1
|
Ni(1−x)Pdx Alloyed Nanostructures for Electrocatalytic Conversion of Furfural into Fuels. Catalysts 2023. [DOI: 10.3390/catal13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A continuous electrocatalytic reactor offers a promising method for producing fuels and value-added chemicals via electrocatalytic hydrogenation of biomass-derived compounds. However, such processes require a better understanding of the impact of different types of active electrodes and reaction conditions on electrocatalytic biomass conversion and product selectivity. In this work, Ni1−xPdx (x = 0.25, 0.20, and 0.15) alloyed nanostructures were synthesized as heterogeneous catalysts for the electrocatalytic conversion of furfural. Various analytical tools, including XRD, SEM, EDS, and TEM, were used to characterize the Ni1−xPdx catalysts. The alloyed catalysts, with varying Ni to Pd ratios, showed a superior electrocatalytic activity of over 65% for furfural conversion after 4.5 h of reaction. In addition, various experimental parameters on the furfural conversion reactions, including electrolyte pH, furfural (FF) concentration, reaction time, and applied potential, were investigated to tune the hydrogenated products. The results indicated that the production of 2-methylfuran as a primary product (S = 29.78% after 1 h), using Ni0.85Pd0.15 electrocatalyst, was attributed to the incorporation of palladium and thus the promotion of water-assisted proton transfer processes. Results obtained from this study provide evidence that alloying a common catalyst, such as Ni with small amounts of Pd metal, can significantly enhance its electrocatalytic activity and selectivity.
Collapse
|
2
|
Temnikova M, Medvedev J, Medvedeva X, Delva NH, Khairullina E, Krivoshapkina E, Klinkova A. Electrochemical Hydrodimerization of Furfural in Organic Media as an Efficient Route to Jet Fuel Precursor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Maria Temnikova
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West N2L 3G1 Waterloo Ontario Canada
| | - Jury Medvedev
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West N2L 3G1 Waterloo Ontario Canada
| | - Xenia Medvedeva
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West N2L 3G1 Waterloo Ontario Canada
| | - Nyhenflore H. Delva
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West N2L 3G1 Waterloo Ontario Canada
| | - Evgeniia Khairullina
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West N2L 3G1 Waterloo Ontario Canada
| | | | - Anna Klinkova
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West N2L 3G1 Waterloo Ontario Canada
| |
Collapse
|
3
|
An H, Sun G, Hülsey MJ, Sautet P, Yan N. Demonstrating the Electron–Proton-Transfer Mechanism of Aqueous Phase 4-Nitrophenol Hydrogenation Using Unbiased Electrochemical Cells. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua An
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Geng Sun
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Max J. Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ning Yan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
4
|
Bharath G, Banat F. High-Grade Biofuel Synthesis from Paired Electrohydrogenation and Electrooxidation of Furfural Using Symmetric Ru/Reduced Graphene Oxide Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24643-24653. [PMID: 34008951 PMCID: PMC8289174 DOI: 10.1021/acsami.1c02231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical hydrogenation is a challenging technoeconomic process for sustainable liquid fuel production from biomass-derived compounds. In general, half-cell hydrogenation is paired with water oxidation to generate the low economic value of O2 at the anode. Herein, a new strategy for the rational design of Ru/reduced graphene oxide (Ru/RGO) nanocomposites through a cost-effective and straightforward microwave irradiation technique is reported for the first time. The Ru nanoparticles with an average size of 3.5 nm are well anchored into the RGO frameworks with attractive nanostructures to enhance the furfural's paired electrohydrogenation (ECH) and electrooxidation (ECO) process to achieve high-grade biofuel. Furfural is used as a reactant with the paired electrolyzer to produce furfuryl alcohol and 2-methylfuran at the cathode side. Simultaneously, 2-furic acid and 5-hydroxyfuroic acid along with plenty of H+ and e- are generated at the anode side. Most impressively, the paired electrolyzer induces an extraordinary ECH and ECO of furfural, with the desired production of 2-methylfuran (yield = 91% and faradic efficiency (FE) of 95%) at XFF = 97%, outperforming the ECH half-cell reaction. The mechanisms of the half-cell reaction and paired cell reaction are discussed. Exquisite control of the reaction parameters, optimized strategies, and the yield of individual products are demonstrated. These results show that the Ru/RuO nanocomposite is a potential candidate for biofuel production in industrial sectors.
Collapse
|
5
|
Biddinger EJ, Gutierrez OY, Holladay J. Electrochemical routes for biomass conversion. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01525-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
May AS, Watt SM, Biddinger EJ. Kinetics of furfural electrochemical hydrogenation and hydrogenolysis in acidic media on copper. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00216c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the competing kinetics and insights into the mechanisms of the electrochemical hydrogenation and hydrogenolysis of furfural to furfuryl alcohol and 2-methylfuran.
Collapse
Affiliation(s)
- Andrew S. May
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, USA
| | - Steven M. Watt
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Elizabeth J. Biddinger
- Department of Chemical Engineering, The City College of New York, CUNY, New York, New York 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
7
|
Wang Z, Ortiz EM, Goldsmith BR, Singh N. Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinum–ruthenium alloys. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01075a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Comparison between thermocatalytic and electrocatalytic nitrate reduction reactions highlights mechanistic similarities and differences between the two reactions.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| | - Evan M. Ortiz
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| | - Bryan R. Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| | - Nirala Singh
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| |
Collapse
|