1
|
Choi YJ, Jung JI, Bae J, Lee JK, Kim EJ. Evaluation of the anti-osteoarthritic effects and mechanisms of Cissus quadrangularis extract containing quercetin and isorhamnetin in a rat model of monosodium iodoacetate-induced osteoarthritis. Food Nutr Res 2025; 69:12173. [PMID: 40264489 PMCID: PMC12013599 DOI: 10.29219/fnr.v69.12173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 04/24/2025] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation, subchondral bone erosion, and chronic inflammation. Current treatments primarily focus on symptom relief and have significant side effects, highlighting the need for safer, more effective alternatives. Cissus quadrangularis extract (CQE), containing bioactive flavonoids quercetin and isorhamnetin, has shown potential anti-inflammatory and cartilage-protective properties. Objective This study aimed to investigate the anti-osteoarthritic effects and mechanisms of action of CQE in a monosodium iodoacetate (MIA)-induced OA rat model. Design Sprague-Dawley (SD) rats were induced with OA through intra-articular injection of MIA and treated with CQE at doses of 30, 50, and 100 mg/kg body weight (BW)/day. The effects of CQE on knee joint damage, subchondral bone erosion, cartilage structure, proteoglycan content, and the expression of inflammatory mediators and matrix metalloproteinases (MMPs) were assessed using micro-computed tomography (micro-CT), histological staining, immunofluorescence, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Results CQE significantly mitigated knee joint damage, reduced subchondral bone erosion, and enhanced bone volume and trabecular structure in MIA-induced OA rats. It also preserved cartilage integrity by maintaining proteoglycan content and the expression of collagen type II alpha 1 (COL2A1) and aggrecan. Moreover, CQE suppressed the mRNA expression of inflammatory mediators [inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and 5-lipoxygenase (5-LOX)], pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α)], and MMPs (MMP-2, MMP-3, MMP-9, and MMP-13), indicating strong anti-inflammatory and cartilage-protective effects. Conclusions CQE exhibits significant therapeutic potential in managing OA by targeting multiple aspects of disease progression, including inflammation, cartilage degradation, and bone erosion. Further research is needed to explore long-term efficacy, safety, and the molecular mechanisms of CQE, as well as to validate these findings in human clinical trials.
Collapse
Affiliation(s)
- Yean-Jung Choi
- Department of Food and Nutrition, Sahmyook University, Seoul, Republic of Korea
| | - Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Republic of Korea
| | - Jaewoo Bae
- FMCG-Korea Research Institute, FMCG-Korea Co. Ltd., Goyang, Republic of Korea
| | - Jae Kyoung Lee
- FMCG-Korea Research Institute, FMCG-Korea Co. Ltd., Goyang, Republic of Korea
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Crupi L, Capra AP, Paterniti I, Lanza M, Calapai F, Cuzzocrea S, Ardizzone A, Esposito E. Evaluation of the nutraceutical Palmitoylethanolamide in reducing intraocular pressure (IOP) in patients with glaucoma or ocular hypertension: a systematic review and meta-analysis. Nat Prod Res 2025; 39:797-816. [PMID: 38269580 DOI: 10.1080/14786419.2024.2306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Intraocular pressure (IOP) positively correlates with both normal and high-tension glaucoma. To date, IOP targeting remains the validated pharmacological approach in counteracting glaucoma progression as well as in halting vision loss. Among the different adjuvant compounds, evidence highlighted the potential effectiveness of Palmitoylethanolamide (PEA), an endogenous fatty acid amide. Thus, a systematic review of the literature was conducted, thoroughly evaluating PEA treatment regimen in decreasing IOP in patients with eye disorders. We checked for articles across the scientific databases Pubmed (MEDLINE), Embase (OVID), and Web of Science from the inception to 30 August 2023, and a total of 828 articles were recovered. Six of these studies (199 patients) were included in the systematic review after the study selection process, and three studies for meta-analysia. Overall, PEA showed significant efficacy in reducing IOP in patients, this encourages its clinical use in glaucoma as well as across different forms of eye disorders.
Collapse
Affiliation(s)
- Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Chen X, Liu J, Wang G, Sun Y, Ding X, Zhang X. Regulating lipid metabolism in osteoarthritis: a complex area with important future therapeutic potential. Ann Med 2024; 56:2420863. [PMID: 39466361 PMCID: PMC11520103 DOI: 10.1080/07853890.2024.2420863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), which is characterized by pain, inflammation and pathological changes, is associated with abnormal lipid metabolism. Extensive studies have been conducted on the potential functions of lipids including cholesterol, fatty acids (FAs) and adipokines. MATERIALS AND METHODS By searching and screening the literature included in the PubMed and Web of Science databases from 1 January 2019 to 1 January 2024, providing an overview of research conducted on lipid metabolism and OA in the last 5 years. RESULTS In addition to adiponectin, several studies on the effects of lipid metabolism on OA have been consistent and complementary. Total cholesterol, triglycerides, low-density lipoprotein cholesterol, adipsin, leptin, resistin, saturated FAs, monounsaturated FAs, FA-binding protein 4 and the ratios of the FAs hexadecenoylcarnitine (C16:1) to dodecanoylcarnitine and C16:1 to tetradecanoylcarnitine induced mostly deleterious effects, whereas high-density lipoprotein cholesterol and apolipoprotein A/B/D had a positive impact on the health of joints. The situation for polyunsaturated FAs may be more complicated, as omega-3 increases the genetic susceptibility to OA, whereas omega-6 does the opposite. Alterations in lipid or adipokine levels and the resulting pathological changes in cartilage and other tissues (such as bone and synovium) ultimately affect joint pain, inflammation and cartilage degradation. Lipid or adipokine regulation has potential as a future direction for the treatment of OA, this potential avenue of OA treatment requires high-quality randomized controlled trials of combined lipid regulation therapy, and more in-depth in vivo and in vitro studies to confirm the underlying mechanism.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Guizhen Wang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Kruta J, Carapito R, Trendelenburg M, Martin T, Rizzi M, Voll RE, Cavalli A, Natali E, Meier P, Stawiski M, Mosbacher J, Mollet A, Santoro A, Capri M, Giampieri E, Schkommodau E, Miho E. Machine learning for precision diagnostics of autoimmunity. Sci Rep 2024; 14:27848. [PMID: 39537649 PMCID: PMC11561187 DOI: 10.1038/s41598-024-76093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Early and accurate diagnosis is crucial to prevent disease development and define therapeutic strategies. Due to predominantly unspecific symptoms, diagnosis of autoimmune diseases (AID) is notoriously challenging. Clinical decision support systems (CDSS) are a promising method with the potential to enhance and expedite precise diagnostics by physicians. However, due to the difficulties of integrating and encoding multi-omics data with clinical values, as well as a lack of standardization, such systems are often limited to certain data types. Accordingly, even sophisticated data models fall short when making accurate disease diagnoses and presenting data analyses in a user-friendly form. Therefore, the integration of various data types is not only an opportunity but also a competitive advantage for research and industry. We have developed an integration pipeline to enable the use of machine learning for patient classification based on multi-omics data in combination with clinical values and laboratory results. The application of our framework resulted in up to 96% prediction accuracy of autoimmune diseases with machine learning models. Our results deliver insights into autoimmune disease research and have the potential to be adapted for applications across disease conditions.
Collapse
Affiliation(s)
- Jan Kruta
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, INSERM UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, 4 rue Kirschleger, Strasbourg, 67085, France
- Service d'Immunologie Biologique, Pôle de Biologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, Strasbourg, 67091, France
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, 4031, Switzerland
| | - Thierry Martin
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, INSERM UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, 4 rue Kirschleger, Strasbourg, 67085, France
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Andrea Cavalli
- FaBiT Department of Pharmacy and Biotechnology, Università di Bologna, Bologna, 40126, Italy
| | - Eriberto Natali
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland
| | - Patrick Meier
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland
| | - Marc Stawiski
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland
| | - Johannes Mosbacher
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland
| | - Annette Mollet
- Institute of Pharmaceutical Medicine, University of Basel, Basel, 4056, Switzerland
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy
| | - Enrico Giampieri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, 40126, Italy
| | - Erik Schkommodau
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland
| | - Enkelejda Miho
- School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz, 4132, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.
- aiNET GmbH, Lichtstrasse 35, Basel, 4056, Switzerland.
| |
Collapse
|
5
|
Basu D. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review. J Biomed Res 2024; 38:1-15. [PMID: 39433509 DOI: 10.7555/jbr.38.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The global nutritional transition has led to high frequency and severity of chronic degenerative diseases worldwide, primarily driven by chronic inflammatory stress. At the mealtimes, various pharmaceutical products aim to prevent such an inflammatory stress, they usually cause various systemic side effects. Therefore, supplementation of natural and safe ingredients is a great strategy to reduce the risk and severity of inflammatory stress-related diseases. As a result, palmitoylethanolamide (PEA), an endocannabinoid-like mediator, has been extensively studied for its myriad of actions, including anti-inflammatory, anti-microbial, immunostimulatory, neuroprotective, and pain-reducing effects with high tolerability and safety of PEA in animals and humans. Because of the multiple molecular targets and mechanisms of action, PEA has shown therapeutic benefits in various diseases, including neurological, psychiatric, ophthalmic, metabolic, oncological, renal, hepatic, immunological, rheumatological, and gastrointestinal conditions. The current review highlights the roles and functions of PEA in various physiological and pathological conditions, further supporting the use of PEA as an important dietary agent.
Collapse
Affiliation(s)
- Debasis Basu
- Healious Global METTA Clinic, Kolkata, West Bengal 700029, India
| |
Collapse
|
6
|
Kumar A, Tatarian J, Shakhnovich V, Chevalier RL, Sudman M, Lovell DJ, Thompson SD, Becker ML, Funk RS. Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis. Metabolites 2024; 14:499. [PMID: 39330506 PMCID: PMC11434325 DOI: 10.3390/metabo14090499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Identification of disease and therapeutic biomarkers remains a significant challenge in the early diagnosis and effective treatment of juvenile idiopathic arthritis (JIA). In this study, plasma metabolomic profiling was conducted to identify disease-related metabolic biomarkers associated with JIA. Plasma samples from treatment-naïve JIA patients and non-JIA reference patients underwent global metabolomic profiling across discovery (60 JIA, 60 non-JIA) and replication (49 JIA, 38 non-JIA) cohorts. Univariate analysis identified significant metabolites (q-value ≤ 0.05), followed by enrichment analysis using ChemRICH and metabolic network mapping with MetaMapp and Cytoscape. Receiver operating characteristic (ROC) analysis determined the top discriminating biomarkers based on area under the curve (AUC) values. A total of over 800 metabolites were measured, consisting of 714 known and 155 unknown compounds. In the discovery cohort, 587 metabolites were significantly altered in JIA patients compared with the reference population (q < 0.05). In the replication cohort, 288 metabolites were significantly altered, with 78 overlapping metabolites demonstrating the same directional change in both cohorts. JIA was associated with a notable increase in plasma levels of sphingosine metabolites and fatty acid ethanolamides and decreased plasma levels of sarcosine, iminodiacetate, and the unknown metabolite X-12462. Chemical enrichment analysis identified cycloparaffins in the form of naproxen and its metabolites, unsaturated lysophospholipids, saturated phosphatidylcholines, sphingomyelins, ethanolamines, and saturated ceramides as the top discriminating biochemical clusters. ROC curve analysis identified 11 metabolites classified as highly discriminatory based on an AUC > 0.90, with the top discriminating metabolite being sphinganine-1-phosphate (AUC = 0.98). This study identifies specific metabolic changes in JIA, particularly within sphingosine metabolism, through both discovery and replication cohorts. Plasma metabolomic profiling shows promise in pinpointing JIA-specific biomarkers, differentiating them from those in healthy controls and Crohn's disease, which may improve diagnosis and treatment.
Collapse
Affiliation(s)
- Amar Kumar
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| | - Joshua Tatarian
- University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | | | - Rachel L Chevalier
- University of Missouri-Kansas City School of Medicine & Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Marc Sudman
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel J Lovell
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Susan D Thompson
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mara L Becker
- Division of Rheumatology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan S Funk
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
- University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
7
|
Lee JA, Ngo TH, Shin MR, Choi JW, Choi H, Nam JW, Roh SS. Efficacy of Veronica incana for Treating Osteoarthritis Induced by Monosodium Iodoacetate in Rats. J Med Food 2023; 26:379-389. [PMID: 37319312 DOI: 10.1089/jmf.2023.k.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
The aim of this study is to investigate the efficacy and the underlying mechanism of Veronica incana in osteoarthritis (OA) induced by intraarticular injection of monosodium iodoacetate (MIA). The selected major four compounds (A-D) of V. incana were found from fractions 3 and 4. Its structure elucidation was determined by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) data analysis and nuclear magnetic resonance (NMR) data comparison with literature. MIA (50 μL with 80 mg/mL) for the animal experiment was injected into the right knee joint. The V. incana was administered orally every day to rats for 14 days from 7 days after MIA treatment. Finally, we confirmed the four compounds: (A) verproside; (B) catalposide; (C) 6-vanilloylcatapol; and (D) 6-isovanilloylcatapol. When we evaluated the effect of V. incana on the MIA injection-induced knee OA model, there were a noticeable initial decreased in hind paw weight-bearing distribution compared to the Normal group (P < .001), but V. incana supplementation resulted in a significant increase in the weight-bearing distribution to the treated knee (P < .001). Moreover, the V. incana treatment led to a decrease in the levels of liver function enzymes and tissue malondialdehyde (P < .05 and .01). The V. incana significantly suppressed the inflammatory factors through the nuclear factor-kappa B signaling pathway and downregulated the expression of matrix metalloproteinases, which are involved in the degradation of the extracellular matrix (P < .01 and .001). In addition, we confirmed the alleviation of cartilage degeneration through tissue stains. In conclusion, this study confirmed the major four compounds of V. incana and suggested that V. incana could serve as an anti-inflammatory candidate agent for patients with OA.
Collapse
Affiliation(s)
- Jin A Lee
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
- Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan-si, Korea
| | - Trung Huy Ngo
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Korea
| | - Mi-Rae Shin
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| | - Jeong Won Choi
- Department of Forest Science, Andong National University, Andong, Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si, Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Korea
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, Daegu Haany University, Daegu, Korea
| |
Collapse
|
8
|
Palmitoylethanolamide in the Treatment of Chronic Pain: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Nutrients 2023; 15:nu15061350. [PMID: 36986081 PMCID: PMC10053226 DOI: 10.3390/nu15061350] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Chronic pain is a major source of morbidity for which there are limited effective treatments. Palmitoylethanolamide (PEA), a naturally occurring fatty acid amide, has demonstrated utility in the treatment of neuropathic and inflammatory pain. Emerging reports have supported a possible role for its use in the treatment of chronic pain, although this remains controversial. We undertook a systematic review and meta-analysis to examine the efficacy of PEA as an analgesic agent for chronic pain. A systematic literature search was performed, using the databases MEDLINE and Web of Science, to identify double-blind randomized controlled trials comparing PEA to placebo or active comparators in the treatment of chronic pain. All articles were independently screened by two reviewers. The primary outcome was pain intensity scores, for which a meta-analysis was undertaken using a random effects statistical model. Secondary outcomes including quality of life, functional status, and side effects are represented in a narrative synthesis. Our literature search identified 253 unique articles, of which 11 were ultimately included in the narrative synthesis and meta-analysis. Collectively, these articles described a combined sample size of 774 patients. PEA was found to reduce pain scores relative to comparators in a pooled estimate, with a standard mean difference of 1.68 (95% CI 1.05 to 2.31, p = 0.00001). Several studies reported additional benefits of PEA for quality of life and functional status, and no major side effects were attributed to PEA in any study. The results of this systematic review and meta-analysis suggest that PEA is an effective and well-tolerated treatment for chronic pain. Further study is warranted to determine the optimal dosing and administration parameters of PEA for analgesic effects in the context of chronic pain.
Collapse
|
9
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|