1
|
Tang Y, Huang J, Damiri F, Xiao Z, Liao X, Zhang W, Chen Y, Berrada M, Song Z, Liu Y. The preparation of silk fibroin-based hydrogels and their applications in cartilage repair. Int J Biol Macromol 2025; 310:143610. [PMID: 40300680 DOI: 10.1016/j.ijbiomac.2025.143610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
With the social development, the number of patients with osteoarthritis (OA) is increasing year by year, making it crucial to explore novel therapies and treatments to facilitate cartilage repair. Among these, hydrogels have become a center of conversation as potential cartilage substitutes in view of their swelling capacity, mechanical properties, lubricating performance, and other characteristics similar with that of extracellular matrix of articular cartilage. Therefore, it is of important values to generate multi-functional hydrogels with various bioactive materials for cartilage repair. As a natural fibrous protein known for its wonderful biocompatibility, degradability, as well as mechanical strength, silk fibroin (SF) with collagen-like structure has been widely applied in cartilage repair. Therefore, utilizing SF to construct hydrogels through various crosslinking methods shows greater application potential in cartilage repair and the treatment of OA. Besides having the benefits of both SF and hydrogels, the resulting SF-based hydrogels can further load various drugs, growth factors, stem cells, etc., so as to effectively promote cartilage repair. This review summarized the construction methods of SF-based hydrogels and the research progress in cartilage repair. The future development for SF-based hydrogels in cartilage repair was also discussed, which lay the foundation for further treatment of OA.
Collapse
Affiliation(s)
- Yuxin Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Ziyi Xiao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zhang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yiling Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Zhihao Song
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China; UCL School of Pharmacy, 29-39 Brunswick Square, University College London, London WC1N1AX, UK.
| |
Collapse
|
2
|
Zhang J, Zhang J, Li H, Zhang H, Meng H. Research progress on biodegradable polymer-based drug delivery systems for the treatment of knee osteoarthritis. Front Bioeng Biotechnol 2025; 13:1561708. [PMID: 40276032 PMCID: PMC12018437 DOI: 10.3389/fbioe.2025.1561708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Knee osteoarthritis (KOA) is a disease that involves multiple anatomical and physiological changes in the knee tissues, including cartilage degeneration, bone remodelling and formation of bony encumbrances, which leads to clinical manifestations including pain, stiffness, swelling and limitation of knee function. Knee osteoarthritis is a chronic joint disease characterised by degenerative cartilage lesions and secondary osteophytes in the knee joint. The symptoms of knee osteoarthritis tend to progress slowly, and at this stage, the number of patients with KOA is increasing. However, due to the adverse effects and poor therapeutic outcomes following surgical treatment, intervention therapy through the utilisation of biodegradable polymeric materials is required. Currently, clinical aspects are mainly used to treat cartilage degeneration in patients with osteoarthritis of the knee by using different kinds of biodegradable biopolymer materials with excellent physical properties, histocompatibility and other properties, combined with a drug delivery system, which can reduce the level of inflammation and stiffness in the focal area, and maximise the restoration of the patient's knee joint joint mobility and athletic ability. Based on the properties of the polymeric material drug delivery system, the polymeric material has a variable drug loading capacity that encapsulates hydrophobic/hydrophilic drugs and controls the release kinetics by regulating the composition and charge. This paper reviews the research progress of Poly (ε-caprolactone) (PCL), Poly(lactic acid) (PLA), Poly (lactic glycolic acid) (PLGA), Poly(ethylene glycol) (PEG) synthetic polymers and collagen, chondroitin sulfate, other natural polymers based drug delivery systems for the treatment of knee osteoarthritis, and explains that different biodegradable polymeric materials have been widely used for the treatment of knee osteoarthritis. However, there are still issues of degradability, toxicity, compatibility, and durability and safety of the drug delivery system of degradable materials that need to be addressed in further clinical trials. As biodegradable biomedical materials continue to be explored, eventually idealized polymeric materials will stand out in the treatment of KOA.
Collapse
Affiliation(s)
- Jinchi Zhang
- Department of Medical, Qingdao Binhai University, Qingdao, China
| | - Jinchao Zhang
- Department of Medical, Qingdao Binhai University, Qingdao, China
| | - Hailong Li
- Department of Medical, Qingdao Binhai University, Qingdao, China
| | - Huimin Zhang
- Department of Nursing, The Third People’s Hospital of Heze, Heze, China
| | - Hongyan Meng
- Department of Medical, Qingdao Binhai University, Qingdao, China
| |
Collapse
|
3
|
Dupuy S, Salvador J, Morille M, Noël D, Belamie E. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biomater Sci 2025; 13:1871-1900. [PMID: 40052975 DOI: 10.1039/d5bm00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sustained release and controlled bioavailability of biological factors, thereby improving therapeutic outcomes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules (molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the approaches developed to maintain the biomolecules in scaffolds and control their release, based on their chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to their application in cartilage repair.
Collapse
Affiliation(s)
- Silouane Dupuy
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Jérémy Salvador
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Emmanuel Belamie
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
4
|
Hao M, Zhang C, Wang T, Hu H. Pharmacological effects, formulations, and clinical research progress of curcumin. Front Pharmacol 2025; 16:1509045. [PMID: 40166470 PMCID: PMC11955698 DOI: 10.3389/fphar.2025.1509045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Curcumin, a polyphenolic compound derived from the traditional Chinese medicine turmeric, which has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, antioxidant, and antiviral properties. However, its clinical application is hindered by low solubility and bioavailability. To overcome these limitations, researchers have developed various formulations such as nanoformulations, solid dispersions, and microspheres. These advancements have led to improved therapeutic effects and have facilitated the progression of clinical research, primarily focusing on Phase I and Phase II trials for conditions like diabetes, obesity, and metabolic syndrome. In recent years, there has been a noticeable increase in Phase III and IV clinical trials, particularly concerning oral and dental diseases and arthritis. This article reviews recent literature from both domestic and international sources, providing a comprehensive overview of curcumin's research progress, including its pharmacological mechanisms, formulation developments, and clinical studies.
Collapse
Affiliation(s)
- Minghui Hao
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chungang Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
- Department of Pharmacy, Changzhi Medical College, Changzhi, China
- Qimeng Co., LTD, Chifeng, China
| | - Ti Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Heng Hu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
5
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2025; 14:e2402737. [PMID: 39506433 PMCID: PMC11730424 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Wei Liu
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Jagadeesh K. Venkatesan
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Henning Madry
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| | - Magali Cucchiarini
- Center of Experimental OrthopaedicsSaarland University and Saarland University Medical CenterKirrbergerstr. Bldg 37D‐66421Homburg/SaarGermany
| |
Collapse
|
6
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
7
|
Peng Y, Yang Z, Li J, Liu S. Research progress on nanotechnology of traditional Chinese medicine to enhance the therapeutic effect of osteoarthritis. Drug Deliv Transl Res 2024; 14:1517-1534. [PMID: 38225521 DOI: 10.1007/s13346-024-01517-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic condition that primarily impacts the articular cartilage and surrounding bone tissue, resulting in joint inflammation and structural deterioration. The etiology of OA is multifaceted and intricately linked to the oxidative stress response of joint tissue. Oxidative stress (OS) in OA leads to the creation of reactive oxygen species (ROS) and other oxidizing agents, resulting in detrimental effects on chondrocytes. This oxidative damage diminishes the flexibility and robustness of cartilage, thereby expediting the progression of joint deterioration. Therefore, the antioxidant effect is crucial in the treatment of OA. Currently, a considerable number of components found in traditional Chinese medicine (TCM) have been scientifically demonstrated to exhibit remarkable antioxidant and anti-inflammatory properties. Nevertheless, the utilization of this program is considerably constrained as a result of intrinsic deficiencies, notably stability concerns. The successful amalgamation of TCM components with nanotechnology has properly tackled these concerns and enhanced the efficacy of therapeutic results. The objective of this study is to delineate the antioxidant characteristics of nano-TCM and assess the current inventory of literature pertaining to the application of nano-TCM in the treatment of OA. In conclusion, this paper will now turn to the constraints and potential avenues for the advancement of nano-TCM within the realm of OA therapy.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China
| | - Jinling Li
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, 530021, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
8
|
Fei H, Qian Y, Pan T, Wei Y, Hu Y. Curcumin alleviates hypertrophic scarring by inhibiting fibroblast activation and regulating tissue inflammation. J Cosmet Dermatol 2024; 23:227-235. [PMID: 37400988 DOI: 10.1111/jocd.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Hypertrophic scar (HS) that can lead to defects in appearance and function is often characterized by uncontrolled fibroblast proliferation and excessive inflammation. Curcumin has been shown to have anti-inflammatory and anti-oxidative effects and to play an anti-fibrotic role by interfering transforming growth factor-β1 (TGF-β1)/Smads signaling pathways. AIM To study the effect and mechanism of curcumin on HS from the perspective of fibroblast activity and inflammation regulation. METHODS Cell proliferation, migration and the expression of α-smooth muscle actin (α-SMA) of TGF-β1-induced human dermal fibroblasts (HDFs) treated by curcumin were evaluated using Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine staining, Transwell assay, Western blotting and immunofluorescence, respectively. The expression of TGF-β1/Smad3 pathway-related molecules (TGF-β1, TGFβ-R1/2, p-Smad3, Smad4) was detected by Western blotting. In a rabbit ear model, hematoxylin and eosin and Masson's staining were conducted to assess scar elevation and collagen deposition, and immunohistochemistry was performed to detect the activation of fibroblasts and infiltration of inflammatory cells. RESULTS Curcumin inhibited proliferation, migration and α-SMA expression of HDFs in a dose-dependent manner. Curcumin (25 μm mol/L) did not regulate the expression of endogenous TGF-β1, but suppressed Smad3 phosphorylation and nuclear translocation, leading to lower α-SMA expression. Curcumin also reduced hypertrophic scarring of rabbit ear, accompanied by the inhibited TGF-β1/Smad3 pathway, inflammatory infiltration and M2 macrophage polarization. CONCLUSION Curcumin plays an anti-scar role through regulating fibroblast activation and tissue inflammation. Our findings provide scientific reference for the clinical use of curcumin in the treatment of HS.
Collapse
Affiliation(s)
- Huanhuan Fei
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Yao Qian
- Department of Plastic Surgery, Huzhou Central Hospital, Affiliated to Huzhou University, Huzhou, China
- Department of Plastic Surgery, Jiahui Medical Beauty Clinic Co.Ltd, Huzhou, China
| | - Tianyun Pan
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Ying Wei
- Department of Plastic Surgery, Huzhou Central Hospital, Affiliated to Huzhou University, Huzhou, China
| | - Yun Hu
- Department of Pathology, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| |
Collapse
|
9
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Plant-Based Approaches for Rheumatoid Arthritis Regulation: Mechanistic Insights on Pathogenesis, Molecular Pathways, and Delivery Systems. Crit Rev Ther Drug Carrier Syst 2024; 41:39-86. [PMID: 38305341 DOI: 10.1615/critrevtherdrugcarriersyst.2023048324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is classified as a chronic inflammatory autoimmune disorder, associated with a varied range of immunological changes, synovial hyperplasia, cartilage destructions, as well as bone erosion. The infiltration of immune-modulatory cells and excessive release of proinflammatory chemokines, cytokines, and growth factors into the inflamed regions are key molecules involved in the progression of RA. Even though many conventional drugs are suggested by a medical practitioner such as DMARDs, NSAIDs, glucocorticoids, etc., to treat RA, but have allied with various side effects. Thus, alternative therapeutics in the form of herbal therapy or phytomedicine has been increasingly explored for this inflammatory disorder of joints. Herbal interventions contribute substantial therapeutic benefits including accessibility, less or no toxicity and affordability. But the major challenge with these natural actives is the need of a tailored approach for treating inflamed tissues by delivering these bioactive agentsat an appropriate dose within the treatment regimen for an extended periodof time. Drug incorporated with wide range of delivery systems such as liposomes, nanoparticles, polymeric micelles, and other nano-vehicles have been developed to achieve this goal. Thus, inclinations of modern treatment are persuaded on the way to herbal therapy or phytomedicines in combination with novel carriers is an alternative approach with less adverse effects. The present review further summarizes the significanceof use of phytocompounds, their target molecules/pathways and, toxicity and challenges associated with phytomolecule-based nanoformulations.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - S Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
10
|
Wang G, Zhang XA, Kapilevich L, Hu M. Recent advances in polymeric microparticle-based drug delivery systems for knee osteoarthritis treatment. Front Bioeng Biotechnol 2023; 11:1290870. [PMID: 38130826 PMCID: PMC10733461 DOI: 10.3389/fbioe.2023.1290870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Due to the poor bioavailability and high joint clearance of drugs, sustained delivery of therapeutic agents has proven difficult in the treatment of osteoarthritis (OA). Intra-articular (IA) drug delivery strategy is an attractive option for enhancing OA patients' prognosis, for which various polymer materials have been used as drug carriers due to their attractive delivery properties, to slow or even reverse the progress of OA by prolonging the duration of therapeutic agent residence in the joint. This article focuses on the recent developments in natural and synthetic polymer-based microsphere drug delivery systems for treating knee osteoarthritis. It evaluates the translational potential of some novel formulations for clinical application.
Collapse
Affiliation(s)
- Guangxin Wang
- Department of Orthopedics, The Fourth People’s Hospital of Shenyang, Shenyang, China
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Nаtionаl Reseаrch Tomsk Stаte University, Tomsk, Russiа
| | - Mingjie Hu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
11
|
Su X, Wei L, Xu Z, Qin L, Yang J, Zou Y, Zhao C, Chen L, Hu N. Evaluation and Application of Silk Fibroin Based Biomaterials to Promote Cartilage Regeneration in Osteoarthritis Therapy. Biomedicines 2023; 11:2244. [PMID: 37626740 PMCID: PMC10452428 DOI: 10.3390/biomedicines11082244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage damage and degeneration. Traditional treatments such as NSAIDs and joint replacement surgery only relieve pain and do not achieve complete cartilage regeneration. Silk fibroin (SF) biomaterials are novel materials that have been widely studied and applied to cartilage regeneration. By mimicking the fibrous structure and biological activity of collagen, SF biomaterials can promote the proliferation and differentiation of chondrocytes and contribute to the formation of new cartilage tissue. In addition, SF biomaterials have good biocompatibility and biodegradability and can be gradually absorbed and metabolized by the human body. Studies in recent years have shown that SF biomaterials have great potential in treating OA and show good clinical efficacy. Therefore, SF biomaterials are expected to be an effective treatment option for promoting cartilage regeneration and repair in patients with OA. This article provides an overview of the biological characteristics of SF, its role in bone and cartilage injuries, and its prospects in clinical applications to provide new perspectives and references for the field of bone and cartilage repair.
Collapse
Affiliation(s)
- Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghao Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Leilei Qin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Yinshuang Zou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Orthopedics, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
13
|
Bruno MC, Cristiano MC, Celia C, d'Avanzo N, Mancuso A, Paolino D, Wolfram J, Fresta M. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS NANO 2022; 16:19665-19690. [PMID: 36512378 DOI: 10.1021/acsnano.2c06393] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Joint diseases are one of the most common causes of morbidity and disability worldwide. The main diseases that affect joint cartilage are osteoarthritis and rheumatoid arthritis, which require chronic treatment focused on symptomatic relief. Conventional drugs administered through systemic or intra-articular routes have low accumulation and/or retention in articular cartilage, causing dose-limiting toxicities and reduced efficacy. Therefore, there is an urgent need to develop improved strategies for drug delivery, in particular, the use of micro- and nanotechnology-based methods. Encapsulation of therapeutic agents in delivery systems reduces drug efflux from the joint and protects against rapid cellular and enzymatic clearance following intra-articular injection. Consequently, the use of drug delivery systems decreases side effects and increases therapeutic efficacy due to enhanced drug retention in the intra-articular space. Additionally, the frequency of intra-articular administration is reduced, as delivery systems enable sustained drug release. This review summarizes various advanced drug delivery systems, such as nano- and microcarriers, developed for articular cartilage diseases.
Collapse
Affiliation(s)
- Maria Chiara Bruno
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania
| | - Nicola d'Avanzo
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti, I-66100, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo Fresta
- Department of Health Sciences, School of Pharmacy and Nutraceuticals, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto-Catanzaro, I-88100, Italy
| |
Collapse
|
14
|
Lei Y, Zhang Q, Kuang G, Wang X, Fan Q, Ye F. Functional biomaterials for osteoarthritis treatment: From research to application. SMART MEDICINE 2022; 1:e20220014. [PMID: 39188730 PMCID: PMC11235767 DOI: 10.1002/smmd.20220014] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Osteoarthritis (OA) is a common disease that endangers millions of middle-aged and elderly people worldwide. Researchers from different fields have made great efforts and achieved remarkable progress in the pathogenesis and treatment of OA. However, there is still no cure for OA. In this review, we discuss the pathogenesis of OA and summarize the current clinical therapies. Moreover, we introduce various natural and synthetic biomaterials for drug release, cartilage transplantation, and joint lubricant during the OA treatment. We also present our perspectives and insights on OA treatment in the future. We hope that this review will foster communication and collaboration among biological, clinical, and biomaterial researchers, paving the way for OA therapeutic breakthroughs.
Collapse
Affiliation(s)
- Yang Lei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Qingfei Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Gaizheng Kuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Xiaochen Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
| | - Fangfu Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijingChina
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
16
|
Feng J, Li Z, Tian L, Mu P, Hu Y, Xiong F, Ma X. Efficacy and safety of curcuminoids alone in alleviating pain and dysfunction for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. BMC Complement Med Ther 2022; 22:276. [PMID: 36261810 PMCID: PMC9580113 DOI: 10.1186/s12906-022-03740-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Curcuminoids (CURs) are the principal ingredients of Curcuma longa L. [Zingiberaceae] (CL)-an herbal plant used in east Asia to alleviate pain and inflammation. Thus far, the therapeutic effects of CURs for knee osteoarthritis (OA) uncovered by multiple reviews remained uncertain due to broadly involving trials with different agents-combined or CURs-free interventions. Therefore, we formed stringent selection criteria and assessment methods to summarize current evidence on the efficacy and safety of CURs alone in the treatment of knee OA. METHODS A series of databases were searched for randomized controlled trials (RCTs) evaluating the efficacy and safety of CURs for knee OA. Clinical outcomes were evaluated using meta-analysis and the minimum clinically important difference (MCID) for both statistical and clinical significance. RESULTS Fifteen studies with 1670 patients were included. CURs were significantly more effective than placebo in the improvements of VAS for pain ( WMD: - 1.77, 95% CI: - 2.44 to - 1.09), WOMAC total score ( WMD: - 7.06, 95% CI: - 12.27 to - 1.84), WOMAC pain score ( WMD: - 1.42, 95% CI: - 2.41 to - 0.43), WOMAC function score ( WMD: - 5.04, 95% CI: - 7.65 to - 2.43), and WOMAC stiffness score ( WMD: - 0.54, 95% CI: - 1.03 to - 0.05). Meanwhile, CURs were not inferior to NSAIDs in the improvements of pain- and function-related outcomes. Additionally, CURs did not significantly increase the incidence of adverse events (AEs) compared with placebo ( RR: 1.03, 95% CI: 0.69 to 1.53, P = 0.899, I2 = 23.7%) and NSAIDs (RR: 0.71 0.65, 95% CI: 0.57 0.41 to 0.90 1.03). CONCLUSIONS CURs alone can be expected to achieve considerable analgesic and functional promotion effects for patients with symptomatic knee OA in short term, without inducing an increase of adverse events. However, considering the low quality and substantial heterogeneity of present studies, a cautious and conservative recommendation for broader clinical use of CURs should still be made. Further high-quality studies are necessary to investigate the impact of different dosages, optimization techniques and administration approaches on long-term safety and efficacy of CURs, so as to strengthen clinical decision making for patients with symptomatic knee OA.
Collapse
Affiliation(s)
- Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Zhao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yimei Hu
- Department of Orthopedics, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
17
|
Velasco-Salgado C, Pontes-Quero GM, García-Fernández L, Aguilar MR, de Wit K, Vázquez-Lasa B, Rojo L, Abradelo C. The Role of Polymeric Biomaterials in the Treatment of Articular Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14081644. [PMID: 36015270 PMCID: PMC9413163 DOI: 10.3390/pharmaceutics14081644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a high-prevalence joint disease characterized by the degradation of cartilage, subchondral bone thickening, and synovitis. Due to the inability of cartilage to self-repair, regenerative medicine strategies have become highly relevant in the management of osteoarthritis. Despite the great advances in medical and pharmaceutical sciences, current therapies stay unfulfilled, due to the inability of cartilage to repair itself. Additionally, the multifactorial etiology of the disease, including endogenous genetic dysfunctions and exogenous factors in many cases, also limits the formation of new cartilage extracellular matrix or impairs the regular recruiting of chondroprogenitor cells. Hence, current strategies for osteoarthritis management involve not only analgesics, anti-inflammatory drugs, and/or viscosupplementation but also polymeric biomaterials that are able to drive native cells to heal and repair the damaged cartilage. This review updates the most relevant research on osteoarthritis management that employs polymeric biomaterials capable of restoring the viscoelastic properties of cartilage, reducing the symptomatology, and favoring adequate cartilage regeneration properties.
Collapse
Affiliation(s)
- Carmen Velasco-Salgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
| | - Gloria María Pontes-Quero
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis García-Fernández
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Kyra de Wit
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingienería, Biomateriales y Biotecnología CIBER-BBN, Instituto de Salud Carlos III, Calle Monforte de Lemos S/N, 28029 Madrid, Spain
- Correspondence: (L.R.); (C.A.)
| | - Cristina Abradelo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcon, Spain
- Correspondence: (L.R.); (C.A.)
| |
Collapse
|
18
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Intra-Articular Drug Delivery for Osteoarthritis Treatment. Pharmaceutics 2021; 13:pharmaceutics13122166. [PMID: 34959445 PMCID: PMC8703898 DOI: 10.3390/pharmaceutics13122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease affecting millions of people worldwide. Currently, clinical nonsurgical treatments of OA are only limited to pain relief, anti-inflammation, and viscosupplementation. Developing disease-modifying OA drugs (DMOADs) is highly demanded for the efficient treatment of OA. As OA is a local disease, intra-articular (IA) injection directly delivers drugs to synovial joints, resulting in high-concentration drugs in the joint and reduced side effects, accompanied with traditional oral or topical administrations. However, the injected drugs are rapidly cleaved. By properly designing the drug delivery systems, prolonged retention time and targeting could be obtained. In this review, we summarize the drugs investigated for OA treatment and recent advances in the IA drug delivery systems, including micro- and nano-particles, liposomes, and hydrogels, hoping to provide some information for designing the IA injected formulations.
Collapse
|
20
|
Mao L, Wu W, Wang M, Guo J, Li H, Zhang S, Xu J, Zou J. Targeted treatment for osteoarthritis: drugs and delivery system. Drug Deliv 2021; 28:1861-1876. [PMID: 34515606 PMCID: PMC8439249 DOI: 10.1080/10717544.2021.1971798] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The management of osteoarthritis (OA) is a clinical challenge due to the particular avascular, dense, and occluded tissue structure. Despite numerous clinical reports and animal studies, the pathogenesis and progression of OA are still not fully understood. On the basis of traditional drugs, a large number of new drugs have been continuously developed. Intra-articular (IA) administration for OA hastens the development of targeted drug delivery systems (DDS). OA drugs modification and the synthesis of bioadaptive carriers contribute to a qualitative leap in the efficacy of IA treatment. Nanoparticles (NPs) are demonstrated credible improvement of drug penetration and retention in OA. Targeted nanomaterial delivery systems show the prominent biocompatibility and drug loading-release ability. This article reviews different drugs and nanomaterial delivery systems for IA treatment of OA, in an attempt to resolve the inconsonance between in vitro and in vivo release, and explore more interactions between drugs and nanocarriers, so as to open up new horizons for the treatment of OA.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shihua Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
21
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
22
|
Ding X, Huang Y, Li X, Liu S, Tian F, Niu X, Chu Z, Chen D, Liu H, Fan Y. Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration. J Biomed Mater Res A 2021; 109:515-523. [PMID: 32506791 DOI: 10.1002/jbm.a.37034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
Porous three-dimensional (3D) silk fibroin (SF) scaffolds were widely applied for bone regeneration and showed excellent biocompatibility and biodegradability. Recently graphene was developed for bone scaffolds due to its osteogenic properties. Thus, we combine the SF and graphene to improve the osteogenic properties of SF scaffolds. In our study, we explored the incorporation of SF scaffolds with graphene to develop osteogenic scaffolds capable of accelerating bone formation. The 3D SF scaffolds were fabricated with different contents of graphene (0, 0.5, and 2%). Fluorescence images showed that the graphene nanosheets were homogeneously dispersed in the SF scaffolds. The addition of graphene affected the microarchitecture of the scaffolds. The G/SF scaffolds were cocultured with rat bone marrow-derived mesenchymal stem cells (rBMSCs) for 21 days. The cell morphology and cell proliferation study suggested that 0 and 0.5% G/SF scaffolds displayed good cell proliferation. In addition, immunofluorescent staining (e.g., osteonectin, osteopontin, and osteocalcin) and ALP activities indicated that the osteogenic properties was more actively exhibited on 0.5% G/SF scaffolds compared with the other groups. Our results indicated that SF scaffolds incorporated with graphene could be an appropriate scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Suting Liu
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Feng Tian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhaowei Chu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Diansheng Chen
- Robot Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
23
|
Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater 2021; 123:31-50. [PMID: 33444800 DOI: 10.1016/j.actbio.2021.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.
Collapse
|
24
|
Zhang R, Zhang Q, Zou Z, Li Z, Jin M, An J, Li H, Ma J. Curcumin Supplementation Enhances Bone Marrow Mesenchymal Stem Cells to Promote the Anabolism of Articular Chondrocytes and Cartilage Repair. Cell Transplant 2021; 30:963689721993776. [PMID: 33588606 PMCID: PMC7894692 DOI: 10.1177/0963689721993776] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrows (BMSCs) and curcumin derived from turmeric were used for osteoarthritis (OA) treatment, respectively. We invested the effects of curcumin supplementation for BMSC therapeutic effects. In vitro, rat BMSCs were identified by dual-immunofluorescent staining of CD44 and CD90, and flow cytometry. Primary articular chondrocytes were identified by toluidine blue staining and immunofluorescent staining of Col2a1. EdU incorporation, migration assay, real-time quantitative polymerase chain reaction, and Western blot analyses were performed to evaluate the alterations of chondrocytes cocultured with BMSCs. In vivo, the rat model of OA was established by monoiodoacetic acid. After intra-articular injection of allogeneic BMSCs, articular cartilage damage and OA progression were evaluated by histological staining, and Osteoarthritis Research Society International and Mankin score evaluation. Although curcumin alone did not improve cell viability of primary articular chondrocytes, it promoted proliferation and migration of chondrocytes when cocultured with BMSCs. Meanwhile, the expression of anabolic genes in chondrocytes was remarkably increased both at mRNA and protein levels. In OA rats, curcumin and BMSCs cooperated to greatly promote articular cartilage repair and retard OA progression. Therefore, curcumin supplementation enhanced the BMSC function for the proliferation and migration of articular chondrocytes, and anabolic gene expression of extracellular matrix in articular chondrocytes in vitro, and the generation of articular cartilage in vivo. Our study shed light on the potential clinical application of curcumin cooperated with BMSCs in cartilage repair for OA treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiaoxia Zhang
- School of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhiyu Zou
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Integrated Traditional Chinese Medicine & Western Medicine Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Li
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Jin
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,School of Basic Medicine, Shannxi University of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
25
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
26
|
Gelatin Microsphere for Cartilage Tissue Engineering: Current and Future Strategies. Polymers (Basel) 2020; 12:polym12102404. [PMID: 33086577 PMCID: PMC7603179 DOI: 10.3390/polym12102404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
The gelatin microsphere (GM) provides an attractive option for tissue engineering due to its versatility, as reported by various studies. This review presents the history, characteristics of, and the multiple approaches to, the production of GM, and in particular, the water in oil emulsification technique. Thereafter, the application of GM as a drug delivery system for cartilage diseases is introduced. The review then focusses on the emerging application of GM as a carrier for cells and biologics, and biologics delivery within a cartilage construct. The influence of GM on chondrocytes in terms of promoting chondrocyte proliferation and chondrogenic differentiation is highlighted. Furthermore, GM seeded with cells has been shown to have a high tendency to form aggregates; hence the concept of using GM seeded with cells as the building block for the formation of a complex tissue construct. Despite the advancement in GM research, some issues must still be addressed, particularly the improvement of GM’s ability to home to defect sites. As such, the strategy of intraarticular injection of GM seeded with antibody-coated cells is proposed. By addressing this in future studies, a better-targeted delivery system, that would result in more effective intervention, can be achieved.
Collapse
|
27
|
Long S, Xiao Y, Zhang X. Progress in Preparation of Silk Fibroin Microspheres for Biomedical Applications. Pharm Nanotechnol 2020; 8:358-371. [PMID: 33038918 DOI: 10.2174/2211738508666201009123235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
As a natural biomaterial, silk fibroin (SF) holds great potential in biomedical applications with its broad availability, good biocompatibility, high mechanical strength, ease of fabrication, and controlled degradation. With emerging fabrication methods, nanoand microspheres made from SF have brought about unique opportunities in drug delivery, cell culture, and tissue engineering. For these applications, the size and distribution of silk fibroin particles (SFPs) are critical and require precise control during fabrication. Herein, we review common and emerging SFPs fabrication methods and their biomedical applications, and also the challenges and opportunities for SFPs in the near future. Lay Summary: The application of silk in textile has an extraordinarily long history and new biomedical applications emerged owing to the good biocompatibility and versatile fabrication options of its major protein component, silk fibroin. With the development of nanotechnology and microfabrication, silk fibroin has been fabricated into nano- or microspheres with precisely controlled shape and distribution. In this review, we summarize common and emerging silk fibroin particle fabrication methods and their biomedical applications, and also discuss their challenges and opportunities in the nearest future.
Collapse
Affiliation(s)
- Shihe Long
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yun Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
D’Ascola A, Irrera N, Ettari R, Bitto A, Pallio G, Mannino F, Atteritano M, Campo GM, Minutoli L, Arcoraci V, Squadrito V, Picciolo G, Squadrito F, Altavilla D. Exploiting Curcumin Synergy With Natural Products Using Quantitative Analysis of Dose-Effect Relationships in an Experimental In Vitro Model of Osteoarthritis. Front Pharmacol 2019; 10:1347. [PMID: 31798452 PMCID: PMC6868087 DOI: 10.3389/fphar.2019.01347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Introduction: Drug combination is widely used to treat chronic inflammatory diseases. A similar strategy might be worth of interest to design plant-derived natural products to treat inflammatory conditions. Curcumin is a natural phenolic compound which shares anti-inflammatory activity with both flavocoxid, a flavonoid mixture of baicalin and catechin, and β-caryophyllene, a bicyclic sesquiterpene. The aim of this study was to investigate the synergy potential of curcumin with both flavocoxid and β-caryophyllene in human articular chondrocytes triggered with lipopolysaccharide (LPS), in an experimental in vitro model of osteoarthritis. Materials and Methods: Human articular chondrocytes were stimulated with LPS alone or in combination with different treatments. Total RNA was extracted 4 h after treatment to study interleukin 1β (IL-1β), NF-κB, and STAT3 mRNA expression. A drug combination study was designed choosing 5 doses to demonstrate a synergistic effect of compounds, according to Chou and Talalay method. A median-effect equation was applied and finally, the combination index (CI) was used to clarify the nature of the compounds interaction (synergistic versus additive versus antagonistic inhibitory effects); CI < 1, CI = 1, and CI > 1 indicated synergistic, additive, and antagonistic effects, respectively. Results: LPS prompted IL-1β expression. Curcumin, flavocoxid and β-caryophyllene suppressed IL-1β expression with different IC50. A synergistic action for the reduction of the inflammatory phenotype in human chondrocytes was observed for the combination curcumin-flavocoxid with a percentage from 10% to 90%, and for the combination curcumin-β-caryophyllene from 50% to 90%. IC50 doses of either flavocoxid, β-caryophyllene and curcumin alone or in combination were safe and did not affect cell vitality. Moreover, the same IC50 doses reduced the transcription factors NF-κB and STAT3 mRNA expression and interestingly the effects of the combinations were greater than the natural products alone, thus suggesting that the site where the synergy takes place could be at the signal transduction level. Discussion: The results suggest that curcumin synergizes with either flavocoxid or β-caryophyllene, exerting an anti-inflammatory activity and thus strongly suggesting the potential of a dual combination of these compounds for the management of osteoarthritis and unmasking a new feature of these natural products.
Collapse
Affiliation(s)
- Angela D’Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Atteritano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppe M. Campo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Violetta Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giacomo Picciolo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Liu Y, Mi B, Lv H, Liu J, Xiong Y, Hu L, Xue H, Panayi AC, Liu G, Zhou W. Shared KEGG pathways of icariin-targeted genes and osteoarthritis. J Cell Biochem 2019; 120:7741-7750. [PMID: 30506715 DOI: 10.1002/jcb.28048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The beneficial effects of icariin in the management of many diseases, such as chronic renal failure and heart failure, are well known. Icariin has also been shown to ameliorate osteoarthritis (OA) symptoms; however, the underlying mechanisms remain unclear. In this study, a bioinformatics analysis was performed to investigate the KEGG pathways of icariin-targeted genes involved in OA. Our study suggests that icariin plays a role in OA by regulating inflammatory cytokine production, insulin resistance, and cell survival through modulation of the NF-κB, MAPK, and Akt signaling pathways. Importantly, IKBKB, NFKBIA, MAPK8, MAPK9, and MAPK10 may be the hub genes affected by icariin when providing its beneficial effects on OA. In addition, we found that icariin decreases proinflammatory factors and inhibits chondrocyte apoptosis through suppression of the NF-κB pathway. Our study highlights a set of KEGG pathways that could explain the molecular mechanism of icariin's action on OA, suggesting that icariin could be considered as a promising therapeutic option for OA.
Collapse
Affiliation(s)
- Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Huijuan Lv
- Department of Rheumatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|