1
|
Fayaz M, Angmo T, Katoch K, Majeed A, Kundan M, Wajid MA, Pal K, Misra P. The promoter regions of CBDAS and PT genes of cannabinoid biosynthesis in Cannabis sativa respond to phytohormones and stress-related signals. PLANTA 2025; 261:135. [PMID: 40349291 DOI: 10.1007/s00425-025-04709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
MAIN CONCLUSION The functional characterization of promoter regions of CBDAS and PT genes of cannabinoids biosynthesis suggests that multiple factors including tissue-specific, phytohormones, and stress-related signals modulate their activity. Cannabis sativa L. has tremendous potential as a future crop for producing clinically important cannabinoid metabolites. While the cannabinoid biosynthetic pathway is largely known, the mechanistic details about its regulation are less understood. Decrypting the environmental and developmental factors regulating cannabinoid biosynthesis pathway may prove beneficial in pathway engineering and molecular breeding programs. Functional characterization of the promoter regions of key cannabinoid biosynthesis genes can provide useful insights into their transcriptional regulation. This study, therefore, is focused to uncover the role of different phytohormones and abiotic factors in influencing the activity of CsCBDAS and CsPT1 promoters through the development of promoter-GUS fusion expressing transgenic lines of Nicotiana tabacum. Spatial analysis across different tissues revealed that CsCBDAS and CsPT1 promoters drive a high level of GUS staining in leaf and flowers of the transgenic lines. A strong GUS staining was detected in the glandular trichomes of both tobacco transgenic lines. The results showed that out of the five hormones, three (IAA, GA3, and SA) and four (IAA, GA3, SA, and ABA) caused significant activation of CsCBDAS and CsPT1 promoters, respectively. While the light, heat, cold, salt, and wound stress induced promoter activity of both CsCBDAS and CsPT1, the drought stress was found to induce the activity of CsCBDAS promoter only. Validation of the expression patterns of these genes under different conditions in C. sativa through qRT-PCR suggested that phytohormones and abiotic factors may influence the cannabinoid biosynthesis in C. sativa by modulating their promoter activity.
Collapse
Affiliation(s)
- Mohd Fayaz
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tsering Angmo
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kajal Katoch
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Aasim Majeed
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mir Abdul Wajid
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Koushik Pal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Blebea NM, Pricopie AI, Vlad RA, Hancu G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int J Mol Sci 2024; 25:4204. [PMID: 38673788 PMCID: PMC11050509 DOI: 10.3390/ijms25084204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.
Collapse
Affiliation(s)
- Nicoleta Mirela Blebea
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, “Ovidius” University from Constanța, 900470 Constanța, Romania;
| | - Andreea Iulia Pricopie
- Biochemistry and Chemistry of Environmental Factors Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
3
|
Weng J, Wang Y, Tan Z, Yuan Y, Huang S, Li Z, Li Y, Zhang L, Du Z. Glabridin reduces neuroinflammation by modulating inflammatory signals in LPS-induced in vitro and in vivo models. Inflammopharmacology 2024; 32:1159-1169. [PMID: 38372849 DOI: 10.1007/s10787-023-01424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/23/2023] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Chronic neuroinflammation has become one of the important causes of common neurodegeneration disease. Therefore, the target of this study was to explore the protective action of glabridin on lipopolysaccharide (LPS)-induced neuroinflammation in vivo and in vitro and its mechanism. METHODS The neuroinflammation model was established by LPS-induced BV2 cells. The cell viability with various concentrations of glabridin was determined by MTT assay, and the content of NO in each group was detected. A neuroinflammatory model was established in male C57BL/6J mice for a water maze test. Subsequently, NF-κB and SOD indices were measured by ELISA, GFAP and IBA-1 indices were measured by immunofluorescence, and Nissl staining was used to explore the Nissl bodies in the hippocampus of mice. RESULTS In vitro experiments, our results expressed that glabridin could markedly increase the cell activity of LPS-induced BV2 cells and reduce the NO expression in cells. It indicated that glabridin had a remarkable impact on the neuroinflammation of LPS-induced BV2 cell protection. In vivo neuroinflammation experiments, mice treated with different doses of glabridin showed significantly improved ability of memory compared with the LPS group in the Morris water maze test. The levels of NF-κB, GFAP, and the number of positive cells in Nissl staining were decreased. High-dose glabridin significantly increased the SOD content in the brain tissue and decreased the IBA-1 levels. CONCLUSION Glabridin can significantly reduce or even reverse LPS-induced neuroinflammation, which may be related to the fact that glabridin can reduce the NO expression, NF-κB, IBA-1, GFAP, and other inflammatory mediators, upregulate the expression of SOD to relieve oxidative stress of brain and inhibit the activation of gliocyte in brain tissue.
Collapse
Affiliation(s)
- Jiyu Weng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zekai Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanghe Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyuan Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zexi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yiming Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
5
|
Pérez-Diego M, Angelina A, Martín-Cruz L, de la Rocha-Muñoz A, Maldonado A, Sevilla-Ortega C, Palomares O. Cannabinoid WIN55,212-2 reprograms monocytes and macrophages to inhibit LPS-induced inflammation. Front Immunol 2023; 14:1147520. [PMID: 37006243 PMCID: PMC10060516 DOI: 10.3389/fimmu.2023.1147520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionChronic or uncontrolled activation of myeloid cells including monocytes, macrophages and dendritic cells (DCs) is a hallmark of immune-mediated inflammatory disorders. There is an urgent need for the development of novel drugs with the capacity to impair innate immune cell overactivation under inflammatory conditions. Compelling evidence pointed out cannabinoids as potential therapeutic tools with anti-inflammatory and immunomodulatory capacity. WIN55,212-2, a non-selective synthetic cannabinoid agonist, displays protective effects in several inflammatory conditions by mechanisms partially depending on the generation of tolerogenic DCs able to induce functional regulatory T cells (Tregs). However, its immunomodulatory capacity on other myeloid cells such as monocytes and macrophages remains incompletely understood.MethodsHuman monocyte-derived DCs (hmoDCs) were differentiated in the absence (conventional hmoDCs) or presence of WIN55,212-2 (WIN-hmoDCs). Cells were stimulated with LPS, cocultured with naive T lymphocytes and their cytokine production and ability to induce T cell responses were analysed by ELISA or flow cytometry. To evaluate the effect of WIN55,212-2 in macrophage polarization, human and murine macrophages were activated with LPS or LPS/IFNγ, in the presence or absence of the cannabinoid. Cytokine, costimulatory molecules and inflammasome markers were assayed. Metabolic and chromatin immunoprecipitation assays were also performed. Finally, the protective capacity of WIN55,212-2 was studied in vivo in BALB/c mice after intraperitoneal injection with LPS.ResultsWe show for the first time that the differentiation of hmoDCs in the presence of WIN55,212-2 generates tolerogenic WIN-hmoDCs that are less responsive to LPS stimulation and able to prime Tregs. WIN55,212-2 also impairs the pro-inflammatory polarization of human macrophages by inhibiting cytokine production, inflammasome activation and rescuing macrophages from pyroptotic cell death. Mechanistically, WIN55,212-2 induced a metabolic and epigenetic shift in macrophages by decreasing LPS-induced mTORC1 signaling, commitment to glycolysis and active histone marks in pro-inflammatory cytokine promoters. We confirmed these data in ex vivo LPS-stimulated peritoneal macrophages (PMΦs), which were also supported by the in vivo anti-inflammatory capacity of WIN55,212-2 in a LPS-induced sepsis mouse model.ConclusionOverall, we shed light into the molecular mechanisms by which cannabinoids exert anti-inflammatory properties in myeloid cells, which might well contribute to the future rational design of novel therapeutic strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Mario Pérez-Diego
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Leticia Martín-Cruz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Andrés de la Rocha-Muñoz
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Angel Maldonado
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Carmen Sevilla-Ortega
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Oscar Palomares,
| |
Collapse
|
6
|
Yan L, Luo H, Tang X, Wang H. Cannabinoids inhibit ethanol-induced activation of liver toxicity in rats through JNK/ERK/MAPK signaling pathways. J Biochem Mol Toxicol 2023; 37:e23260. [PMID: 36453646 DOI: 10.1002/jbt.23260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Cannabinoids (CBs) are psychoactive compounds, with reported anticancer, anti-inflammatory, and anti-neoplastic properties. The study was aimed at assessing the hepatoprotective effects of CB against ethanol (EtOH)-induced liver toxicity in rats. The animals were divided into seven groups: control (Group I) and Group II were treated with 50% ethanol (EtOH 5 mg/kg). Groups III, IV, and VI were treated with (EtOH + CB 10 mg/kg), (EtOH + CB 20 mg/kg), and (EtOH + CB 30 mg/kg), respectively. Groups V and VII consisted of animals treated with 20 and 30 mg/kg, of CB, respectively. Biochemical analysis revealed that Group IV (EtOH + CB 20 mg/kg) had reduced levels of ALT-alanine transferase, AST-aspartate aminotransferase, ALP-alanine peroxidase, MDA-malondialdehyde and increased levels of GSH-reduced glutathione. Histopathological analysis of liver and kidney tissues showed that EtOH + CB (20 and 30 mg/kg) treated animal groups exhibited normal tissue architecture similar to that of the control group. ELISA revealed that the inflammatory markers were reduced in the animal groups that were treated with EtOH + CB 20 mg/kg, in comparison to the animals treated only with EtOH. The mRNA expression levels of COX-2, CD-14, and MIP-2 showed a remarkable decrease in EtOH + CB treated animal groups to control groups. Western blot analysis revealed that CB downregulated p38/JNK/ERK thereby exhibiting its hepatoprotective property by inhibiting mitogen-activated protein kinase pathways. Thus, our findings suggest that CB is a potential candidate for the treatment of alcohol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China.,M.Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia.,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi Province, China
| | - Heng Luo
- Reproductive Medicine Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaolu Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Haidong Wang
- Inpatient Clinical Laboratory Department, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Mirzaei M, Abyadeh M, Turner AJ, Wall RV, Chick JM, Paulo JA, Gupta VK, Basavarajappa D, Chitranshi N, Mirshahvaladi SSO, You Y, Fitzhenry MJ, Amirkhani A, Haynes PA, Klistorner A, Gupta V, Graham SL. Fingolimod effects on the brain are mediated through biochemical modulation of bioenergetics, autophagy, and neuroinflammatory networks. Proteomics 2022; 22:e2100247. [PMID: 35866514 PMCID: PMC9786555 DOI: 10.1002/pmic.202100247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Anita J. Turner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Roshana Vander Wall
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Joel M. Chick
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Veer K. Gupta
- School of MedicineDeakin UniversityGeelongVICAustralia
| | - Devaraj Basavarajappa
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Nitin Chitranshi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Seyed Shahab Oddin Mirshahvaladi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Yuyi You
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Paul A. Haynes
- School of Natural SciencesMacquarie UniversityMacquarie ParkNSWAustralia
- Biomolecular Discovery Research CentreMacquarie UniversitySydneyNSWAustralia
| | - Alexander Klistorner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Vivek Gupta
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Stuart L. Graham
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| |
Collapse
|
8
|
Cannabinoid and endocannabinoid system: a promising therapeutic intervention for multiple sclerosis. Mol Biol Rep 2022; 49:5117-5131. [PMID: 35182322 DOI: 10.1007/s11033-022-07223-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic and complex neurodegenerative disease, distinguished by the presence of lesions in the central nervous system (CNS) due to exacerbated immunological responses that inflict oligodendrocytes and the myelin sheath of axons. In recent years, studies have focused on targeted therapeutics for MS that emphasize the role of G protein-coupled receptors (GPCRs), specifically cannabinoids receptors. Clinical studies have suggested the therapeutic potential of cannabinoids derived from Cannabis sativa in relieving pain, tremors and spasticity. Cannabinoids also appear to prevent exaggerated immune responses in CNS due to compromised blood-brain barrier. Both, endocannabinoid system (ECS) modulators and cannabinoid ligands actively promote oligodendrocyte survival by regulating signaling, migration and myelination of nerve cells. The cannabinoid receptors 1 (CB1) and 2 (CB2) of ECS are the main ones in focus for therapeutic intervention of MS. Various CB1/CB2 receptors agonists have been experimentally studied which showed anti-inflammatory properties and are considered to be effective as potential therapeutics for MS. In this review, we focused on the exacerbated immune attack on nerve cells and the role of the cannabinoids and its interaction with the ECS in CNS during MS pathology.
Collapse
|
9
|
Cannabinoids induce functional Tregs by promoting tolerogenic DCs via autophagy and metabolic reprograming. Mucosal Immunol 2022; 15:96-108. [PMID: 34548620 PMCID: PMC8732281 DOI: 10.1038/s41385-021-00455-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
The generation of functional regulatory T cells (Tregs) is essential to keep tissue homeostasis and restore healthy immune responses in many biological and inflammatory contexts. Cannabinoids have been pointed out as potential therapeutic tools for several diseases. Dendritic cells (DCs) express the endocannabinoid system, including the cannabinoid receptors CB1 and CB2. However, how cannabinoids might regulate functional properties of DCs is not completely understood. We uncover that the triggering of cannabinoid receptors promote human tolerogenic DCs that are able to prime functional FOXP3+ Tregs in the context of different inflammatory diseases. Mechanistically, cannabinoids imprint tolerogenicity in human DCs by inhibiting NF-κB, MAPK and mTOR signalling pathways while inducing AMPK and functional autophagy flux via CB1- and PPARα-mediated activation, which drives metabolic rewiring towards increased mitochondrial activity and oxidative phosphorylation. Cannabinoids exhibit in vivo protective and anti-inflammatory effects in LPS-induced sepsis and also promote the generation of FOXP3+ Tregs. In addition, immediate anaphylactic reactions are decreased in peanut allergic mice and the generation of allergen-specific FOXP3+ Tregs are promoted, demonstrating that these immunomodulatory effects take place in both type 1- and type 2-mediated inflammatory diseases. Our findings might open new avenues for novel cannabinoid-based interventions in different inflammatory and immune-mediated diseases.
Collapse
|
10
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
11
|
Hjorthøj C, La Cour P, Nordentoft M, Posselt CM. Cannabis-based medicines and medical cannabis for patients with neuropathic pain and other pain disorders: Nationwide register-based pharmacoepidemiologic comparison with propensity score matched controls. Eur J Pain 2021; 26:480-491. [PMID: 34624164 DOI: 10.1002/ejp.1874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Neuropathic pain and other pain disorders have received attention as potential indications for use of cannabis-based medicines or medical cannabis (CBM/MC). Evidence regarding the efficacy and safety of CBM/MC for pain disorders is, however, insufficient. Denmark introduced a pilot programme of medical cannabis in January 2018. We aimed to evaluate efficacy, safety, and non-specific effects of CBM/MC used under the pilot programme compared with controls. METHODS We conducted a nationwide register-based cohort study in Denmark, identifying all individuals redeeming at least one prescription for CBM/MC for either neuropathic pain (n = 1817) or other and unspecified pain disorders (n = 924), and to match one control to each case using propensity score matching. RESULTS Among both patient groups, users of THC used more opioids during follow-up than controls. Among patients with neuropathic pain, however, users of either CBD, THC, or combined CBD + THC used less gabapentin than controls. Users of all three classes of CBM/MC were hospitalized fewer days than controls among neuropathic-pain patients but not among patients with other or unspecified pain disorders. CONCLUSIONS CBM/MC were generally safe and even displayed some positive effects among patients with neuropathic pain. We conclude that CBM/MC are safe and possibly efficacious for patients with neuropathic pain but not patients with other pain disorders. SIGNIFICANCE Patients with neuropathic pain may benefit from treatment with cannabis-based medicines or medical cannabis (CBM/MC), particularly in terms of reduced use of gabapentin and fewer days admitted to hospitals, compared with propensity score matched controls. CBM/MC did not, however, reduce the use of opioids. We did not find evidence that CBM/MC were effective for patients with other pain disorders.
Collapse
Affiliation(s)
- Carsten Hjorthøj
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter La Cour
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Merete Nordentoft
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christine Merrild Posselt
- Copenhagen Research Center for Mental Health - CORE, Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
12
|
Cannabinoid Type-2 Receptor Agonist, JWH133 May Be a Possible Candidate for Targeting Infection, Inflammation, and Immunity in COVID-19. IMMUNO 2021. [DOI: 10.3390/immuno1030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, is a deadly disease affecting millions due to the non-availability of drugs and vaccines. The majority of COVID-19 drugs have been repurposed based on antiviral, immunomodulatory, and antibiotic potential. The pathogenesis and advanced complications with infection involve the immune-inflammatory cascade. Therefore, a therapeutic strategy could reduce infectivity, inflammation, and immune modulation. In recent years, modulating the endocannabinoid system, particularly activation of the cannabinoid type 2 (CB2) receptor is a promising therapeutic target for modulation of immune-inflammatory responses. JWH133, a selective, full functional agonist of the CB2 receptor, has been extensively studied for its potent anti-inflammatory, antiviral, and immunomodulatory properties. JWH133 modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. In this study, we propose that JWH133 could be a promising candidate for targeting infection, immunity, and inflammation in COVID-19, due to its pharmacological and molecular mechanisms in numerous preclinical efficacy and safety studies, along with its immunomodulatory, anti-inflammatory, organoprotective, and antiviral properties. Thus, JWH133 should be investigated in preclinical and clinical studies for its potential as an agent or adjuvant with other agents for its effect on viremia, infectivity, immune modulation, resolution of inflammation, reduction in severity, and progression of complications in COVID-19. JWH133 is devoid of psychotropic effects due to CB2 receptor selectivity, has negligible toxicity, good bioavailability and druggable properties, including pharmacokinetic and physicochemical effects. We believe that JWH133 could be a promising drug and may inspire further studies for an evidence-based approach against COVID-19.
Collapse
|
13
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
14
|
Nagoor Meeran MF, Sharma C, Goyal SN, Kumar S, Ojha S. CB2 receptor-selective agonists as candidates for targeting infection, inflammation, and immunity in SARS-CoV-2 infections. Drug Dev Res 2020; 82:7-11. [PMID: 33190277 PMCID: PMC7753678 DOI: 10.1002/ddr.21752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a deadly disease afflicting millions. The pandemic continues affecting population due to nonavailability of drugs and vaccines. The pathogenesis and complications of infection mainly involve hyperimmune-inflammatory responses. Thus, therapeutic strategies rely on repurposing of drugs aimed at reducing infectivity and inflammation and modulate immunity favourably. Among, numerous therapeutic targets, the endocannabinoid system, particularly activation of cannabinoid type-2 receptors (CB2R) emerged as an important one to suppress the hyperimmune-inflammatory responses. Recently, potent antiinflammatory, antiviral and immunomodulatory properties of CB2R selective ligands of endogenous, plant, and synthetic origin were showed mediating CB2R selective functional agonism. CB2R activation appears to regulate numerous signaling pathways to control immune-inflammatory mediators including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Many CB2R ligands also exhibit off-target effects mediating activation of PPARs, opioids, and TRPV, suggestive of adjuvant use with existing drugs that may maximize efficacy synergistically and minimize therapeutic doses to limit adverse/ side effects. We hypothesize that CB2R agonists, due to immunomodulatory, antiinflammatory, and antiviral properties may show activity against COVID-19. Based on the organoprotective potential, relative safety, lack of psychotropic effects, and druggable properties, CB2R selective ligands might make available promising candidates for further investigation.
Collapse
Affiliation(s)
- M F Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box - 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box - 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424 001, India
| | - Sanjay Kumar
- Division of Hematology, Division of Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box - 17666, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. Front Med 2020; 15:232-251. [PMID: 32876877 DOI: 10.1007/s11684-020-0797-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
16
|
Cannabinoid-Induced Immunomodulation during Viral Infections: A Focus on Mitochondria. Viruses 2020; 12:v12080875. [PMID: 32796517 PMCID: PMC7472050 DOI: 10.3390/v12080875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review examines the impact of cannabinoids on viral infections, as well as its effects on the mitochondria of the nervous and immune system. The paper conveys information about the beneficial and negative impacts of cannabinoids on viral infections, especially HIV-1. These include effects on the inflammatory response as well as neuroprotective effects. We also explore non-apoptotic mitochondrial pathways modulated by the activity of cannabinoids, resulting in modifications to cellular functions. As a large part of the literature derives from studies of the nervous system, we first compile the information related to mitochondrial functions in this system, particularly through the CB1 receptor. Finally, we reflect on how this knowledge could complement what has been demonstrated in the immune system, especially in the context of the CB2 receptor and Ca2+ uptake. The overall conclusion of the review is that cannabinoids have the potential to affect a broad range of cell types through mitochondrial modulation, be it through receptor-specific action or not, and that this pathway has a potential implication in cases of viral infection.
Collapse
|
17
|
Klahn P. Cannabinoids-Promising Antimicrobial Drugs orIntoxicants with Benefits? Antibiotics (Basel) 2020; 9:E297. [PMID: 32498408 PMCID: PMC7345649 DOI: 10.3390/antibiotics9060297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023] Open
Abstract
Novel antimicrobial drugs are urgently needed to counteract the increasing occurrence ofbacterial resistance. Extracts of Cannabis sativa have been used for the treatment of several diseasessince ancient times. However, its phytocannabinoid constituents are predominantly associated withpsychotropic effects and medical applications far beyond the treatment of infections. It has beendemonstrated that several cannabinoids show potent antimicrobial activity against primarily Grampositivebacteria including methicillin-resistant Staphylococcus aureus (MRSA). As first in vivoefficacy has been demonstrated recently, it is time to discuss whether cannabinoids are promisingantimicrobial drug candidates or overhyped intoxicants with benefits.
Collapse
Affiliation(s)
- Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30,D-38106 Braunschweig, Germany
| |
Collapse
|
18
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
19
|
Taalab YM, Fathi Mohammed W, Helmy MA, Othman AA, Darwish M, Hassan I, Abbas M. Cannabis Influences the Putative Cytokines-Related Pathway of Epilepsy among Egyptian Epileptic Patients. Brain Sci 2019; 9:brainsci9120332. [PMID: 31757102 PMCID: PMC6955862 DOI: 10.3390/brainsci9120332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The study aims to investigate: (1) the prevalence of cannabis among epileptic patients seen at Mansoura University Hospital, (2) serum levels and gene expression of cytokines in epilepsy patients and the controls. and (3) the possibility that cannabis use affects the cytokine levels in epilepsy patients, triggering its future use in treatment. We recruited 440 epilepsy patients and 200 controls matched for age, gender, and ethnicity. Of the epileptic patients, 37.5% demonstrated lifetime cannabis use with a mean duration of 15 ± 73 years. Serum levels of interleukin IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α), were analyzed and gene expression analysis was conducted only for those cytokines that were different between groups in the serum analysis. The “Epilepsy-only” patients had significantly higher serum and mRNA levels of IL-1α, β, IL-2,6,8, and TNF-α compared to the controls and the “Cannabis+Epilepsy” group (p = 0.0001). IL-10 showed significantly lower levels in the “Epilepsy-only” patients compared to the controls and “Cannabis+Epilepsy” (p = 0.0001). Cannabis use is prevalent among epilepsy patients. Epilepsy is characterized by a pro-inflammatory state supported by high serum and gene expression levels. Cannabis users demonstrated significantly lower levels of inflammatory cytokines compared to epilepsy non-cannabis users which might contribute to its use in the treatment of resistant epilepsy.
Collapse
Affiliation(s)
- Yasmeen M. Taalab
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt; (Y.M.T.); (M.A.H.)
- Institute of Forensic and Traffic Medicine, University of Heidelberg, 69115 Heidelberg, Germany
| | - Wessam Fathi Mohammed
- Neurology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt; (W.F.M.); (M.A.)
| | - Manar A. Helmy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt; (Y.M.T.); (M.A.H.)
| | - Alyaa A.A. Othman
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt; (Y.M.T.); (M.A.H.)
| | - Mohamed Darwish
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt;
| | - Ibrahim Hassan
- Movement and Training Science Department, Institute of Sports Sciences, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
- Correspondence: ; Tel.: +491-630-803-435
| | - Mohammed Abbas
- Neurology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt; (W.F.M.); (M.A.)
| |
Collapse
|
20
|
Tashkin DP, Roth MD. Pulmonary effects of inhaled cannabis smoke. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:596-609. [PMID: 31298945 DOI: 10.1080/00952990.2019.1627366] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: The smoke generated from cannabis delivers biologically active cannabinoids and a number of combustion-derived toxins, both of which raise questions regarding the impact of cannabis smoking on lung function, airway inflammation and smoking-related lung disease.Objectives: Review the potential effects of cannabis smoking on respiratory symptoms, lung function, histologic/molecular alterations in the bronchial mucosa, smoking-related changes in alveolar macrophage function and the potential clinical impact of cannabis smoking on chronic obstructive pulmonary disease, lung cancer and pulmonary infections.Methods: Focused literature review.Results: The carcinogens and respiratory toxins in cannabis and tobacco smoke are similar but the smoking topography for cannabis results in higher per-puff exposures to inhaled tar and gases. The frequency of chronic cough, sputum and wheeze and the presence of airway mucosal inflammation, goblet cell and vascular hyperplasia, metaplasia and cellular disorganization are similar between cannabis smokers and tobacco smokers. Cannabis smoke has modest airway bronchodilator properties but of unclear clinical significance. While clear evidence exists for progression to obstructive lung disease and emphysema in chronic tobacco smokers, the effects from habitual cannabis use are less clear. Evidence suggests that alveolar macrophages from cannabis smokers have deficits in cytokine production and antimicrobial activity not present in cells from tobacco smokers.Conclusions: Solid conclusions regarding the respiratory consequences of regular cannabis smoking are difficult to make due to a relative paucity of literature, confounding by concurrent tobacco smoking and reports of conflicting outcomes. Additional well-controlled clinical studies on the pulmonary consequences of habitual cannabis use are needed.
Collapse
Affiliation(s)
- Donald P Tashkin
- Department of Medicine, Division of Pulmonary & Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael D Roth
- Department of Medicine, Division of Pulmonary & Critical Care, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
21
|
Tassorelli C, Greco R, Silberstein SD. The endocannabinoid system in migraine: from bench to pharmacy and back. Curr Opin Neurol 2019; 32:405-412. [DOI: 10.1097/wco.0000000000000688] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|