1
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
2
|
Zhang H, Zhou Y, Qu M, Yu Y, Chen Z, Zhu S, Guo K, Chen W, Miao C. Tissue Factor-Enriched Neutrophil Extracellular Traps Promote Immunothrombosis and Disease Progression in Sepsis-Induced Lung Injury. Front Cell Infect Microbiol 2021; 11:677902. [PMID: 34336711 PMCID: PMC8317465 DOI: 10.3389/fcimb.2021.677902] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Patients with sepsis may progress to acute respiratory distress syndrome (ARDS). Evidence of neutrophil extracellular traps (NETs) in sepsis-induced lung injury has been reported. However, the role of circulating NETs in the progression and thrombotic tendency of sepsis-induced lung injury remains elusive. The aim of this study was to investigate the role of tissue factor-enriched NETs in the progression and immunothrombosis of sepsis-induced lung injury. Methods Human blood samples and an animal model of sepsis-induced lung injury were used to detect and evaluate NET formation in ARDS patients. Immunofluorescence imaging, ELISA, Western blotting, and qPCR were performed to evaluate in vitro NET formation and tissue factor (TF) delivery ability. DNase, an anti-TF antibody, and thrombin inhibitors were applied to evaluate the contribution of thrombin to TF-enriched NET formation and the contribution of TF-enriched NETs to immunothrombosis in ARDS patients. Results Significantly increased levels of TF-enriched NETs were observed in ARDS patients and mice. Blockade of NETs in ARDS mice alleviated disease progression, indicating a reduced lung wet/dry ratio and PaO2 level. In vitro data demonstrated that thrombin-activated platelets were responsible for increased NET formation and related TF exposure and subsequent immunothrombosis in ARDS patients. Conclusion The interaction of thrombin-activated platelets with PMNs in ARDS patients results in local NET formation and delivery of active TF. The notion that NETs represent a mechanism by which PMNs release thrombogenic signals during thrombosis may offer novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilu Zhou
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Bouamama S, Merzouk H, Latrech H, Charif N, Bouamama A. Royal jelly alleviates the detrimental effects of aging on immune functions by enhancing the in vitro cellular proliferation, cytokines, and nitric oxide release in aged human PBMCS. J Food Biochem 2021; 45:e13619. [PMID: 33491244 DOI: 10.1111/jfbc.13619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
Aging strongly delays the immunity. Our research aims to assess the in vitro effects of royal jelly (RJ) on the immune function of aged PBMCs. PBMCs were obtained from 10 healthy aged and young donors by the gradient density centrifugation method and further cultured in RPMI-1640 medium supplemented with or without RJ in the presence of Con A. Cell proliferation was assessed by MTT assay along with the measurement of interleukins, Nitric oxide (NO), Glutathione (GSH), and Malondialdehydes (MDA). Our results showed that RJ improved PBMCs proliferation significantly in the elderly subjects, accompanied by the increase in NO (p = .001) and the release of IL-2, IL-4, and IL-6 cytokines. RJ also increased the intracellular GSH (p = .001) and MDA (p = .001) levels in aged PBMCs. In young subjects, RJ enhanced PBMCs proliferation potency, IL-4, IL-6, GSH, and intracellular MDA levels but with a concomitant decrease in NO and IL-2 cytokine secretion as compared with non RJ-treated cells. In conclusion, RJ restored functions of the aged PBMCs as well as the young control subjects, indicating a beneficial effect on immune status during the aging process. PRACTICAL APPLICATIONS: Royal jelly is a well-known edible dietary compound, used traditionally to treat many diseases throughout the world. Since antiquity, it was shown to have medicinal importance. The immuno-enhancing potential of this food was largely and scientifically established by the lipid and protein fractions. The present study illustrates the anti-aging and stimulatory effects of the fresh RJ whole extract, from local Algerian honey bee: Apis mellifera intermissa, on the immunity of aged men. This study provides the experimental evidence supporting anti-immunosenesence effects of royal jelly. RJ supplementation can be used in the old age management and human age-related complications, especially, associated with the weaknesses of the immune response.
Collapse
Affiliation(s)
- Samia Bouamama
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Hafida Merzouk
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Hamidou Latrech
- Institute of Veterinary Sciences, Blida University, Blida, Algeria
| | - Naima Charif
- Department of Biology, Faculty of Natural and Life Sciences, Earth and Universe, Abou-Bekr Belkaid University, Tlemcen, Algeria.,Research Laboratory of Physiology, Physiopathology, and Biochemistry of Nutrition, Abou-Bekr Belkaid University, Tlemcen, Algeria
| | - Amina Bouamama
- Department of Foreign Languages, Literatures and Languages Faculty, Abou-Bekr Belkaid University, Tlemcen, Algeria
| |
Collapse
|
4
|
Sharma R, Padwad Y. Nutraceuticals-Based Immunotherapeutic Concepts and Opportunities for the Mitigation of Cellular Senescence and Aging: A Narrative Review. Ageing Res Rev 2020; 63:101141. [PMID: 32810647 DOI: 10.1016/j.arr.2020.101141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The role of increased tissue senescent cell (SC) burden in driving the process of ageing and associated disorders is rapidly gaining attention. Amongst various plausible factors, impairment in immune functions is emerging as a critical regulator of known age-associated accumulation of SC. Immune cells dysfunctions with age are multi-faceted and are uniquely attributed to the independent processes of immunosenescence and cellular senescence which may collectively impair immune system mediated clearance of SC. Moreover, being functionally and phenotypically heterogenic, immune cells are also liable to be affected by senescence microenvironment in other tissues. Therefore, strategies aimed at improving immunosenescence and cellular senescence in immune cells can have pleiotropic effects on ageing physiology including the accumulation of SC. In this regard, nutraceutical's immunomodulatory attributes are well documented which may have implications in developing nutrition-oriented immunotherapeutic approaches against SC. In particular, the three diverse sources of bioactive ingredients, viz., phytochemicals, probiotic bacteria and omega-3-fatty acids have shown promising anti-immunosenescence and anti-cellular senescence potential in immune cells influencing aging and immunity in ways beyond modest stimulation of immune responses. The present narrative review describes the preventive and therapeutic attributes of phytochemicals such as polyphenols, probiotic microbes and omega-3-fatty acids in influencing the emerging nexus of immunosenescence, cellular senescence and SC during aging. Outstanding questions and nutraceuticals-based pro-longevity and niche research areas have been deliberated. Further research using integrative approaches is recommended for developing nutrition-based holistic immunotherapeutic strategies for 'healthy ageing'.
Collapse
|
5
|
Liu J, Luo M, Zhang Y, Cao G, Wang S. Association of high-risk human papillomavirus infection duration and cervical lesions with vaginal microbiota composition. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1161. [PMID: 33241010 PMCID: PMC7576078 DOI: 10.21037/atm-20-5832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Cervical cancer is reportedly caused by the synergistic effects of persistent high-risk human papillomavirus (HPV) infection. Cervical microbiota represent a unique and dynamically changing microecological system that is directly exposed to the vagina. The relationship between HPV and the composition of the cervical microbiome has long been a primary focus of research. Methods To determine the specific differential florae throughout the process of cervical cancer development, in the present study, 16S rRNA sequencing was combined with KEGG pathway enrichment analysis to analyse five groups of cervical scraping samples with increasing durations of HPV infection and cervical intraepithelial neoplasia pathological classification. Results The findings revealed that decreasing levels of probiotics, including Shuttleworthia, Prevotella, Lactobacillus, and Sneathia, and increasing levels of pathogenic bacteria, including Dispar, Streptococcus, and Faecalibacterium prausnitzii, could be the direct result of early HPV infection. Other pathogenic bacteria, such as Bifidobacteriaceae, might represent key factors in cancer progression. Additionally, KEGG pathway enrichment analysis indicated that HPV infection directly inhibits multiple pathways, including those of sporulation, porphyrin and chlorophyll metabolism, arginine and proline metabolism, isoquinoline alkaloid biosynthesis, and ansamycin biosynthesis, which may lead to the development of early symptoms of cervical cancer. Biomarkers were predicted based on operational taxonomic unit (OTU) abundance data, and OTU851726 and OTU715913 were undoubtedly the best potential indicators of cervical cancer. Conclusions The findings of the present study could assist with the development of a guideline for screening new clinical drugs for cervical cancer.
Collapse
Affiliation(s)
- Jun Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mei Luo
- Department of Obstetrics and Gynecology, Lu-He Teaching Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shuzhen Wang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Ramirez DC, Gomez Mejiba SE. Pulmonary Neutrophilic Inflammation and Noncommunicable Diseases: Pathophysiology, Redox Mechanisms, Biomarkers, and Therapeutics. Antioxid Redox Signal 2020; 33:211-227. [PMID: 32319787 DOI: 10.1089/ars.2020.8098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Pulmonary neurophilic inflammation (PNI) is the homing and activation of neutrophil with damage to the microvasculature. This process is involved in pulmonary damage in patients exposed to airborne pollutants (exogenous stressors) and also to systemic inflammation/oxidative stress (endogenous stressors) associated with noncommunicable diseases (NCDs). Recent Advances: PNI is an important trigger of the early onset and progression of NCD in susceptible patients exposed to airborne pollutants. Irritation of the lung microvasculature by exogenous and endogenous stressors causes PNI. Circulating endogenous stressors in NCD can cause PNI. Critical Issues: Air pollution-triggered PNI causes increased circulating endogenous stressors that can trigger NCD in susceptible patients. Systemic inflammation/oxidative stress associated with NCD can cause PNI. Inflammation/end-oxidation products of macromolecules are also potential biomarkers and therapeutic targets for NCD-triggered PNI- and PNI-triggered NCD. Future Directions: Understanding the molecular mechanism of PNI triggered by exogenous or endogenous stressors will help explain the early onset of NCD in susceptible patients exposed to air pollution. It can also help undercover biomarkers and mechanism-based therapeutic targets in air pollutant-triggered PNI, PNI-triggered NCD, and NCD-triggered PNI.
Collapse
Affiliation(s)
- Dario C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CCT-San Luis, CONICET, School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Sandra E Gomez Mejiba
- Laboratory of Experimental Therapeutics and Nutrition, IMIBIO-SL, CCT-San Luis, CONICET, School of Health Sciences, National University of San Luis, San Luis, Argentina
| |
Collapse
|
7
|
D-galactose: a model of accelerated ageing sufficiently sensitive to reflect preventative efficacy of an antioxidant treatment. Biogerontology 2020; 21:745-761. [PMID: 32638260 DOI: 10.1007/s10522-020-09891-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Considering that the phenomenon of accelerated ageing contributes to early onset of various chronic diseases, modelling of the relevant dysregulated systems or responses is vital for research aimed at identification of potential therapeutic targets. Here, we aimed to establish a model capable of simulating the redox and inflammatory changes of accelerated ageing-specifically, the aim was early phase accelerated ageing, which would allow therapeutic intervention in a preventative approach prior to clinical disease manifestation. A secondary aim was to evaluate the sensitivity of the model to reflect preventative treatment efficacy. Daily D-galactose injections (250 mg/kg body mass/day) for 8 weeks in 9-week-old male Wistar rats induced a model of early accelerated ageing (decreased plasma FRAP; P < 0.05 and altered inflammatory signalling) and an aged profile in lymph node ultrastructure, but did not yet result in telomere shortening. Preventative daily oral antioxidant administration (grape seed-derived polyphenol, 100 mg/kg body mass) prevented tissue ageing, beneficially modulated the inflammatory response, including neutrophil chemokinetic capacity, and tended to increase absolute telomere length. Data suggests that using a mild model of D-galactose administration than those employed to induce neurodegeneration, simulated the point where oxidative stress starts to overwhelm the endogenous antioxidant response and where a pro-inflammatory phenotype switch manifests. Furthermore, despite the expected small effect size, the model was sufficiently sensitive to reflect benefits of preventative antioxidant treatment in the context of ageing. This model presents a practical model for use in drug discovery, particularly in the context of preventative medicine aimed at limiting oxidative stress-associated ageing. Since this starting point of accelerated ageing as illustrated by current data, is not expected to reflect major ageing-associated changes yet, we recommend that future preventative drug discovery studies employ a longitudinal study design in order to clearly demonstrate the delay of this starting point by preventative strategies.
Collapse
|
8
|
Accelerated ageing profile in inflammatory arthritis is unique and tissue compartment specific. Inflammopharmacology 2020; 28:967-977. [PMID: 32594363 DOI: 10.1007/s10787-020-00731-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Rheumatoid arthritis is prevalent in more than 1% of the global population, with the highest occurrence between ages 35 and 50, which places a huge burden on the economy. Drug discovery for the prevention of this chronic disease is; therefore, a priority. It is known that subclinical progression of many chronic non-communicable diseases is exacerbated via accelerated ageing, a pro-inflammatory phenotype shift. However, rheumatoid arthritis additionally has significant humoral immune activation, inflammatory signalling-and thus the accelerated ageing profile-may differ from other chronic inflammatory diseases. The current study simulated inflammatory arthritis onset in a collagen-induced arthritis (CIA) rodent model, to characterise the redox and inflammatory profile at the onset of clinical symptoms, in different tissues, in the presence and absence of preventative antioxidant treatment. The data illustrate that an increased free radical level are evident already very early on in RA disease progression. Furthermore, oxidative stress seems to somewhat precede a significant pro-inflammatory state, perhaps due to humoral immune activation. Our data across different compartments further suggest that the compensatory increase in endogenous antioxidant activity is gradually exhausted at a different pace, with the liver showing the first signs of oxidant damage, even before significant evidence exist in circulation. The current data further suggest that preventative antioxidant intervention may have a sparing effect on endogenous antioxidant mechanisms and preserve telomere length to delay disease progression-or at least the accelerated ageing known to exacerbate RA symptoms-although it did not seem to have a significant direct effect on the autoimmune activity.
Collapse
|
9
|
Sharma R, Padwad Y. Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Li W, Zhang XY, Du J, Li YF, Chen YJ, Cao Y. RNA-seq-based quanitative transcriptome analysis of meat color and taste from chickens administered by eucalyptus leaf polyphenols extract. J Food Sci 2020; 85:1319-1327. [PMID: 32175699 DOI: 10.1111/1750-3841.15082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/13/2023]
Abstract
To evaluate how eucalyptus leaf polyphenol extract (EPE) affects chicken meat color and taste, we added different levels of EPE (0%, 0.06%, 0.09%, and 0.12%) to chicken feed. The redness (a* value) and the myoglobin content of breast muscle in EPE group were remarkably higher. Furthermore, the guanosine monophosphate, histidine, and glycine muscle contents were also enhanced. Transcriptome analysis showed that 10 candidate genes related to meat quality were affected by EPE treatment. The identified genes, with functions critical to chicken meat color and taste, will help to determine the molecular mechanisms of EPE.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Xiao-Ying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Jie Du
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yi-Feng Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yun-Jiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| |
Collapse
|
11
|
Oyenihi AB, Smith C. Are polyphenol antioxidants at the root of medicinal plant anti-cancer success? JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:54-72. [PMID: 30287197 DOI: 10.1016/j.jep.2018.09.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Given the severe side effects associated with most of the conventional cancer medications, as well as the expanding body of evidence indicating secondary toxicity of these drugs, individuals with cancer are increasingly turning to natural alternatives. Similarly, the pharmaceutical industry is in search of natural products to treat cancer. An understanding of the specific active components in plant products with which anti-cancer efficacy is achieved is required for this research to move forward. AIM OF THE STUDY To integrate data from cancer-relatestudies on plant-derived products or extracts, to elucidate whether these products may have similar active ingredients and/or mechanisms of action, that can explain their efficacy. This review also includes a discussion of the methodological complexities and important considerations involved in accurate isolation and characterisation of active substances from plant material. CONCLUSIONS From the literature reviewed, most plant products with consistently reported anti-cancer efficacy contains high levels of polyphenols or other potent antioxidants and their mechanisms of action correlate to that reported for isolated antioxidants in the context of cancer. This suggests that natural products may indeed become the panacea against this chronic disease - either as therapeutic medicine strategy or to serve as templates for the design of novel synthetic drugs. The recommendation is made that antioxidant activity of plant actives and especially polyphenols, should be the focus of anti-cancer drug discovery initiatives. Lastly, researchers are advised to exploit current techniques of chemical compound characterisation when investigating polyphenol-rich plants to enable the easy consolidation of research findings from different laboratories.
Collapse
Affiliation(s)
- A B Oyenihi
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - C Smith
- Dept Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa.
| |
Collapse
|