1
|
Zaffora A, Megna B, Seminara B, Di Franco F, Santamaria M. Ni,Fe,Co-LDH Coated Porous Transport Layers for Zero-Gap Alkaline Water Electrolyzers. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:407. [PMID: 38470738 DOI: 10.3390/nano14050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Next-generation alkaline water electrolyzers will be based on zero-gap configuration to further reduce costs related to technology and to improve performance. Here, anodic porous transport layers (PTLs) for zero-gap alkaline electrolysis are prepared through a facile one-step electrodeposition of Ni,Fe,Co-based layered double hydroxides (LDH) on 304 stainless steel (SS) meshes. Electrodeposited LDH structures are characterized using Scanning Electron Microscopy (SEM) confirming the formation of high surface area catalytic layers. Finally, bi and trimetallic LDH-based PTLs are tested as electrodes for oxygen evolution reaction (OER) in 1 M KOH solution. The best electrodes are based on FeCo LDH, reaching 10 mA cm-2 with an overpotential value of 300 mV. These PTLs are also tested with a chronopotentiometric measurement carried out for 100 h at 50 mA cm-2, showing outstanding durability without signs of electrocatalytic activity degradation.
Collapse
Affiliation(s)
- Andrea Zaffora
- Department of Engineering, Palermo University, 90128 Palermo, Italy
| | - Bartolomeo Megna
- Department of Engineering, Palermo University, 90128 Palermo, Italy
| | - Barbara Seminara
- Department of Engineering, Palermo University, 90128 Palermo, Italy
| | | | | |
Collapse
|
2
|
Lim CYJ, I Made R, Khoo ZHJ, Ng CK, Bai Y, Wang J, Yang G, Handoko AD, Lim YF. Machine learning-assisted optimization of multi-metal hydroxide electrocatalysts for overall water splitting. MATERIALS HORIZONS 2023; 10:5022-5031. [PMID: 37644912 DOI: 10.1039/d3mh00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Green hydrogen produced via electrochemical water splitting is a suitable candidate to replace emission-intensive fuels. However, the successful widespread adoption of green hydrogen is contingent on the development of low-cost, earth-abundant catalysts. Herein, machine learning models built on experimental data were used to optimize the precursor ratios of hydroxide-based electrocatalysts, with the objective of improving the product's electrocatalytic performance for overall water splitting. The Neural Network-based models were found to be the most effective in predicting and minimizing the overpotentials of the catalysts, reaching a minimum in two iterations. The relatively mild reaction conditions of the synthesis procedure, coupled with its scalability demonstrated herein, renders the optimized catalyst relevant for industrial implementation in the future. The optimized catalyst, characterized to be a molybdate-intercalated CoFe LDH, demonstrated overpotentials of 266 and 272 mV at 10 mA cm-2 for oxygen and hydrogen evolution reactions respectively in alkaline electrolyte, alongside unwavering stability for overall water splitting over 50 h. Overall, our results reflect the efficacy and advantages of machine learning strategies to alleviate the time and labour-intensive nature of experimental optimizations, which can greatly accelerate electrocatalysts research.
Collapse
Affiliation(s)
- Carina Yi Jing Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Riko I Made
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Zi Hui Jonathan Khoo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| | - Chee Koon Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yang Bai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Jianbiao Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Gaoliang Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Albertus D Handoko
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| | - Yee-Fun Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency of Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
| |
Collapse
|
5
|
Chen TW, Kalimuthu P, Anushya G, Chen SM, Mariyappan V, Ramachandran R. Recent Progress in the Development of Advanced Functionalized Electrodes for Oxygen Evolution Reaction: An Overview. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4420. [PMID: 34442943 PMCID: PMC8400293 DOI: 10.3390/ma14164420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Presently, the global energy demand for increasing clean and green energy consumption lies in the development of low-cost, sustainable, economically viable and eco-friendly natured electrochemical conversion process, which is a significant advancement in different morphological types of advanced electrocatalysts to promote their electrocatalytic properties. Herein, we overviewed the recent advancements in oxygen evolution reactions (OERs), including easy electrode fabrication and significant action in water-splitting devices. To date, various synthetic approaches and modern characterization techniques have effectively been anticipated for upgraded OER activity. Moreover, the discussed electrode catalysts have emerged as the most hopeful constituents and received massive appreciation in OER with low overpotential and long-term cyclic stability. This review article broadly confers the recent progress research in OER, the general mechanistic approaches, challenges to enhance the catalytic performances and future directions for the scientific community.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia;
| | - Ganesan Anushya
- Department of Physics, S.A.V. Sahaya Thai Arts and Science (Women) College, Sahayam Nagar, Kumarapuram Road, Vadakkankulam, Tirunelveli 627116, India;
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Vinitha Mariyappan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625011, India
| |
Collapse
|