1
|
Zhang S, Xing N, Jiao Y, Li J, Wang T, Zhang Q, Hu X, Li C, Kuang W. An arabinan from Citrus grandis fruits alleviates ischemia/reperfusion-induced myocardial cell apoptosis via the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Carbohydr Polym 2025; 347:122728. [PMID: 39486958 DOI: 10.1016/j.carbpol.2024.122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 11/04/2024]
Abstract
Citrus grandis fruit is a famous traditional Chinese medicine with various bioactivities, including cardioprotective effects. Polysaccharides are one of the key active ingredients responsible for its cardioprotective effects. This study aimed to investigate the structure and cardioprotective effect of a homogeneous polysaccharide from C. grandis fruit (CGP80-1) and explore its mechanism against myocardial ischemia-reperfusion (MI/R) injury. Structure analysis showed that CGP80-1 (11,917 Da) is an arabinan with compact coil chain conformation, containing →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, and →2,3,5)-α-L-Araf-(1→ as the backbone, as well as →5)-α-L-Araf-(1→ and t-α-L-Araf as side-chains substituted at the C2 and C3 positions. Pharmacological experiments showed that pre-treatment with CGP80-1 could effectively alleviate MI/R injury by improving endogenous antioxidant enzymes and cardiac enzymes, reducing reactive oxygen species levels, and regulating apoptosis-related proteins such as caspase-3, Bax, and Bcl-2. The protective effects were correlated with the Nrf2/Keap1 and IRE1/GRP78 signaling pathways. Further analysis of structure-activity relationships revealed that the myocardial protection effects of CGP80-1 might be attributed to its appropriate molecular weight, high arabinose content, and unique compact coil chain conformation. Overall, our results provide insight into the chemical structure of CGP80-1 and its mechanism of action, suggesting that CGP80-1 could be a candidate drug for myocardial protection.
Collapse
Affiliation(s)
- Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yukun Jiao
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, Jiangxi Health Industry Institute of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| | - Junhao Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tanggan Wang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Chong Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China; College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Weihong Kuang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
2
|
Mao N, Yu Y, Lu X, Yang Y, Liu Z, Wang D. Preventive effects of matrine on LPS-induced inflammation in RAW 264.7 cells and intestinal damage in mice through the TLR4/NF-κB/MAPK pathway. Int Immunopharmacol 2024; 143:113432. [PMID: 39447411 DOI: 10.1016/j.intimp.2024.113432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Matrine is a tetracyclic quinolizidine alkaloid with diverse bioactive properties, including anti-inflammatory and neuroprotective properties. However, the underlying anti-inflammatory mechanisms remain unclear. PURPOSE This study aimed to explore how matrine reduces Lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and to assess its protective effects against LPS-induced intestinal damage. METHODS The effect of matrine on cell viability was assessed using the cell counting kit-8 (CCK-8) assay. Additionally, its impact on inflammatory cytokines and macrophage polarization was assessed using enzyme-linked immunosorbent assay (ELISA), flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. The effects on intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), nitric oxide (NO) production, and oxidative stress were evaluated using 2',7'-dichlorodihydrofluorescein diacetate staining and JC-1 and Griess assays. Immunofluorescence staining was used to observe the translocation of the NF-κB p65 subunit. Western blotting (WB) and qRT-PCR were employed to analyze the expression levels of proteins related to the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathway. An LPS-induced mouse model was established to study the intestinal inflammation and barrier injury. Mouse feces characteristics, colon length, and disease activity index (DAI) were recorded. Hematoxylin-eosin (H&E) and alcian blue/periodic acid schiff (AB/PAS) staining were used to observe morphological changes and barrier damage in the duodenum, jejunum, ileum, and colon and to measure villus length, crypt depth, goblet cell count, and positive areas in the duodenum, jejunum, and ileum. The content of short-chain fatty acids (SCFAs) in the colon was determined using gas chromatography (GC). RESULTS Matrine inhibited LPS-induced inflammatory cytokine levels, suppressed macrophage M1 polarization, and promoted M2 macrophage polarization. Matrine reduced LPS-induced increases in ROS and NO levels and regulates oxidative stress. Additionally, matrine inhibited the nuclear translocation of the NF-κB p65 subunit and exerted anti-inflammatory effects by suppressing the activation of the TLR4/NF-κB/MAPK pathway. In vivo experiments indicated that matrine significantly alleviated LPS-induced diarrhea, increased DAI, and shortened the colon. Matrine reduced the production of the pro-inflammatory cytokine interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and the pro-inflammatory mediator NO in mouse intestinal tissues while promoting the content of the anti-inflammatory cytokine IL-10. Furthermore, it improved intestinal tissue structure and alleviated LPS-induced intestinal barrier damage. Finally, matrine increased the SCFA levels in the intestine. CONCLUSION Matrine exerted its anti-inflammatory effects and protects against intestinal injury through the TLR4/NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yaming Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuanqi Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Elnaghy F, Shehatou GSG, Abd El-Kader EM, Saber S. Diltiazem mitigates acute liver injury by targeting NFκB-TXNIP/NLRP3 axis in Rats: New insights beyond calcium channel blockade. Int Immunopharmacol 2024; 143:113460. [PMID: 39514911 DOI: 10.1016/j.intimp.2024.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Acute liver injury is characterized by the rapid onset of inflammation in the liver, which in turn plays a role in the development of hypertension. Additionally, hypertension increases susceptibility to liver diseases associated with inflammatory states. Recently, the antihypertensive drug diltiazem has demonstrated anti-inflammatory properties and has been shown to inhibit the expression of the thioredoxin-interacting protein (TXNIP), an upstream regulator of the NOD-like receptor pyrin-3 (NLRP3) inflammasome pathway. In our quest for an optimal therapeutic intervention for liver inflammatory diseases, we investigated the effects of diltiazem. Herein, we employed a multi-step approach integrating computational target prediction, network analysis, and molecular docking with experimental validation to explore potential interactions between diltiazem and TXNIP. Our investigations in rats with thioacetamide-induced liver injury revealed the anti-inflammatory potential of diltiazem, likely due to the suppression of the NLRP3 signaling pathway via targeting TXNIP. Furthermore, diltiazem suppressed the priming signal induced by nuclear factor kappa-B (NFκB) activation, as well as subsequent inflammasome components, including cleaved caspase-1, gasdermin D, IL-1β, and IL-18. Consequently, diltiazem exhibited anti-pyroptotic effects in the injured liver. Additionally, diltiazem was observed to reduce BCL-2-associated X-protein (Bax) levels, increase B-Cell Lymphoma-2 (BCL2) levels, and decrease the tissue expression of cleaved caspase-3, indicating potential anti-apoptotic effects. These effects were reflected in improved liver weight-to-body weight ratio, liver histology, oxidative stress parameters, and liver function. In conclusion, diltiazem shows promise as a protective agent for liver inflammatory diseases. Further research is warranted to translate these preclinical results into effective strategies for improving liver health.
Collapse
Affiliation(s)
- Fatma Elnaghy
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - George S G Shehatou
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Eman M Abd El-Kader
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
4
|
Yan YF, Feng Y, Wang SM, Fang F, Chen HY, Zhen MX, Ji YQ, Wu SD. Potential actions of capsaicin for preventing vascular calcification of vascular smooth muscle cells in vitro and in vivo. Heliyon 2024; 10:e28021. [PMID: 38524547 PMCID: PMC10958412 DOI: 10.1016/j.heliyon.2024.e28021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na2HPO4 and 50 μg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and β-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/β-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.
Collapse
Affiliation(s)
- Yin-Fang Yan
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yue Feng
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Si-Min Wang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Fei Fang
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Hong-Yan Chen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Ming-Xia Zhen
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Yu-Qiang Ji
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| | - Song-Di Wu
- Department of Central Laboratory, The First Affiliated Hospital of Northwestern University, The First Hospital of Xi'an, Xi'an, 710069, Shaanxi Province, China
- Xi'an Key Laboratory for Innovation and Translation of Neuroimmunological Diseases, Xi'an, Shaanxi Province, China
| |
Collapse
|
5
|
Liang Y, Xu XD, Xu X, Cai YB, Zhu ZX, Zhu L, Ren K. Linc00657 promoted pyroptosis in THP-1-derived macrophages and exacerbated atherosclerosis via the miR-106b-5p/TXNIP/NLRP3 axis. Int J Biol Macromol 2023; 253:126953. [PMID: 37734516 DOI: 10.1016/j.ijbiomac.2023.126953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Long intergenic non-coding RNA 00657 (linc00657) is involved in various diseases, whereas its role in atherosclerosis (AS) development remains inconclusive. This study was designed to investigate the effects and underlying mechanisms of linc00657 in atherogenesis. The results showed that ox-LDL treatment significantly induced pyroptosis in human THP-1-derived macrophages. The secretion levels of LDH and pro-inflammatory factors were markedly enhanced, and the integrity of plasma membranes was disrupted in ox-LDL-treated THP-1-derived macrophages. These effects were significantly compensated after transfection with linc00657 siRNA and became more evident by linc00657 overexpression. Moreover, the effects of linc00657 overexpression on pyroptosis of THP-1-derived macrophages can also be robustly reversed by TXNIP knockdown or miR-106b-5p mimics transfection. Mechanistically, linc00657 enhanced TXNIP expression by competitively binding to miR-106b-5p, promoting NLRP3 inflammasome activation. Finally, we found that linc00657 overexpression significantly increased the expression of pyroptosis-related factors and decreased miR-106b-5p level in the aorta of high-fat-diet-fed apoE-/- mice. Furthermore, linc00657 up-regulation enlarged the plaque area, exacerbated plasma lipid profile, and increased pro-inflammatory cytokines levels in the serum, effects that were reversed by injection of miR-106b-5p agomir. This evidence indicated that linc00657 stimulated macrophage pyroptosis and aggravated the progression of AS via the miR-106b-5p/TXNIP/NLRP3 pathway.
Collapse
Affiliation(s)
- Yin Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang 524000, Guangdong, PR China
| | - Xiao-Dan Xu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Xi Xu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China
| | - Yang-Bo Cai
- Division of Hepatobiliary and Pancreas Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, PR China
| | - Zi-Xian Zhu
- Emergency and Trauma College, Hainan Medical University, Haikou 570100, Hainan, PR China
| | - Lin Zhu
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, PR China.
| | - Kun Ren
- College of Nursing, Anhui University of Chinese Medicine, Hefei 230012, Anhui, PR China; Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, Hainan, PR China.
| |
Collapse
|