1
|
Yelkenci HE, Degirmenci Z, Koc HI, Bayirli S, Baltaci SB, Altunay S, Oztekin N, Kocak M, Kilic E, Beker MC. Vinpocetine Ameliorates Neuronal Injury After Cold-Induced Traumatic Brain Injury in Mice. Mol Neurobiol 2025; 62:3956-3972. [PMID: 39361199 DOI: 10.1007/s12035-024-04515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 09/15/2024] [Indexed: 02/04/2025]
Abstract
Traumatic brain injury (TBI), also known as intracranial injury, is a common condition with the highest incidence rate among neurodegenerative disorders and poses a significant public health burden. Various methods are used in the treatment of TBI, but the effects of cold-induced traumatic brain injury have not been thoroughly studied. In this context, vinpocetine (VPN), derived from Vinca minor, exhibits notable anti-inflammatory and antioxidant properties. VPN is known for its neuroprotective role and is generally utilized for treating various neurodegenerative disorders. However, the function of VPN after cold-induced TBI needs to be studied in more detail. This study aims to investigate the neuroprotective effects of VPN at varying doses (5 mg/kg or 10 mg/kg) after cold-induced TBI. C57BL/6 mice were sacrificed 2 or 28 days after cold-induced TBI. Results indicate that VPN administration significantly reduces brain infarct volume, brain swelling, blood-brain barrier disruption, and DNA fragmentation in a dose-dependent manner. Additionally, VPN enhances neuronal survival in the ipsilesional cortex. In the long term, VPN treatment (5 mg/kg/day or 10 mg/kg/day, initiated 48 h post-TBI) improved locomotor activity, cell proliferation, neurogenesis, and decreased whole brain atrophy, specifically motor cortex atrophy. We performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the underlying mechanisms to profile proteins and signaling pathways influenced by prolonged VPN treatment post-TBI. Notably, we found that 192 different proteins were significantly altered by VPN treatment, which is a matter of further investigation for the development of therapeutic targets. Our study has shown that VPN may have a neuroprotective role in cold-induced TBI.
Collapse
Affiliation(s)
- Hayriye E Yelkenci
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Zehra Degirmenci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Halil I Koc
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Sevban Bayirli
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Saltuk B Baltaci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Serdar Altunay
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Nevin Oztekin
- Department of Chemistry, Istanbul Technical University, Istanbul, Türkiye
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul, Türkiye
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Mustafa C Beker
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Yang HQ, Li ZW, Dong XX, Zhang JX, Shan J, Wang MJ, Yang J, Li MH, Wang J, Zhao HM. Vinpocetine alleviates the abdominal aortic aneurysm progression via VSMCs SIRT1-p21 signaling pathway. Acta Pharmacol Sin 2025; 46:96-106. [PMID: 39179867 PMCID: PMC11696035 DOI: 10.1038/s41401-024-01358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative disease that caused mortality in people aged >65. Senescence plays a critical role in AAA pathogenesis. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. Our Previous study found cyclic nucleotide phosphodiesterase 1C (PDE1C) exacerbate AAA through aggravate vascular smooth muscle cells (VSMCs) senescence by downregulating Sirtuin1 (SIRT1) expression and activity. Vinpocetine as a selective inhibitor of PDE1 and a clinical medication for cerebral vasodilation, it is unclear whether vinpocetine can rely on SIRT1 to alleviate AAA. This study showed that pre-treatment with vinpocetine remarkably prevented aneurysmal dilation and reduced aortic rupture in elastase-induced AAA mice. In addition, the elastin degradation, MMP (matrix metalloproteinase) activity, macrophage infiltration, ROS production, collagen fibers remodeling, and VSMCs senescence were decreased in AAA treated with vinpocetine. While these effects were unable to exert in VSMCs-specific SIRT1 knockout AAA mice. Accordingly, we revealed that vinpocetine suppressed migration, proliferation, and senescence in VSMCs. Moreover, vinpocetine reduced SIRT1 degradation by inhibiting lysosome-mediated autophagy. In conclusion, this study indicated that vinpocetine may be as a potential drug for therapy AAA through alleviate VSMCs senescence via the SIRT1-dependent pathway.
Collapse
MESH Headings
- Animals
- Sirtuin 1/metabolism
- Vinca Alkaloids/pharmacology
- Vinca Alkaloids/therapeutic use
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Signal Transduction/drug effects
- Mice, Inbred C57BL
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Mice, Knockout
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Autophagy/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cellular Senescence/drug effects
- Cells, Cultured
Collapse
Affiliation(s)
- Hong-Qin Yang
- Baotou Medical College, Baotou, 014040, Inner Mongolia Autonomous Region, China
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Zhi-Wei Li
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Xi-Xi Dong
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Jia-Xin Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Jin Shan
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Min-Jie Wang
- Medical Experimental Center, School of Basic Medical Sciences, Inner Mongolia Medical University, Chilechuan dairy economic development zone, Hohhot, Inner Mongolia Autonomous Region, Hohhot, 010110, China
| | - Jing Yang
- Baotou Medical College, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| | - Min-Hui Li
- Baotou Medical College, Baotou, 014040, Inner Mongolia Autonomous Region, China.
| | - Jing Wang
- State Key laboratory of Respiratory Health and Multimorbidity, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| | - Hong-Mei Zhao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100005, China.
| |
Collapse
|
3
|
Dhureja M, Deshmukh R. Impact of alogliptin on lipopolysaccharide-induced experimental Parkinson's disease: Unrevealing neurochemical and histopathological alterations in rodents. Eur J Pharmacol 2024; 975:176635. [PMID: 38734296 DOI: 10.1016/j.ejphar.2024.176635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Degeneration of the nigrostriatal dopaminergic pathway has been seen as a significant cause of movement disability in Parkinson's disease (PD) patients. However, the exact reason for these degenerative changes has remained obscure. In recent years, incretins have been neuroprotective in various pathologies. In the current study, we have investigated the neuroprotective potential of alogliptin (Alo), a dipeptidyl peptidase-IV (DPP-IV) inhibitor, in a lipopolysaccharide (LPS) induced experimental model of PD. EXPERIMENTAL APPROACH LPS (5μg/5 μl) was infused intranigrally to induce PD in experimental rats. Post-LPS infusion, these animals were treated with Alo for 21 days in three successive dosages of 10, 20, and 40 mg/kg/day/per oral. The study is well supported with the determinations of motor functions biochemical, neurochemical, and histological analysis. KEY RESULTS Intranigral infusion of LPS in rats produced motor deficit. It was accompanied by oxidative stress, elevation in neuroinflammatory cytokines, altered neurochemistry, and degenerative changes in the striatal brain region. While Alo abrogated LPS-induced biochemical/neurochemical alterations, improved motor functions, and preserved neuronal morphology in LPS-infused rats. CONCLUSION The observed neuroprotective potential of Alo may be due to its antioxidant and anti-inflammatory actions and its ability to modulate monoaminergic signals. Nonetheless, current findings suggest that improving the availability of incretins through DPP-IV inhibition is a promising strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmaceutical Sciences & Technology, MRSPTU, Bathinda, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences & Technology, MRSPTU, Bathinda, India; Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
4
|
Dong ZC, Shi Y, Liu LJ, Feng TT, Zhou Y, Pan BW. Synthesis and pharmacological activity of vinpocetine derivatives. RSC Adv 2024; 14:7981-7991. [PMID: 38454939 PMCID: PMC10918451 DOI: 10.1039/d3ra07325d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Vinpocetine and its derivatives were extensively employed in the treatment of ischemic stroke, serving as effective cerebrovascular vasodilators. They could also be utilized for neuroprotection, anti-inflammatory purposes, anti-aging interventions, insomnia treatment, and antidepressant effects. However, due to issues such as hepatic first-pass effect, low bioavailability, and poor patient compliance with multiple dosing, the secondary development of Vinpocetine to address these limitations became a prominent area of research. Five primary methodologies were employed for the synthesis of Vinpocetine derivatives. These included substitution on the A ring to modify the 14-ester group, alteration of the 16-ethyl group, simplification of the D and E rings, and modification of the conformation of Vinpocetine. This paper summarized the current synthesis and activity studies of Vinpocetine and its derivatives, with the aim of providing a reference for the discovery of more potent derivatives of Vinpocetine.
Collapse
Affiliation(s)
- Zhang Chao Dong
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Li Juan Liu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Ting Ting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Bo Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| |
Collapse
|