1
|
Balkrishna A, Sharma S, Gohel V, Singh R, Tomer M, Dev R, Sinha S, Varshney A. Fevogrit, a polyherbal medicine, mitigates endotoxin (lipopolysaccharide)-induced fever in Wistar rats by regulating pro-inflammatory cytokine levels. Animal Model Exp Med 2025; 8:728-738. [PMID: 39021318 PMCID: PMC12008449 DOI: 10.1002/ame2.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Fever is characterized by an upregulation of the thermoregulatory set-point after the body encounters any pathological challenge. It is accompanied by uncomfortable sickness behaviors and may be harmful in patients with other comorbidities. We have explored the impact of an Ayurvedic medicine, Fevogrit, in an endotoxin (lipopolysaccharide)-induced fever model in Wistar rats. METHODS Active phytoconstituents of Fevogrit were identified and quantified using ultra-high-performance liquid chromatography (UHPLC) platform. For the in-vivo study, fever was induced in male Wistar rats by the intraperitoneal administration of lipopolysaccharide (LPS), obtained from Escherichia coli. The animals were allocated to normal control, disease control, Paracetamol treated and Fevogrit treated groups. The rectal temperature of animals was recorded at different time points using a digital thermometer. At the 6-h time point, levels of TNF-α, IL-1β and IL-6 cytokines were analyzed in serum. Additionally, the mRNA expression of these cytokines was determined in hypothalamus, 24 h post-LPS administration. RESULTS UHPLC analysis of Fevogrit revealed the presence of picroside I, picroside II, vanillic acid, cinnamic acid, magnoflorine and cordifolioside A, as bioactive constituents with known anti-inflammatory properties. Fevogrit treatment efficiently reduces the LPS-induced rise in the rectal temperature of animals. The levels and gene expression of TNF-α, IL-1β and IL-6 in serum and hypothalamus, respectively, was also significantly reduced by Fevogrit treatment. CONCLUSION The findings of the study demonstrated that Fevogrit can suppress LPS-induced fever by inhibiting peripheral or central inflammatory signaling pathways and could well be a viable treatment for infection-induced increase in body temperatures.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
- Department of Allied and Applied SciencesUniversity of PatanjaliHaridwarIndia
- Patanjali UK TrustGlasgowUK
- Patanjali Yogpeeth Nepal, MandikhatarKathmanduNepal
| | - Sonam Sharma
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Vivek Gohel
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Rani Singh
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Meenu Tomer
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Rishabh Dev
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Sandeep Sinha
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
| | - Anurag Varshney
- Drug Discovery and Development DivisionPatanjali Research FoundationHaridwarIndia
- Department of Allied and Applied SciencesUniversity of PatanjaliHaridwarIndia
- Special Centre for Systems MedicineJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
2
|
Srivastava V, Navabharath M, Khan M, Samal M, Parveen R, Singh SV, Ahmad S. A comprehensive review on Phyto-MAP: A novel approach of drug discovery against Mycobacterium avium subspecies paratuberculosis using AYUSH heritage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118482. [PMID: 38908495 DOI: 10.1016/j.jep.2024.118482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Indian system of Traditional medicine, AYUSH (Ayurveda, Yoga, Unani, Siddha, and Homeopathy) has great potential with a History of Safe Use (HOSU) of thousands of medicinal plants included in pharmacopoeias. The multi-targeted approach of phytoconstituents present in different traditionally used medicinal plants makes them suitable candidates for research against various infective pathogens. MAP which is a dairy-borne pathogen is associated with the development of Johne's disease in ruminants and Crohn's disease like autoimmune disorders in human beings. There are no reliable treatment alternatives available against MAP, leaving surgical removal of intestines as the sole option. Hence, there exists an urgent need to search for leads against such infection. AIM OF THE STUDY The present review has been conducted to find out the ethnopharmacological evidence about the potential of phytoconstituents against Mycobacterium avium subspecies paratuberculosis (MAP), along with the proposal of a potential phyto-MAP mechanism for the very first time taking anti-inflammatory, immunomodulatory, and anti-microbial traditional claims into consideration. MATERIALS AND METHODS We have analyzed and reviewed different volumes of the two main traditional scriptures of India i.e. Ayurvedic Pharmacopoeia of India (API) and Unani Pharmacopoeia of India (UPI), respectively-for identification of potential anti-MAP plants based on their claims for related disorders. These plants were further investigated systematically for their scientific publications of the last 20 years (2002-2022) available through electronic databases including Google Scholar, Pubmed, and Scopus. The studies conducted in vitro, cell lines, and in vivo levels were taken into consideration along with the associated mechanisms of phytoconstituents. RESULTS A total of 70 potential medicinal plants have been identified. Based on the ethnopharmacology, a potential phyto-paratuberculosis (Phyto-paraTB) mechanism has been proposed and out of 70, seven potential anti-MAP plants have been identified to have a great future as anti-MAP. CONCLUSION A novel and scientifically viable plan has been proposed for addressing anti-MAP plants for stimulating research against MAP and related disorders using mass-trusted AYUSH medicine, which can be used as an alternative remedy in resistance cases otherwise can be advocated as an adjuvant with modern treatments for better management of the disease.
Collapse
Affiliation(s)
- Varsha Srivastava
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Manthena Navabharath
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Monalisha Samal
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| | - Rabea Parveen
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, Delhi, India.
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi, India.
| |
Collapse
|
3
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Katiyar P, Pandey S, Chauhan M, Rajput SK, Arya V. Swertia chirayita (Roxb.) H. Karst.: A Magnificent Natural Remedy for the
Management of Gastrointestinal Disorders. THE INTERNATIONAL JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY DISEASES 2024; 03. [DOI: 10.2174/0126662906301632240528055034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 07/26/2024]
Abstract
:
Gastrointestinal (GI) disorders encompassing conditions such as gastritis, peptic ul-cers, and inflammatory bowel disorders are major global health concerns affecting millions worldwide. Conventional treatment options often come with undesirable side effects, prompting the search for alternative therapies. The herb's influence on digestive processes, mucosal protec-tion, and modulation of gut microbiota shed light on maintaining potential GI health. Swertia chirayita (Gentianaceae), commonly known as 'Chirata', is a traditional medicinal herb that has been used for centuries in various cultures for its therapeutic benefits, particularly for GI ailments. Furthermore, this review highlights several scientific studies and clinical trials that support the traditional uses of S. chirayita in treating GI disorders. In conclusion, S. chirayita could be ben-eficial as a natural remedy with promising therapeutic potential for managing GI disorders. How-ever, there are still some scientific gaps, such as the identification of bioactive compounds, the structure-activity relationship, the mechanistic action of isolated bioactive compounds, the de-velopment of effective analytical methods for comprehensive quality control, and safety profiles, that need to be addressed. Understanding its molecular mechanisms and conducting further clin-ical trials will contribute to establishing S. chirayita as a valuable addition to the armamentarium of natural therapies for GI health.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Shalini Singh
- Department of Pharmaceutical
Sciences, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Shalini Mishra
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Maneesha Rana
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Rajesh Kumar Mishra
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Prashant Katiyar
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Shalvi Pandey
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Muskan Chauhan
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Satyendra Kumar Rajput
- Department of Pharmaceutical
Sciences, Gurukula Kangri (Deemed to be University), Haridwar, 249404, Uttarakhand, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| |
Collapse
|
4
|
Raza A, Ali T, Naeem M, Asim M, Hussain F, Li Z, Nasir A. Biochemical characterization of bioinspired nanosuspensions from Swertia chirayita extract and their therapeutic effects through nanotechnology approach. PLoS One 2024; 19:e0293116. [PMID: 38330034 PMCID: PMC10852254 DOI: 10.1371/journal.pone.0293116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/26/2023] [Indexed: 02/10/2024] Open
Abstract
Swertia chirayita is used as a traditional medicinal plant due to its pharmacological activities, including antioxidant, antidiabetic, antimicrobial, and cytotoxic. This study was aimed to evaluate the therapeutic efficacy of newly synthesized nanosuspensions from Swertia chirayita through nanotechnology for enhanced bioactivities. Biochemical characterization was carried out through spectroscopic analyses of HPLC and FTIR. Results revealed that extract contained higher TPCs (569.6 ± 7.8 mg GAE/100 g)) and TFCs (368.5 ± 9.39 mg CE/100 g) than S. chirayita nanosuspension, TPCs (500.6 ± 7.8 500.6 ± 7.8 mg GAE/100 g) and TFCs (229.5± 3.85 mg CE/100 g). Antioxidant activity was evaluated through DPPH scavenging assay, and nanosuspension exhibited a lower DPPH free radical scavenging potential (06 ±3.61) than extract (28.9± 3.85). Anti-dabetic potential was assessed throughα-amylase inhibition and anti-glycation assays. Extract showed higher (41.4%) antiglycation potential than 35.85% nanosuspension and 19.5% α-amylase inhibitory potential than 5% nanosuspension. Biofilm inhibition activity against E. coli was higher in nanosuspension (69.12%) than extract (62.08%). The extract showed high cytotoxicity potential (51.86%) than nanosuspension (33.63%). These nanosuspensions possessed enhanced bioactivities for therapeutic applications could be explored further for the development of new drugs.
Collapse
Affiliation(s)
- Ayesha Raza
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Muhammad Asim
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zhiye Li
- Department of Pharmacy, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Shekh MR, Ahmed N, Kumar V. A Review of the Occurrence of Rheumatoid Arthritis and Potential Treatments through Medicinal Plants from an Indian Perspective. Curr Rheumatol Rev 2024; 20:241-269. [PMID: 38018201 DOI: 10.2174/0115733971268416231116184056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/30/2023]
Abstract
Arthritis is a medical condition that affects the joints and causes inflammation, pain, and stiffness. There are different types of arthritis, and it can affect people of all ages, even infants and the elderly. Recent studies have found that individuals with diabetes, heart disease, and obesity are more likely to experience arthritis symptoms. According to the World Health Organization, over 21% of people worldwide suffer from musculoskeletal problems. Roughly 42.19 million individuals in India, constituting around 0.31% of the populace, have been documented as having Rheumatic Arthritis (RA). Compared to other common diseases like diabetes, cancer, and AIDS, arthritis is more prevalent in the general population. Unfortunately, there is no specific cure for arthritis, and treatment plans usually involve non-pharmacological methods, surgeries, and medications that target specific symptoms. Plant-based remedies have also been shown to be effective in managing inflammation and related complications. In addition to therapies, maintaining a healthy diet, exercise, and weight management are essential for managing arthritis. This review discusses the causes, prevalence, diagnostic methods, current and prospective future treatments, and potential medicinal plants that may act as anti-inflammatory or anti-rheumatic agents. However, more research is necessary to identify the underlying mechanisms and active molecules that could improve arthritis treatment.
Collapse
Affiliation(s)
- Mohammad Raeesh Shekh
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| | - Nasir Ahmed
- Forensic Anthropology-1, Department of Forensic Medicine, YMC, Yenepoya Deemed to be University, University Road, Deralakatte, Mangaluru, Karnataka, 575018, India
| | - Vivek Kumar
- National Innovation Foundation (NIF), India, Grambharti, Amrapur, Gandhinagar, Mahudi Road, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Chang J, Zou S, Xiao Y, Zhu D. Identification and validation of targets of swertiamarin on idiopathic pulmonary fibrosis through bioinformatics and molecular docking-based approach. BMC Complement Med Ther 2023; 23:352. [PMID: 37798725 PMCID: PMC10557187 DOI: 10.1186/s12906-023-04171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Swertiamarin is the main hepatoprotective component of Swertiapatens and has anti-inflammatory and antioxidation effects. Our previous study showed that it was a potent inhibitor of idiopathic pulmonary fibrosis (IPF) and can regulate the expressions of α-smooth muscle actin (α-SMA) and epithelial cadherin (E-cadherin), two markers of the TGF-β/Smad (transforming growth factor beta/suppressor of mothers against decapentaplegic family) signaling pathway. But its targets still need to be investigated. The main purpose of this study is to identify the targets of swertiamarin. METHODS GEO2R was used to analyze the differentially expressed genes (DEGs) of GSE10667, GSE110147, and GSE71351 datasets from the Gene Expression Omnibus (GEO) database. The DEGs were then enriched with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis for their biological functions and annotated terms. The protein-protein interaction (PPI) network was constructed to identify hub genes. The identified hub genes were predicted for their bindings to swertiamarin by molecular docking (MD) and validated by experiments. RESULTS 76 upregulated and 27 downregulated DEGs were screened out. The DEGs were enriched in the biological function of cellular component (CC) and 7 cancer-related signaling pathways. Three hub genes, i.e., LOX (lysyl oxidase), COL5A2 (collagen type V alpha 2 chain), and CTGF (connective tissue growth factor) were selected, virtually tested for the interactions with swertiamarin by MD, and validated by in vitro experiments. CONCLUSION LOX, COL5A2, and CTGF were identified as the targets of swertiamarin on IPF.
Collapse
Affiliation(s)
- Jun Chang
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China.
| | - Shaoqing Zou
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Yiwen Xiao
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China
| | - Du Zhu
- College of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, China.
| |
Collapse
|
7
|
Zhou Q, Zhou Q, Xia R, Zhang P, Xie Y, Yang Z, Khan A, Zhou Z, Tan W, Liu L. Swertiamarin or heat-transformed products alleviated APAP-induced hepatotoxicity via modulation of apoptotic and Nrf-2/NF- κB pathways. Heliyon 2023; 9:e18746. [PMID: 37554797 PMCID: PMC10404768 DOI: 10.1016/j.heliyon.2023.e18746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE Swertiamarin (STM) belongs to iridoid class of compounds, and the heat-transformed products (HTPS) are produced by STM in the process of drug processing. The purpose of this study was to explore the protective effect and mechanism of STM or HTPS on acetaminophen (APAP)-induced hepatotoxicity. METHODS Mice and L-O2 cells were given APAP to establish the hepatotoxicity model in vivo and in vitro. The effects of STM or HTPS on oxidative stress, inflammation, and apoptosis induced by APAP were evaluated, with N-acetylcysteine (NAC) as a positive control. RESULTS STM or HTPS reduced the APAP-induced apoptosis of L-O2 cells and significantly alleviated the liver injury index induced by APAP (p < 0.01, 0.005) Interestingly, HTPS had better protective effect against APAP-induced hepatotoxicity than STM (p < 0.05). In addition STM or HTPS improved the histological abnormalities; inhibited lipid peroxidation and reduced the level of inflammatory mediators. They also activated the defense system of nuclear factor erythroid 2 related factor 2 (Nrf-2) and inhibited nuclear factor-κ B (NF-κB).
Collapse
Affiliation(s)
- Qian Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Qixiu Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Rui Xia
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Peng Zhang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Yanqing Xie
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Zhuya Yang
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zhihong Zhou
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Wenhong Tan
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Lu Liu
- Yunnan Yunzhong Institute of Nutrition and Health, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Iftikhar N, Saleem A, Akhtar MF, Abbas G, Shah S, Bibi S, Ashraf GM, Alghamdi BS, Abujamel TS. In Vitro and In Vivo Anti-Arthritic Potential of Caralluma tuberculata N. E. Brown. and Its Chemical Characterization. Molecules 2022; 27:6323. [PMID: 36234860 PMCID: PMC9572219 DOI: 10.3390/molecules27196323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Present research was planned to assess the in vitro and in vivo anti-arthritic potential of Caralluma tuberculata N. E. Brown. methanolic (CTME) and aqueous (CTAQ) extracts. Chemical characterization was done by high-performance liquid chromatography and gas chromatography−mass spectrometry analysis. The Complete Freund’s Adjuvant (CFA) was injected in left hind paw of rat at day 1 and dosing at 150, 300 and 600 mg/kg was started on the 8th day via oral gavage in all groups except normal and disease control rats (which were given distilled water), whereas methotrexate (intraperitoneal; 1 mg/kg/mL) was administered to standard control. The CTME and CTAQ exerted significant (p < 0.01−0.0001) in vitro anti-arthritic action. Both extracts notably reduced paw edema, and restored weight loss, immune organs weight, arthritic score, RBCs, ESR, platelet count, rheumatoid factor (RF), C-reactive protein, and WBCs in treated rats. The plant extracts showed significant (p < 0.05−0.0001) downregulation of tumor necrosis factor-α, Interleukin-6, -1β, NF-κB, and cyclooxygenase-2, while notably upregulated IL-4, IL-10, I-κBα in contrast to disease control rats. The plant extracts noticeably (p < 0.001−0.0001) restored the superoxide dismutase and catalase activities and MDA levels in treated rats. Both extracts exhibited significant anti-arthritic potential. The promising potential was exhibited by both extracts probably due to phenolic, and flavonoids compounds.
Collapse
Affiliation(s)
- Nida Iftikhar
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54000, Pakistan
| | - Ghulam Abbas
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Shah
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Badrah S. Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Neuroscience Unit, Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki S. Abujamel
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Plant Bioactives in the Treatment of Inflammation of Skeletal Muscles: A Molecular Perspective. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4295802. [PMID: 35911155 PMCID: PMC9328972 DOI: 10.1155/2022/4295802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022]
Abstract
Skeletal muscle mass responds rapidly to growth stimuli, precipitating hypertrophies (increased protein synthesis) and hyperplasia (activation of the myogenic program). For ages, muscle degeneration has been attributed to changes in the intracellular myofiber pathways. These pathways are tightly regulated by hormones and lymphokines that ultimately pave the way to decreased anabolism and accelerated protein breakdown. Despite the lacunae in our understanding of specific pathways, growing bodies of evidence suggest that the changes in the myogenic/regenerative program are the major contributing factor in the development and progression of muscle wasting. In addition, inflammation plays a key role in the pathophysiology of diseases linked to the failure of skeletal muscles. Chronic inflammation with elevated levels of inflammatory mediators has been observed in a spectrum of diseases, such as inflammatory myopathies and chronic obstructive pulmonary disease (COPD). Although the pathophysiology of these diseases varies greatly, they all demonstrate sarcopenia and dysregulated skeletal muscle physiology as common symptoms. Medicinal plants harbor potential novel chemical moieties for a plenitude of illnesses, and inflammation is no exception. However, despite the vast number of potential antiinflammatory compounds found in plant extracts and isolated components, the research on medicinal plants is highly daunting. This review aims to explore the various phytoconstituents employed in the treatment of inflammatory responses in skeletal muscles, while providing an in-depth molecular insight into the latter.
Collapse
|
10
|
Jabeen Q, Haider SI, Asif A, Rasheed R, Gul S, Arshad S. Geranium wallichianum D. Don Ex Sweet Ameliorates Rheumatoid Arthritis by Curtailing the Expression of COX-II and Inflammatory Cytokines as Well as by Alleviating the Oxidative Stress. Dose Response 2022; 20:15593258221112649. [PMID: 35832768 PMCID: PMC9272483 DOI: 10.1177/15593258221112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
Geranium wallichianum D. Don ex sweet traditionally been used as
home remedy for backaches, joint pain, colic, and rheumatism. The objective of
this study was to investigate the therapeutic benefits of plant in an
adjuvant-induced arthritis paradigm. Immune-mediated rheumatoid arthritis was
developed by injecting complete Freund’s adjuvant (CFA) into the hind paws of
rats and the aqueous methanolic crude extract was administered. The animals were
physically monitored for changes in paw edema size and arthritic score.
Hematological parameters and systemic inflammatory indicators evaluated. Genetic
expressions of tumor necrosis factor (TNF-α), interleukins (IL-1β, IL-6),
necrosis factor (NF-κB), and cyclooxygenase (COX-II) enzyme were studied using
real-time qPCR. PGE2 levels in blood were quantified through Enzyme Linked
Immunosorbent Assay (ELISA). On the 14th day, Immunoglobulin E (IGE) exhibited a
substantial decline in paw edema and arthritic score. At the doses of 500 mg/Kg
(P ≤ .05) and 1000 mg/Kg (P ≤ .001), IGE
significantly reduced TNF-α, interleukins, and COX-II mRNA expression. IGE
significantly lowered the MDA levels at the doses of 500 and 1000 mg/Kg (13.18 ±
.70 and 9.04 ± .26 μM/L respectively) as compared to arthritic control (30.82 ±
1.12 μM/L) group. IGE significantly improved the antioxidant enzyme activities
of CAT and SOD (P ≤ .001) in treated animals. TNF-α,
interleukins, and COX-II mRNA expression were also significantly reduced at the
doses of 300 (P ≤ .05), 500 (P ≤ .01) and
1000 mg/Kg (P ≤ .001) which were expressed as fold changes.
This study shows that Geranium wallichianum D. Don ex sweet has
a strong potential to alleviate immune-mediated arthritis by lowering oxidative
stress and downregulating the proinflammatory cytokines signaling
mechanisms.
Collapse
Affiliation(s)
- Qaiser Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Syed Ihtisham Haider
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Pharmacology, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
| | - Awais Asif
- Department of Biochemistry, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
| | - Rubina Rasheed
- Department of Biochemistry, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
| | - Shaheen Gul
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shafia Arshad
- University College of Conventional Medicines, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
11
|
Haider SI, Asif A, Rasheed HMF, Akram A, Jabeen Q. Caralluma tuberculata exhibits analgesic and anti-arthritic potential by downregulating pro-inflammatory cytokines and attenuating oxidative stress. Inflammopharmacology 2022; 30:621-638. [PMID: 35257282 DOI: 10.1007/s10787-022-00949-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Caralluma tuberculata N.E. Brown (Common name: Chongan), belonging to the family Asclepiadaceae is distributed widely in hilly areas of Dir, Swat, Kohat and in plain lands of Punjab, Pakistan. The plant has been used as a source of vegetable as well as home remedy for headache, muscle spasms and rheumatism. The present study was proposed to investigate the analgesic, anti-inflammatory and anti-arthritic potential of the aqueous methanolic extract of C. tuberculata (ICE). The dried shoots of plant were used to prepare aqueous methanolic extract (30:70) by 3 days thrice maceration and filtration followed by evaporation under reduced pressure. ICE was screened for the presence of phytochemicals using preliminary phytochemical analysis and HPLC. The antioxidant potential was evaluated through DPPH assay. Analgesic potential of ICE was studied using hot plate and tail immersion methods, and anti-inflammatory activity was performed using turpentine oil and carrageenan-induced inflammation models, in wistar albino rats. Formaldehyde-induced and Complete Freund's Adjuvant-induced arthritis models were used for the assessment of anti-arthritic activity of ICE and its effects on serum levels of PGE-2 as well as gene expression levels of pro-inflammatory cytokines were studied. ICE displayed a dose-dependent (300-1000 mg/Kg p.o.) analgesic effect in hot plate (maximum retention time of 10.87 and 13 s) and tail immersion (response time of 11 and 13.64 s) tests at the doses of 500 and 1000 mg/Kg, respectively. The extract exhibited a significant decrease in paw inflammation of rats at the doses of 500 and 1000 mg/Kg as compared to the disease control group. ICE also exhibited a remarkable decline in arthritic score and a dose-dependent drop in serum levels of prostaglandin E2. There was a significant suppression in the expression of TNF-α, IL-1β, IL-6, NF-κB and cyclooxygenase enzyme in treatment groups. This study concludes that Caralluma tuberculata exhibits strong analgesic, anti-inflammatory, antioxidant and anti-arthritic activities thus upholding the vernacular use of the plant for pain and rheumatism.
Collapse
Affiliation(s)
- Syed Ihtisham Haider
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan. .,Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan.
| | - Awais Asif
- Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan
| | - Hafiz Muhammad Farhan Rasheed
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Drugs Testing Laboratory, Bahawalpur, Pakistan
| | - Adnan Akram
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Qaiser Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
12
|
Raj D, Sharma V, Upadhyaya A, Kumar N, Joshi R, Acharya V, Kumar D, Patial V. Swertia purpurascens Wall ethanolic extract mitigates hepatic fibrosis and restores hepatic hepcidin levels via inhibition of TGFβ/SMAD/NFκB signaling in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114741. [PMID: 34699946 DOI: 10.1016/j.jep.2021.114741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swertia purpurascens Wall belongs to a well-known genus in traditional systems of medicine worldwide. In folklore, it is used to treat various ailments, including hepatic disorders, as an alternative to the endangered species Swertia chirayita. However, the therapeutic potential of Swertia purpurascens Wall against hepatic fibrosis has not been validated yet. AIM OF THE STUDY The present study was planned to evaluate the efficacy of the Swertia purpurascens Wall extract (SPE) against hepatic fibrosis and elucidate the underlying mechanism of action. MATERIALS AND METHODS The metabolite profiling of the SPE was done using UHPLC-QTOF-MS/MS. The acute oral toxicity study of SPE at 2 g/kg BW dose was done in rats. Further, the liver fibrosis was induced by the CCl4 intoxication, and the efficacy of SPE at three doses (100, 200 and 400 mg/kg BW) was evaluated by studying biochemical parameters, histopathology, immunohistochemistry, qRT-PCR, western blotting and in silico analysis. RESULTS UHPLC-QTOF-MS/MS analysis revealed the presence of a total of 23 compounds in SPE. Acute oral toxicity study of SPE at 2 g/kg BW showed no harmful effects in rats. Further, the liver fibrosis was induced by the CCl4 administration, and the efficacy of SPE was evaluated at three doses (100, 200 and 400 mg/kg BW). SPE treatment significantly improved the body weight gain, the relative liver weight, serum liver injury markers and endogenous antioxidant enzyme levels in the CCl4-treated rats. SPE also recovered the altered liver histology and effectively reduced the fibrotic tissue deposition in the hepatic parenchyma. Further, SPE significantly inhibited the fibrotic (TGFβ, αSMA, SMADs and Col1A), proinflammatory markers (NFκB, TNFα and IL1β) and apoptosis in the liver tissue. Interestingly, SPE treatment also restored the altered hepcidin levels in the liver tissue. In silico study revealed the potential of various metabolites as drug candidates and their interaction with target proteins. CONCLUSION Altogether, SPE showed its therapeutic potential against CCl4-induced hepatic fibrosis by restoring the hepatic hepcidin levels and inhibiting TGFβ/SMAD/NFκB signaling in rats.
Collapse
Affiliation(s)
- Desh Raj
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; PG Department of Dravyaguna, Rajiv Gandhi Govt. Post Graduate Ayurvedic College and Hospital, Paprola, 176115, H.P, India
| | - Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; Academy of Scientific and Innovative Research AcSIR, Ghaziabad, 201002, U.P, India
| | - Ashwani Upadhyaya
- PG Department of Dravyaguna, Rajiv Gandhi Govt. Post Graduate Ayurvedic College and Hospital, Paprola, 176115, H.P, India
| | - Neeraj Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; Academy of Scientific and Innovative Research AcSIR, Ghaziabad, 201002, U.P, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; Academy of Scientific and Innovative Research AcSIR, Ghaziabad, 201002, U.P, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; Academy of Scientific and Innovative Research AcSIR, Ghaziabad, 201002, U.P, India
| | - Dinesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; Academy of Scientific and Innovative Research AcSIR, Ghaziabad, 201002, U.P, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India; Academy of Scientific and Innovative Research AcSIR, Ghaziabad, 201002, U.P, India.
| |
Collapse
|
13
|
Wang S, Hou Y, Li X, Meng X, Zhang Y, Wang X. Practical Implementation of Artificial Intelligence-Based Deep Learning and Cloud Computing on the Application of Traditional Medicine and Western Medicine in the Diagnosis and Treatment of Rheumatoid Arthritis. Front Pharmacol 2022; 12:765435. [PMID: 35002704 PMCID: PMC8733656 DOI: 10.3389/fphar.2021.765435] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology, is a serious threat to the health of middle-aged and elderly people. Although western medicine, traditional medicine such as traditional Chinese medicine, Tibetan medicine and other ethnic medicine have shown certain advantages in the diagnosis and treatment of RA, there are still some practical shortcomings, such as delayed diagnosis, improper treatment scheme and unclear drug mechanism. At present, the applications of artificial intelligence (AI)-based deep learning and cloud computing has aroused wide attention in the medical and health field, especially in screening potential active ingredients, targets and action pathways of single drugs or prescriptions in traditional medicine and optimizing disease diagnosis and treatment models. Integrated information and analysis of RA patients based on AI and medical big data will unquestionably benefit more RA patients worldwide. In this review, we mainly elaborated the application status and prospect of AI-assisted deep learning and cloud computation-oriented western medicine and traditional medicine on the diagnosis and treatment of RA in different stages. It can be predicted that with the help of AI, more pharmacological mechanisms of effective ethnic drugs against RA will be elucidated and more accurate solutions will be provided for the treatment and diagnosis of RA in the future.
Collapse
Affiliation(s)
- Shaohui Wang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuanhao Li
- Chengdu Second People's Hospital, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Alam MA, Gani MA, Shama G, Sofi G, Quamri MA. Possible role of Unani Pharmacology in COVID-19 - a narrative review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:391-396. [PMID: 33155997 DOI: 10.1515/reveh-2020-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
According to the World Health Organization (WHO), viral diseases continue to rise, and pose a significant public health problem. Novel coronavirus disease (COVID-19) is an infectious disease caused by SARS-CoV-2. The pathogenesis and clinical manifestations of COVID-19 is close to Amraz-e-Wabai (epidemic diseases) which was described by Hippocrates, Galen, Aristotle, Razes, Haly Abbas, Avicenna, Jurjani etc. Presently, there is no specific or challenging treatment available for COVID-19. Renowned Unani Scholars recommended during epidemic situation to stay at home, and fumigate the shelters with aromatics herbs like Ood kham (Aquilaria agallocha Roxb.), Kundur (Boswellia serrata Roxb), Kafoor (Cinnamomum camphora L.), Sandal (Santalum album L), Hing (Ferula foetida L.) etc. Use of specific Unani formulations are claimed effective for the management of such epidemic or pandemic situation like antidotes (Tiryaqe Wabai, Tiryaqe Arba, Tiryaqe Azam, Gile Armani), Herbal Decoction (Joshandah), along with Sharbate Khaksi, Habbe Bukhar, Sharbate Zanjabeel, Khamira Marwareed, Jawarish Jalinus, and Sirka (vinegar). Such drugs are claimed for use as antioxidant, immunomodulatory, cardiotonic, and general tonic actions. The study enumerates the literature regarding management of epidemics in Unani medicine and attempts to look the same in the perspective of COVID-19 prevention and management.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Medicine, National Institute of Unani Medicine, Bangalore, India
| | - Mohd Abdul Gani
- Department of Pharmacology, National Institute of Unani Medicine, Bangalore, India
| | - G Shama
- Department of Preventive and Social Medicine, Government Unani Medical College, Bangalore, India
| | - Ghulamuddin Sofi
- Department of Pharmacology, National Institute of Unani Medicine, Bangalore, India
| | | |
Collapse
|
15
|
Muhamad Fadzil NS, Sekar M, Gan SH, Bonam SR, Wu YS, Vaijanathappa J, Ravi S, Lum PT, Dhadde SB. Chemistry, Pharmacology and Therapeutic Potential of Swertiamarin - A Promising Natural Lead for New Drug Discovery and Development. Drug Des Devel Ther 2021; 15:2721-2746. [PMID: 34188450 PMCID: PMC8233004 DOI: 10.2147/dddt.s299753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Swertiamarin, a seco-iridoid glycoside, is mainly found in Enicostemma littorale Blume (E. littorale) and exhibits therapeutic activities for various diseases. The present study aimed to provide a review of swertiamarin in terms of its phytochemistry, physicochemical properties, biosynthesis, pharmacology and therapeutic potential. Relevant literature was collected from several scientific databases, including PubMed, ScienceDirect, Scopus and Google Scholar, between 1990 and the present. This review included the distribution of swertiamarin in medicinal plants and its isolation, characterization, physicochemical properties and possible biosynthetic pathways. A comprehensive summary of the pharmacological activities, therapeutic potential and metabolic pathways of swertiamarin was also included after careful screening and tabulation. Based on the reported evidence, swertiamarin meets all five of Lipinski's rules for drug-like properties. Thereafter, the physicochemical properties of swertiamarin were detailed and analyzed. A simple and rapid method for isolating swertiamarin from E. littorale has been described. The present review proposed that swertiamarin may be biosynthesized by the mevalonate or nonmevalonate pathways, followed by the seco-iridoid pathway. It has also been found that swertiamarin is a potent compound with diverse pharmacological activities, including hepatoprotective, analgesic, anti-inflammatory, antiarthritis, antidiabetic, antioxidant, neuroprotective and gastroprotective activities. The anticancer activity of swertiamarin against different cancer cell lines has been recently reported. The underlying mechanisms of all these pharmacological effects are diverse and seem to involve the regulation of different molecular targets, including growth factors, inflammatory cytokines, protein kinases, apoptosis-related proteins, receptors and enzymes. Swertiamarin also modulates the activity of several transcription factors, and their signaling pathways in various pathological conditions are also discussed. Moreover, we have highlighted the toxicity profile, pharmacokinetics and possible structural modifications of swertiamarin. The pharmacological activities and therapeutic potential of swertiamarin have been extensively investigated. However, more advanced studies are required including clinical trials and studies on the bioavailability, permeability and administration of safe doses to offer swertiamarin as a novel candidate for future drug development.
Collapse
Affiliation(s)
- Nur Sakinah Muhamad Fadzil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Yuan Seng Wu
- Department of Biochemistry, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | - Jaishree Vaijanathappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, Karnataka, India
| | - Subban Ravi
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | | |
Collapse
|
16
|
Das C, Bose A, Das D. Ayurvedic Balarista ameliorate anti-arthritic activity in adjuvant induced arthritic rats by inhibiting pro-inflammatory cytokines and oxidative stress. J Tradit Complement Med 2021; 11:228-237. [PMID: 34012869 PMCID: PMC8116770 DOI: 10.1016/j.jtcme.2020.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 04/13/2020] [Accepted: 04/29/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM Balarista is a fermented ayurvedic liquid preparation recommended as a good therapy for the treatment of rheumatoid arthritis. In the present investigation, the anti-arthritic activity of in-house Balarista formulation and marketed M1, M2, M3 and M4 Balarista formulations at the dose of 2.31 ml/kg were studied on Complete Freund's adjuvant-induced arthritic rat model. EXPERIMENTAL PROCEDURE Measurement of paw diameter, arthritic index, arthritic score, and body weight were made to assess the anti-arthritic activity. Alterations in hematological and biochemical parameters were carried out to ascertain the disease progression. The inflammatory mediators (TNF-α, IL-1β, and IL-6) were measured by the ELISA method. The oxidative stress parameters were evaluated in tissues of joint, liver, spleen and kidney. The histological and radiological changes in the ankle joint of rats were also studied. RESULTS AND CONCLUSION Administration of in-house and marketed formulations exhibited significant anti-arthritic activity by reducing all the arthritic parameters. The anomalous alterations in hematological and biochemical parameters were remarkably restored. The expression level of serum pro-inflammatory cytokines was significantly suppressed in treated animals. The oxidative stress, indicated by an increase in lipid peroxidation, decreased in antioxidant enzyme i.e. superoxide dismutase and catalase along with non-enzymatic reduced glutathione in tissues, were strongly counteracted by the formulation. Abnormal changes in arthritic ankle joints shown by X-ray and histological examination were significantly protected by the formulation. The present study suggests that the administration of in-house and marketed Balarista formulations have produced a significant anti-arthritic effect by inhibiting free radicals and inflammatory cytokines.
Collapse
Affiliation(s)
- C. Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| | - A. Bose
- Department of Pharmaceutical Analysis and Quality Assurance, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| | - D. Das
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751029, India
| |
Collapse
|
17
|
Ram TS, Munikumar M, Raju VN, Devaraj P, Boiroju NK, Hemalatha R, Prasad PVV, Gundeti M, Sisodia BS, Pawar S, Prasad GP, Chincholikar M, Goel S, Mangal A, Gaidhani S, Srikanth N, Dhiman KS. In silico evaluation of the compounds of the ayurvedic drug, AYUSH-64, for the action against the SARS-CoV-2 main protease. J Ayurveda Integr Med 2021; 13:100413. [PMID: 33654345 PMCID: PMC7906523 DOI: 10.1016/j.jaim.2021.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Outbreak of Corona Virus Disease in late 2019 (COVID-19) has become a pandemic global Public health emergency. Since there is no approved anti-viral drug or vaccine declared for the disease and investigating existing drugs against the COVID-19. Objective AYUSH-64 is an Ayurvedic formulation, developed and patented by Central Council of Research in Ayurvedic Sciences, India, has been in clinical use as anti-malarial, anti-inflammatory, anti-pyretic drug for few decades. Thus, the present study was undertaken to evaluate AYUSH-64 compounds available in this drug against Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) Main Protease (Mpro; PDB ID: 6LU7) via in silico techniques. Materials and methods Different molecular docking software's of Discovery studio and Auto Dock Vina were used for drugs from selected AYUSH-64 compounds against SARS-CoV-2. We also conducted 100 ns period of molecular dynamics simulations with Desmond and further MM/GBSA for the best complex of AYUSH-64 with Mpro of SARS-CoV-2. Results Among 36 compounds of four ingredients of AYUSH-64 screened, 35 observed to exhibits good binding energies than the published positive co–crystal compound of N3 pepetide. The best affinity and interactions of Akuammicine N-Oxide (from Alstonia scholaris) towards the Mpro with binding energy (AutoDock Vina) of −8.4 kcal/mol and Discovery studio of Libdock score of 147.92 kcal/mol. Further, molecular dynamics simulations with MM-GBSA were also performed for Mpro– Akuammicine N-Oxide docked complex to identify the stability, specific interaction between the enzyme and the ligand. Akuammicine N-Oxide is strongly formed h-bonds with crucial Mpro residues, Cys145, and His164. Conclusion The results provide lead that, the presence of Mpro– Akuammicine N-Oxide with highest Mpro binding energy along with other 34 chemical compounds having similar activity as part of AYUSH-64 make it a suitable candidate for repurposing to management of COVID-19 by further validating through experimental, clinical studies. Main protease (Mpro) is a molecular drug target for the 2019-nCoV of epidemic disease of COVID-19. Docking strategies implemented to identify AUSH-64 having dual role as immunomodualtor and inhibition against Mpro of SARS-CoV-2. Molecular dynamics stability analysis revealed that 2019-nCoV Mpro – Akuammicine N-Oxide is stable. Akuammicine N-Oxide may represent potential treatment options against Mpro of 2019-nCoV.
Collapse
Key Words
- 2019 novel coronavirus, 2019-nCOV
- AYUSH-64
- Absorption, Distribution, Metabolism, Excretion, and Toxicity, ADME/T
- COVID-19
- Coronavirus disease of 2019, COVID-19
- Coronavirus, CoV
- Dynamics simulations
- Main Protease
- Main protease, Mpro
- Middle East Respiratory Syndrome, MERS
- Molecular Docking
- Molecular Dynamics simulations, MD simulations
- Molecular Mechanics/Generalized Born Surface Area, MM/GBSA
- Number of atoms, Pressure, Temperature, NPT
- Protein Data Bank, PDB
- RNA‐dependent RNA polymerase, RdRp
- Radius of Gyration, rGyr
- Root Mean Square Deviation, RMSD
- Root Mean Square Fluctuation, RMSF
- SARS-CoV-2
- Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2
- Severe Acute Respiratory Syndrome, SARS
- Simulation Event Analysis, SEA
- Simulation Quality Analysis, SQA
- World Health Organization, WHO
Collapse
Affiliation(s)
- Thrigulla Saketh Ram
- Research Officer (Ayurveda), CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manne Munikumar
- Scientist-C (Bioinformatics), NIN-TATA Centre for Excellence in Public Health Nutrition, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Vankudavath Naik Raju
- Scientist-C (Programmer), Nutrition Information, Communication & Health Education (NICHE), ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Parasannanavar Devaraj
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Naveen Kumar Boiroju
- Scientist-C, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - Rajkumar Hemalatha
- Scientist-G, Director, ICMR-National Institute of Nutrition, Hyderabad-500007, Telangana State, India
| | - P V V Prasad
- Assistant Director In-charge, CCRAS-National Institute of Indian Medical Heritage, Revenue Board Colony, Gaddiannaram, Hyderabad-500036, Telangana State, India
| | - Manohar Gundeti
- Research Officer (Ayurveda), CCRAS-Raja Ramdeo Anandilal Podar (RRAP) Central Ayurveda Research Institute for Cancer, Mumbai
| | - Brijesh S Sisodia
- Asst. Director (Biochemistry), CCRAS-Regional Ayurveda Research Institute for Drug Development, Gwalior
| | - Sharad Pawar
- Research Officer, Scientist-2 (Pharmacognosy), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - G P Prasad
- Assistant Director (Ayurveda), CCRAS-Regional Ayurveda Institute for Fundamental Research, Pune
| | - Mukesh Chincholikar
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sumeet Goel
- Research Officer (Ayurveda), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Anupam Mangal
- Assistant Director (Pharmacognosy), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - Sudesh Gaidhani
- Assistant Director (Pharmacology), Central Council for Research in Ayurvedic Sciences, New Delhi
| | - N Srikanth
- Deputy Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| | - K S Dhiman
- Director General, Central Council for Research in Ayurvedic Sciences, New Delhi
| |
Collapse
|
18
|
Alam MA, Quamri MA, Ayman U, Sofi G, Renuka BN. Understanding Humma-e-Wabai (epidemic fever) and Amraz-e-Wabai (epidemic disease) in the light of Unani medicine. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:469-476. [PMID: 33544515 DOI: 10.1515/jcim-2020-0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/03/2020] [Indexed: 01/05/2023]
Abstract
The pathogenesis and clinical characteristics of Humma-e-Wabai were described several years ago in the Unani System of Medicine close to the clinical manifestation associated with epidemic or pandemic situations. In the Unani System of Medicine, Humma-e-Wabai described under the legend of epidemic disease (Amraz-e-Wabai). Amraz-e-Wabai is an umbrella term which is applied for all types of epidemic or pandemic situation. Renowned Unani Scientists like; Zakariya Rhazi (865-925 AD), Ali Ibn Abbas Majusi (930-994 AD), Ibn Sina (980-1037 AD), Ismail Jorjani (1,042-1,137 AD), Ibn Rushd etc., explained that Humma-e-Waba is an extremely rigorous, lethal fever, that is caused due to morbid air (fasid hawa) and it frequently spreads among the larger population in the society. There are four etiological factors responsible for Amraz-e-Wabai viz; change in the quality of air, water, earth, and celestial bodies, which was described by Ibn Sina in Canon of Medicine. He also advised that movements should be limited during epidemic situations. Shelters should be fumigated with loban (Styrax benzoin W. G. Craib ex Hartwich.), Kafoor (Cinnamomum camphora L.), Oodkham (Aquilaria agallocha Roxb.), Hing (Ferula foetida L.), myrtle (Myrtus communis L.), and sandalwood (Santalum album L.), etc. The use of vinegar (sirka) and rose water (arque gulab) has been advocated to prevent the infection by spray. Avoid consumption of flesh, oil, milk, sweets, alcohol. Food prepared with vinegar. Specific antidotes (e.g. Tiryaq-e-Wabai, Tiryaq-e-Farooque), should be used as prophylaxis. This review attempts to explain the concept, prevention, and management of epidemic or pandemic situations.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat, National Institute of Unani Medicine, Bangalore, India
| | | | - Umme Ayman
- Department of Regimenal Therapy, National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of Ilmul Advia, National Institute of Unani Medicine, Bangalore, India
| | | |
Collapse
|
19
|
Fatima S, Haider N, Alam MA, Gani MA, Ahmad R. Herbal approach for the management of C0VID-19: an overview. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0150/dmdi-2020-0150.xml. [PMID: 33128525 DOI: 10.1515/dmdi-2020-0150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
COVID-19 is the most recently discovered coronavirus infectious disease and leads to pandemic all over the world. The clinical continuum of COVID-19 varies from mild illness with non-specific signs and symptoms of acute respiratory disease to extreme respiratory pneumonia and septic shock. It can transmit from animal to human in the form of touch, through the air, water, utensils, fomite and feco-oral route blood. The pathogenesis and clinical features of COVID-19 be the same as the clinical manifestation associated epidemic Fever. In Unani medicine, various herbal drugs are described under the caption of epidemic disease. Great Unani scholar also Avicenna (980-1037 AD) recommended that during epidemic condition movement should be restricted, self-isolation, fumigation around the habitant with perfumed herbs (Ood, Kafoor, Sumbuluttib, Saad Kofi, Loban, etc.), and use of appropriate antidotes (Tiryaqe Wabai) and vinegar (Sirka) as prophylaxis. Herbal approach is based on single (Unnab-Ziziphus jujuba, Sapistan-Cordia myxa, Bahidana-Cydonia oblonga, Khatmi-Althea officinalis, Khubazi-Malva sylvestris, Zafran-Crocus sativus, Sibr-Aloe barbedensis, Murmuki-Commiphora myrrha, Darchini-Cinnamomum zeylanicum, Qaranfal-Syzygium aromaticum, Rihan-Oscimum sanctum, Habtus Sauda-Nigella sativa, Aslus Sus-Glycyrrhiza glabra, Maghze Amaltas-Cassia fistula and Adusa-Adhatoda vasica) and compound drugs (Habbe Bukhar, Sharbat Khaksi, Sharbat Zanjabeel, Naqu Nazla, Majoon Chobchini, Jawrish Jalinus and Khamira Marvareed) most of them are claimed for anti-viral, anti-pyretic, blood purifier, cardioprotective and expectorant activities. Traditionally most of the herbal practitioners are using it.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Unani Pharmacy, National Institute of Unani Medicine, Bangalore, India
| | - Nafis Haider
- Department of Basic Medical Sciences, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Md Anzar Alam
- Department of Medicine, National Institute of Unani Medicine, Bangalore, India
| | - Mohd Abdul Gani
- Department of Pharmacology, National Institute of Unani Medicine, Bangalore, India
| | - Rafeeque Ahmad
- The New York School of Medical and Dental Assistants, Long Island City, NY, USA
| |
Collapse
|
20
|
Alam MA, Quamri MA, Sofi G, Ayman U, Ansari S, Ahad M. Understanding COVID-19 in the light of epidemic disease described in Unani medicine. Drug Metab Pers Ther 2020; 35:dmpt-2020-0136. [PMID: 34704695 DOI: 10.1515/dmpt-2020-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 11/15/2022]
Abstract
Unani system of medicine is based on the humoral theory postulated by Hippocrates, according to him the state of body health and disease are regulated by qualitative and quantitative equilibrium of four humours. Amraz-e-Waba is an umbrella term which is used in Unani medicine for all types of epidemics (smallpox, measles, plague, Hameer Saifi, influenza, Nipaha, Ebola, Zika, and 2019 novel coronavirus, etc.) mostly fatal in nature. The coronavirus disease 2019 (COVID-19) is a severe acute respiratory infection, and the pathogenesis and clinical features resemble with those of Nazla-e-Wabaiya (influenza) and Zatul Riya (pneumonia) which were well described many years ago in Unani text such as high-grade fever, headache, nausea and vomiting, running nose, dry cough, respiratory distress, alternate and small pulse, asthenia, foul smell from breath, insomnia, frothy stool, syncope, coldness in both upper and lower extremities, etc. The World Health Organization declared COVID-19 as a global emergency pandemic. Unani scholars like Hippocrates (370-460 BC), Galen (130-200 AD), Rhazes (865-925 AD), and Avicenna (980-1037 AD) had described four etiological factors for Amraz-e-Waba viz., change in quality of air, water, Earth, and celestial bodies, accordingly mentioned various preventive measures to be adopted during epidemics such as restriction of movement, isolation or "quarantena", and fumigation with loban (Styrax benzoin W. G. Craib ex Hartwich.), sandalwood (Santalum album L.), Zafran (Crocus sativus L.), myrtle (Myrtus communis L.), and roses (Rosa damascena Mill.) and use of vinegar (sirka) and antidotes (Tiryaq) as prophylaxis, and avoiding consumption of milk, oil, sweet, meat, and alcohol. This review focuses and elaborates on the concept, prevention, and probable management of COVID-19 in the light of Amraz-e-Waba.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of IlmulAdvia (Pharmacology), National Institute of Unani Medicine, Bangalore, India
| | - Umme Ayman
- Department of Regimenal Therapy, National Institute of Unani Medicine, Bangalore, India
| | - Shabnam Ansari
- Department of Biotechnology, Natural Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mariyam Ahad
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| |
Collapse
|
21
|
Alam MA, Quamri MA, Sofi G, Ayman U, Ansari S, Ahad M. Understanding COVID-19 in the light of epidemic disease described in Unani medicine. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0136/dmdi-2020-0136.xml. [PMID: 32966232 DOI: 10.1515/dmdi-2020-0136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
Unani system of medicine is based on the humoral theory postulated by Hippocrates, according to him the state of body health and disease are regulated by qualitative and quantitative equilibrium of four humours. Amraz-e-Waba is an umbrella term which is used in Unani medicine for all types of epidemics (smallpox, measles, plague, Hameer Saifi, influenza, Nipaha, Ebola, Zika, and 2019 novel coronavirus, etc.) mostly fatal in nature. The coronavirus disease 2019 (COVID-19) is a severe acute respiratory infection, and the pathogenesis and clinical features resemble with those of Nazla-e-Wabaiya (influenza) and Zatul Riya (pneumonia) which were well described many years ago in Unani text such as high-grade fever, headache, nausea and vomiting, running nose, dry cough, respiratory distress, alternate and small pulse, asthenia, foul smell from breath, insomnia, frothy stool, syncope, coldness in both upper and lower extremities, etc. The World Health Organization declared COVID-19 as a global emergency pandemic. Unani scholars like Hippocrates (370-460 BC), Galen (130-200 AD), Rhazes (865-925 AD), and Avicenna (980-1037 AD) had described four etiological factors for Amraz-e-Waba viz., change in quality of air, water, Earth, and celestial bodies, accordingly mentioned various preventive measures to be adopted during epidemics such as restriction of movement, isolation or "quarantena", and fumigation with loban (Styrax benzoin W. G. Craib ex Hartwich.), sandalwood (Santalum album L.), Zafran (Crocus sativus L.), myrtle (Myrtus communis L.), and roses (Rosa damascena Mill.) and use of vinegar (sirka) and antidotes (Tiryaq) as prophylaxis, and avoiding consumption of milk, oil, sweet, meat, and alcohol. This review focuses and elaborates on the concept, prevention, and probable management of COVID-19 in the light of Amraz-e-Waba.
Collapse
Affiliation(s)
- Md Anzar Alam
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Mohd Aleemuddin Quamri
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| | - Ghulamuddin Sofi
- Department of IlmulAdvia (Pharmacology), National Institute of Unani Medicine, Bangalore, India
| | - Umme Ayman
- Department of Regimenal Therapy, National Institute of Unani Medicine, Bangalore, India
| | - Shabnam Ansari
- Department of Biotechnology, Natural Sciences, Jamia Millia Islamia University, New Delhi, India
| | - Mariyam Ahad
- Department of Moalajat (Medicine), National Institute of Unani Medicine, Bangalore, India
| |
Collapse
|
22
|
Singh S, Singh TG, Mahajan K, Dhiman S. Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. J Pharm Pharmacol 2020; 72:1306-1327. [PMID: 32812250 DOI: 10.1111/jphp.13326] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/30/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Rheumatoid arthritis is a chronic autoimmune disease manifested clinically by polyarthralgia associated with joint dysfunction triggering the antibodies targeting against the self-neoepitopes determined by autoimmune responses associated with chronic arthritic attacks. The activation of macrophages and other defence cells in response to self-epitopes as biomarkers in RA provides a better understanding of pathogenesis of disease and has led to the development of novel therapeutic approaches acting as potent inhibitors of these cells. KEY FINDINGS The current review retrieved the various medicinal plants possessing an active phytoconstituents with anti-inflammatory and antioxidant properties, which tends to be effective alternative approach over the synthetic drugs concerned with high toxic effects. The current available literature provided an evident data concluding that the active constituents like fatty acids, flavonoids, terpenes and sesquiterpene lactones attenuate the RA symptoms by targeting the inflammatory biomarkers involved in the pathogenesis of RA. SUMMARY Despite the various synthetic treatment approaches targeting immune cells, cytokines improved the quality of life but still the drug management is challenging due to toxic and chronic teratogenic effects with anti-arthritic drugs. The current review has elaborated the selected traditionally used herbal medicinal plants with phytoconstituents possessing anti-inflammatory activity by suppressing the inflammatory biomarkers with lesser side effects and providing the future exploration of natural drug therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Kriti Mahajan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
23
|
Kshirsagar PR, Aware CB, Patil SM, Bapat VA. Optimization of Extraction Techniques and Quantification of Amarogentin by Using RP-UFLC Method from Different Swertia Species. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/22297928.2019.1622449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Chetan B. Aware
- Department of Biotechnology, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Shrikant M. Patil
- Department of Biotechnology, Shivaji University, Kolhapur-416004, Maharashtra, India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Kolhapur-416004, Maharashtra, India
| |
Collapse
|
24
|
Hu Y, Liu X, Xia Q, Yin T, Bai C, Wang Z, Du L, Li X, Wang W, Sun L, Liu Y, Zhang H, Deng L, Chen Y. Comparative anti-arthritic investigation of iridoid glycosides and crocetin derivatives from Gardenia jasminoides Ellis in Freund's complete adjuvant-induced arthritis in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:223-233. [PMID: 30668402 DOI: 10.1016/j.phymed.2018.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/08/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Discovering novel compounds with higher activities is a key aim of natural products research. Gardenia jasminoides Ellis is a herb with anti-inflammatory properties. Iridoid glycosides (mainly geniposide) and crocetin derivatives (crocins) are the two major active constituents in this herb and are considered its active ingredients. However, which components are responsible for the anti-inflammatory properties of gardenia have remained to be investigated. PURPOSE Here, we prepared total iridoid glycocides (TIG) and total crocins (TC) from G. jasminoides Ellis, determined their main chemical constituents, and performed animal studies to evaluate their anti-adjuvant arthritis activities, thus, proposing a reasonable mechenism to explain the anti-inflammatory activities of the active components in this herbal remedy. STUDY DESIGN TIG and TC were prepared by using HPD-100 macroporous resin, and characterized by UHPLC-DAD-MS and UV-Vis spectrophotometer. Then, freund's complete adjuvant-injected rats underwent drug treatments with TIG (160 mg/kg) and TC (160 mg/kg) for 14 days, and their ankle diameters were measured. Moreover, X-ray radiographs of the adjuvant injected hind paws were evaluated. Finally, histopathological examinations of the ankle joints, spleens and thymus were carried out to evaluate inflammatory reactions, and immunohistochemical measurements were conducted to evaluate TNF-α and TGF-β1 expression in the ankle joint of the rats. RESULTS The chemical composition determination of the current study showed that TIG was mainly composed of geniposide and TC was a fraction predominantly with crocin-1, crocin-2 and crocin-3. Calculation of results showed that TIG and TC contained 58.2% total iridoid glycosides and 54.7% total crocins, respectively. Our study suggested TIG and TC treatments markedly decreased paw swelling and ankle diameters of AA rats (both p < 0.05). The radiological analysis showed that administration of TIG and TC ameliorated bone destruction, and reduced the radiological bone destruction scores (TIG p < 0.05, TC p>0.05). Moreover, data from histological assessment demonstrated considerable mitigation of inflammation in the joints (both p < 0.01), spleen and thymus of AA rats treated with TIG and TC. TNF-α and TGF-β1 protein expression according to immunohistochemistry staining also supported the anti-arthritis activities of TIG and TC (TNF-α: TIG p < 0.01 and TC p < 0.05, TGF-β1: TIG p < 0.01 and TC p>0.05). CONCLUSION In the current study, fractionation of gardenia prior to further in vivo investigation has for the first time provided reasonable explanation for the anti-inflammatory activity of this herbal remedy. Our study showed that both TIG and TC from gardenia have anti-inflammatory properties. Overall, these experimental findings suggest that gardenia could be regarded as a potential therapeutic target for arthritis. However, as geniposide has a higher content than crocins in this herbal drug, TIG (mainly geniposide) seems to be primarily responsible for the anti-inflammatory properties of gardenia. Taken together, this maiden attempt demonstrated that TIG (mainly geniposide) is more important in evaluating the anti-inflammatory activity of G. jasminoides Ellis.
Collapse
Affiliation(s)
- Yaya Hu
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Xin Liu
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Qiang Xia
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Tianpeng Yin
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Chuan Bai
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ze Wang
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Lianfeng Du
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Xiaobo Li
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Wenjun Wang
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Lin Sun
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Yinhua Liu
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China
| | - Hao Zhang
- West China School of Pharmacy, Sichuan University, No. 17, Duan 3, Renmin Nan Road, Chengdu, Sichuan, China
| | - Liang Deng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University Chenggong New City, Kunming, China.
| | - Yang Chen
- Department of Biopharmaceuticals and Materials Engineering, Zhuhai Key Laboratory of Fundamental and Applied Research in Traditional Chinese Medicine, Zunyi Medical University Zhuhai Campus, Zhuhai, China.
| |
Collapse
|
25
|
Lad H, Bhatnagar D. Modulation of oxidative stress mediators in the liver of adjuvant induced arthritic rats by Nyctanthes arbor tristis. CLINICAL PHYTOSCIENCE 2017. [DOI: 10.1186/s40816-016-0041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|