformational stabilities of the molecules are same in the gas and liquid phases (water and DMSO). The docking scores measured for PYRA-1 and PYRA-2 with CDC7 kinase complexes are -5.421 and -5.884 kcal/mol, respectively. The MD simulations show that PYRA-2 is a more potential inhibitor than PYRA-1 against CDC7 kinase.
Collapse
Affiliation(s)
- Mohanbabu Mookkan
- Department
of Physics, Presidency College (Autonomous), University of Madras, Chennai 600 005, India
| | - Saravanan Kandasamy
- Faculty
of Chemistry, University of Warsaw, Ludwika Pasteura 1, Warsaw 02-093, Poland
| | - Abdel-Basit Al-Odayni
- Department
of Restorative Dental Science, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Naaser Ahmed Yaseen Abduh
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sugarthi Srinivasan
- Department
of Physics and Nanotechnology, SRM Institute
of Science and Technology, Kattankulathur 603203, India
| | - Bistuvalli Chandrashekara Revannasidappa
- Department
of Pharmaceutical Chemistry, NGSM Institute
of Pharmaceutical Sciences of Nitte - Deemed to be University, Paneer, Deralakatte, Mangalore 575018, Karnataka India
| | - Vasantha Kumar
- Department
of P.G. Chemistry, Sri Dharmasthala Manjunatheshwara
College (Autonomous), Ujire 574240, India
| | | | - Sanmargam Aravindhan
- Department
of Physics, Presidency College (Autonomous), University of Madras, Chennai 600 005, India
| | - Madan Kumar Shankar
- Department
of Chemistry-BMC, University of Uppsala, Husargatan 3, Uppsala 75237, Sweden
| |
Collapse
|
2
|
Turones LC, Martins AN, Moreira LKDS, Fajemiroye JO, Costa EA. Development of pyrazole derivatives in the management of inflammation. Fundam Clin Pharmacol 2020; 35:217-234. [PMID: 33171533 DOI: 10.1111/fcp.12629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/15/2023]
Abstract
The therapeutic limitations and poor management of inflammatory conditions are anticipated to impact patients negatively over the coming decades. Following the synthesis of the first pyrazole-antipyrine in 1887, several other derivatives have been screened for anti-inflammatory, analgesic, and antipyretic activities. Arguably, the pyrazole ring, as a major pharmacophore and central scaffold partly, defines the pharmacological profile of several derivatives. In this review, we explore the structural-activity relationship that accounts for the pharmacological profile of pyrazole derivatives and highlights future research perspectives capable of optimizing current advancement in the search for safe and efficacy anti-inflammatory drugs. The flourishing research into the pyrazole derivatives as drug candidates has advanced our understanding of inflammation-related diseases and treatment.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Goiás, 74001970, Brazil
| |
Collapse
|
3
|
Almeida DDS, da Silva DPB, Moreira LKDS, Menegatti R, Lião LM, Sanz G, Vaz BG, Ghedini PC, Costa EA, Florentino IF. Investigation of anti-inflammatory potential of 5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione compound. Eur J Pharmacol 2020; 886:173388. [PMID: 32768504 DOI: 10.1016/j.ejphar.2020.173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
The aim of this study was to synthesise the novel di-tert-butylphenol compound, 5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-thioxo-dihydropyrimidine-4,6(1H, 5H)-dione (LQFM218), and evaluate the potential anti-nociceptive and anti-inflammatory activities in acute (mice) models in vivo. The compound was tested on acute models of pain such as acetic acid-induced abdominal writhing, formalin-induced nociception and carrageenan-induced mechanical hyperalgesia. The anti-inflammatory activity was observed in paw oedema, carrageenan-induced pleurisy tests and inflammatory mediator quantification. Key findings: oral treatment with the LQFM218 (50, 100 or 200 mg/kg) reduced abdominal writhing (18.8%, 31.6% and 48.3%). The dose intermediate (100 mg/kg) reduced the nociception in the second phase of the formalin test (61.4%), and also showed anti-hyperalgic activity in carrageenan-induced mechanical hyperalgesia (until 42.3%). In acute inflammation models, the treatment of mice LQFM218 (100 mg/kg) reduced the paw oedema all the time (33.8%, 42.6%, 37.4% and 36%) and in pleurisy test reduced: polymorphonuclear cell migration (35.4%), myeloperoxidase activity (52.2%) and the levels of inflammatory mediators such as PGE2 (23.0%), TNF-α (67.6%) and IL-1β (53.4%). The present study showed that LQFM218 effectively reduced the nociception and inflammation in different models, and its mechanism might be related to the reduction of PGE2 and pro-inflammatory cytokines. These findings show LQFM218 as a potential anti-inflammatory drug.
Collapse
Affiliation(s)
- Dionys de S Almeida
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Daiany P B da Silva
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Lorrane K da S Moreira
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Germán Sanz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo C Ghedini
- Institute of Biological Sciences, Department of Pharmacology, Laboratory of Molecular and Biochemistry Pharmacology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Iziara F Florentino
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Omrani R, Ben Ali R, Selmi W, Arfaoui Y, Véronique El May M, Ben Akacha A. Synthesis, design, DFT Modeling, Hirshfeld Surface Analysis, crystal structure, anti-oxidant capacity and anti-nociceptive activity of dimethylphenylcarbamothioylphosphonate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Bhatia R, Kadyan K, Duhan M, Devi M, Singh R, Kamboj RC, Kumar P. A Serendipitous Synthesis: SiO2‐HNO3Mediated Oxidative Aromatization and Regioselective Nitration of 1,3,5‐Trisubstituted‐4,5‐Dihydro‐1H‐Pyrazoles. ChemistrySelect 2019. [DOI: 10.1002/slct.201902285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rimpy Bhatia
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Kulbir Kadyan
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Meenakshi Duhan
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Meena Devi
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Rahul Singh
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Ramesh C. Kamboj
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| | - Parvin Kumar
- Department of ChemistryKurukshetra University Kurukshetra- 136119 Haryana
| |
Collapse
|
6
|
Akgun FS, Sirin DY, Yilmaz I, Karaarslan N, Ozbek H, Simsek AT, Kaya YE, Kaplan N, Akyuva Y, Caliskan T, Ates O. Investigation of the effect of dipyrone on cells isolated from intervertebral disc tissue. Exp Ther Med 2019; 18:216-224. [PMID: 31258656 PMCID: PMC6566084 DOI: 10.3892/etm.2019.7576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to evaluate the effects of dipyrone, an indispensable analgesic, anti-pyretic and anti-spasmodic used in emergency departments, on nucleus pulposus and annulus fibrosus cells in vitro. After surgical biopsy, primary cell cultures were prepared from intact intervertebral disc tissues. Dipyrone was administered to the cultures in the experimental groups except for the control group. The data obtained were statistically evaluated. The proliferation was identified to be suppressed via MTT analysis. The gene expression profile of the intervertebral disc cells in the dipyrone-treated groups was significantly changed. The expression of chondroadherin, cartilage oligo matrix protein, interleukin-1β and metalloproteinase (MMP)-19 genes were decreased, but MMP-13 and MMP-7 genes expressions were increased, as determined via reverse transcription-quantitative PCR. AO/PI staining revealed that no apoptotic or other type of cell death was detectable after administration of dipyrone does not mean that the drug is innocuous. The occurrence of cellular senescence and/or the halt of cell proliferation may also be important mechanisms underlying the adverse inhibitory effects of dipyrone. Therefore, prior to administering dipyrone in clinical practice, all possible adverse effects of this drug should be considered.
Collapse
Affiliation(s)
- Feride Sinem Akgun
- Department of Emergency Medicine, School of Medicine, Istanbul Maltepe University, Istanbul 34843, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Abdullah Talha Simsek
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Yasin Emre Kaya
- Department of Orthopedics and Traumatology, School of Medicine, Abant Izzet Baysal University, Bolu 14000, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Corlu Reyap Hospital, Istanbul Rumeli University, Tekirdag 59680, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Gaziosmanpasa Taksim Training and Research Hospital, Istanbul 34433, Turkey
| | - Tezcan Caliskan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University Hospital, Istanbul Koc University, Istanbul 34010, Turkey
| |
Collapse
|
7
|
Trindade NR, Lopes PR, Naves LM, Fajemiroye JO, Alves PH, Amaral NO, Lião LM, Rebelo ACS, Castro CH, Braga VA, Menegatti R, Pedrino GR. The Newly Synthesized Pyrazole Derivative 5-(1-(3 Fluorophenyl)-1 H-Pyrazol-4-yl)-2 H-Tetrazole Reduces Blood Pressure of Spontaneously Hypertensive Rats via NO/cGMO Pathway. Front Physiol 2018; 9:1073. [PMID: 30131720 PMCID: PMC6091002 DOI: 10.3389/fphys.2018.01073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 01/13/2023] Open
Abstract
The search for new antihypertensive drugs has grown in recent years because of high rate of morbidity among hypertensive patients and several side effects that are associated with the first-line medications. The current study sought to investigate the antihypertensive effect of a newly synthesized pyrazole derivative known as 5-(1-(3 fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-21). Spontaneously hypertensive rats (SHR) were used to evaluate the effect of LQFM-21 on mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC), arterial vascular conductance (AVC), baroreflex sensitivity (BRS) index, and vascular reactivity. Acute intravenous (iv) administration of LQFM-21 (0.05, 0.1, 0.2, and 0.4 mg kg-1) reduced MAP and HR, and increased RVC and AVC. Chronic oral administration of LQFM-21 (15 mg kg-1) for 15 days reduced MAP without altering BRS. The blockade of muscarinic receptors and nitric oxide synthase by intravenous infusion of atropine and L-NAME, respectively, attenuated cardiovascular effects of LQFM-21. In addition, ex vivo experiments showed that LQFM-21 induced an endothelium-dependent relaxation in isolated aortic rings from SHR. This effect was blocked by guanylyl cyclase inhibitor (ODQ) and L-NAME. These findings suggest the involvement of muscarinic receptor and NO/cGMP pathway in the antihypertensive and vasodilator effects of LQFM-21.
Collapse
Affiliation(s)
- Neidiane R Trindade
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Lara M Naves
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Pedro H Alves
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Nathalia O Amaral
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Luciano M Lião
- Institute of Chemistry, Federal University of Goiás, Goiânia, Brazil
| | - Ana C S Rebelo
- Department of Morphology, Federal University of Goiás, Goiânia, Brazil
| | - Carlos H Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Valdir A Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
8
|
de Moura SS, de Ávila RI, Brito LB, de Oliveira R, de Oliveira GAR, Pazini F, Menegatti R, Batista AC, Grisolia CK, Valadares MC. In vitro genotoxicity and in vivo subchronic evaluation of the anti-inflammatory pyrazole compound LQFM021. Chem Biol Interact 2017; 277:185-194. [PMID: 28890382 DOI: 10.1016/j.cbi.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/22/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Scientific evidences have highlighted 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM021) as a promising anti-inflammatory, analgesic and antinociceptive agent due to its effects on peripheral opioid receptors associated with activation of the nitric oxide/cGMP/KATP pathway. Despite these important pharmacological findings, toxicity data of LQFM021 are scarce. Thus, this study investigated the in vitro genotoxicity of LQFM021 through cytokinesis-block micronucleus assay (OECD Nº 487/2014). Moreover, zebrafish model was used to assess the embryotoxicity potential of LQFM021 using fish embryo toxicity test (OECD Nº 236/2013) with extended exposure to evaluate subchronic larval development. In vivo subchronic toxicity of LQFM021 in rats (OECD Nº 407/2008) was also conducted. This compound at the lower concentrations tested (3.1 and 31 μg/mL) did not promote changes in micronuclei frequency in HepG2 cells. However, in the higher concentrations of LQFM021 (310 and 620 μg/mL) triggered a significant increase of micronucleated HepG2 cells, showing an alert signal of potential genotoxicity. Regarding the oral treatment of rats with LQFM021 (62.5, 125 or 250 mg/kg) for 28 days, the main findings showed that LQFM021 promoted renal and liver changes in a dose-dependent manner, being irreversible damage for kidneys while liver tissue showed a recovery after 14 days post treatment. Regarding embryotoxicity, although the lower concentrations used did not show toxicity, the concentration of LQFM021 (39.8 and 100 mg/L) promoted malformations in zebrafish embryo-larvae stage, in especial cardiac tissue changes. In conclusion, anti-inflammatory compound LQFM021 seems to have some limiting factors as a new therapeutic option to be used orally and in high repeated doses, related to those found in the non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- Soraia Santana de Moura
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Renato Ivan de Ávila
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Lara Barroso Brito
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Rhaul de Oliveira
- Laboratório de Genética Toxicológica (GeTOX), Instituto de Biologia, Universidade de Brasília, Brasília, Brazil; Laboratório de Ecotoxicologia e Microbiologia Ambiental Prof. Dr. Abílio Lopes (LEAL), Faculdade de Tecnologia, Universidade Estadual de Campinas, Limeira, São Paulo, Brazil
| | | | - Francine Pazini
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Aline Carvalho Batista
- Departamento de Estomatologia (Patologia Oral), Faculdade de Odontologia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica (GeTOX), Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | - Marize Campos Valadares
- Laboratório de Farmacologia e Toxicologia Celular - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Potential anti-inflammatory effect of LQFM-021 in carrageenan-induced inflammation: The role of nitric oxide. Nitric Oxide 2017; 69:35-44. [DOI: 10.1016/j.niox.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 12/13/2022]
|