1
|
Mannayil J, Pitkänen O, Mannerkorpi M, Kordas K. Optimization and scalability assessment of supercapacitor electrodes based on hydrothermally grown MoS 2 on carbon cloth. NANOSCALE ADVANCES 2024; 6:4647-4656. [PMID: 39263393 PMCID: PMC11385806 DOI: 10.1039/d4na00368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
MoS2 is a well-known 2D transition metal dichalcogenide (TMD) with feasibility for energy storage applications due to its eco-friendliness and high electroactive surface area. Electrodes based on MoS2 are typically made by either immobilizing its multiphase nanocomposites, having binders and conductive fillers, or by directly growing the materials on current collectors. In this work, we follow and optimize this latter approach by applying a hydrothermal route to directly synthesize MoS2 nanostructures on carbon cloth (MoS2@CC) hence enabling binder-free current collector electrodes. Raman spectroscopy and electron microscopy analyses confirmed the formation of 2H MoS2 nanosheets with hexagonal structure. The as-prepared electrodes were used to assemble symmetric supercapacitor cells, whose performance were tested in various types of electrolytes. Electrochemical measurements indicate that both precursor concentration and growth time significantly affect the device performance. Under optimized conditions, specific capacitance up to 226 F g-1 (at 1 A g-1 in 6 M KOH) was achieved, with corresponding energy and power densities of 5.1 W h kg-1 and 2.1 W kg-1. The device showed good stability, retaining 85% capacitance after 1000 cycles. Furthermore, the electrodes assessed in PYR14-TFSI showed energy and power densities of up to 26.3 W h kg-1 and 2.0 kW kg-1, respectively, indicating their feasibility not only in aqueous but also in ionic liquid electrolytes. In addition, galvanostatic charge/discharge measurements conducted on devices having footprint sizes from 1 cm2 to 25 cm2 show very similar specific capacitances, which proves scalability and thus the practical relevance of the binder-free electrodes demonstrated in this study.
Collapse
Affiliation(s)
- Jasna Mannayil
- Microelectronics Research Unit, University of Oulu Erkki Koiso-Kanttilan katu 3 90570 Oulu Finland
| | - Olli Pitkänen
- Microelectronics Research Unit, University of Oulu Erkki Koiso-Kanttilan katu 3 90570 Oulu Finland
| | - Minna Mannerkorpi
- Research Unit of Health Sciences and Technology, University of Oulu 90220 Oulu Finland
| | - Krisztian Kordas
- Microelectronics Research Unit, University of Oulu Erkki Koiso-Kanttilan katu 3 90570 Oulu Finland
| |
Collapse
|
2
|
Dent M, Grabe S, Ayere O, Babar S, Masteghin MG, Cox DC, Howlin BJ, Baker MA, Lekakou C. Investigating PEDOT:PSS Binder as an Energy Extender in Sulfur Cathodes for Li-S Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:7349-7361. [PMID: 39268392 PMCID: PMC11388141 DOI: 10.1021/acsaem.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Although lithium-sulfur (Li-S) batteries offer a high theoretical energy density, shuttling of dissolved sulfur and polysulfides is a major factor limiting the specific capacity, energy density, and cyclability of Li-S batteries with a liquid electrolyte. Cathode host materials with a microstructure to restrict the migration of active material may not totally eliminate the shuttling effect or may create additional problems that limit the full dissolution and redox conversion of all active cathode materials. Selecting a cathode coating binder with a multifunctional role offers a universal solution suitable for various cathode hosts. PEDOT:PSS is investigated as such a binder in this study via experimental testing and material characterization as well as multiscale modeling. The study is based on Li-S cells with a sulfur cathode in hollow porous particles as the cathode host and the 10 wt % PEDOT:PSS binder and electrolyte 1 M LiTFSI in 1:1 DOL:DME 1:1 v/v. A reference supercapacitor cell with the same electrolyte and electrodes comprising a coating of the same hollow porous particles and 10 wt % PEDOT:PSS revealed the pseudocapacitive effect of PEDOT:PSS following a surface redox mechanism that dominates the charge phase, which is equivalent to the discharge phase of the Li-S battery cell. A multipore continuum model for supercapacitors and Li-S cells is extended to incorporate the pseudocapacitive effects of PEDOT:PSS with the Li+ ions and the adsorption effects of PEDOT:PSS with respect to sulfur and lithium sulfides in Li-S cells, with the adsorption energies determined via molecular and ab initio simulations in this study. Experimental data and predictions of multiscale simulations concluded a 7-9% extension of the specific capacity of Li-S battery cells due to the surface redox effect of PEDOT:PSS and elimination of lithium sulfides from the anode by slowing down their migration and shuttling via their adsorption by the PEDOT:PSS binder.
Collapse
Affiliation(s)
- Matthew Dent
- Center for Engineering Materials, School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Sean Grabe
- Center for Engineering Materials, School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Obehi Ayere
- Center for Engineering Materials, School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Shumaila Babar
- Center for Engineering Materials, School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Mateus G Masteghin
- Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - David C Cox
- Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Brendan J Howlin
- School of Chemistry and Chemical Engineering, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Mark A Baker
- Center for Engineering Materials, School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| | - Constantina Lekakou
- Center for Engineering Materials, School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, U.K
| |
Collapse
|
3
|
Skorupa M, Karoń K, Marchini E, Caramori S, Pluczyk-Małek S, Krukiewicz K, Carli S. PEDOT:Nafion for Highly Efficient Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38652052 PMCID: PMC11082849 DOI: 10.1021/acsami.4c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Supercapacitors offer notable properties as energy storage devices, providing high power density and fast charging and discharging while maintaining a long cycling lifetime. Although poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) has become a gold standard among organic electronics materials, researchers are still investigating ways to further improve its capacitive characteristics. In this work, we introduced Nafion as an alternative polymeric counterion to PSS to form highly capacitive PEDOT/Nafion; its advantageous supercapacitive properties were further improved by treatment with either dimethyl sulfoxide or ethylene glycol. Accordingly, electrochemical characterization of PEDOT/Nafion films revealed their high areal capacitance (22 mF cm-2 at 10 mV/s) and low charge transfer resistance (∼380 Ω), together with excellent volumetric capacitance (74 F cm-3), Coulombic efficiency (99%), and an energy density of 23.1 ± 1.5 mWh cm-3 at a power density of 0.5 W cm-3, resulting from a more effective ion diffusion inside the conductive film, as confirmed by the results of spectroscopic studies. A proof-of-concept symmetric supercapacitor based on PEDOT/Nafion was characterized with a specific capacitance of approximately 15.7 F g-1 and impressive long-term stability (Coulombic efficiency ∼99% and capacitance ∼98.7% after 1000 charging/discharging cycles), overperforming the device based on PEDOT/PSS.
Collapse
Affiliation(s)
- Małgorzata Skorupa
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Joint
Doctoral School, Silesian University of
Technology, Akademicka
2A, Gliwice 44-100, Poland
| | - Krzysztof Karoń
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, Gliwice 44-100, Poland
| | - Edoardo Marchini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Stefano Caramori
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Sandra Pluczyk-Małek
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, Gliwice 44-100, Poland
| | - Katarzyna Krukiewicz
- Department
of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland
- Centre
for Organic and Nanohybrid Electronics, Silesian University of Technology, S. Konarskiego 22B, Gliwice 44-100, Poland
| | - Stefano Carli
- Department
of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
4
|
Hamsan MH, Halim NA, Demon SZN, Sa’aya NSN, Kadir MFZ, Abidin ZHZ, Poad NA, Kasim NFA, Razali NAM, Aziz SB, Ahmad KA, Miskon A, Nor NM. Multifunction Web-like Polymeric Network Bacterial Cellulose Derived from SCOBY as Both Electrodes and Electrolytes for Pliable and Low-Cost Supercapacitor. Polymers (Basel) 2022; 14:polym14153196. [PMID: 35956709 PMCID: PMC9371068 DOI: 10.3390/polym14153196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
In this work, bacterial cellulose (BC)-based polymer derived from a symbiotic culture of bacteria and yeast (SCOBY) are optimized as both electrodes and electrolytes to fabricate a flexible and free-standing supercapacitor. BC is a multifunction and versatile polymer. Montmorillonite (MMT) and sodium bromide (NaBr) are used to improve mechanical strength and as the ionic source, respectively. From XRD analysis, it is found that the addition of MMT and NaBr has reduced the crystallinity of the electrolyte. Most interaction within the electrolyte happens in the region of the OH band, as verified using FTIR analysis. A maximum room temperature conductivity of (1.09 ± 0.02) × 10−3 S/cm is achieved with 30 wt.% NaBr. The highest conducting SCOBY-based electrolytes have a decompose voltage and ionic transference number of 1.48 V and 0.97, respectively. The multiwalled carbon nanotube is employed as the active material held by the fibrous network of BC. Cyclic voltammetry shows a rectangular shape CV plot with the absence of a redox peak. The supercapacitor is charged and discharged in a zig-zag-shaped Perspex plate for 1000 cycles with a decent performance.
Collapse
Affiliation(s)
- Muhamad Hafiz Hamsan
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Norhana Abdul Halim
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
- Correspondence:
| | - Siti Zulaikha Ngah Demon
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
- Centre for Tropicalization, National Defence University of Malaysia, Sungai Besi Camp, Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Nurul Syahirah Nasuha Sa’aya
- Faculty of Defence Science & Technology, National Defence University Of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur 57000, Malaysia
| | | | - Zul Hazrin Zainal Abidin
- Centre for Ionics University of Malaya (C.I.U.M.), Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nursaadah Ahmad Poad
- Faculty of Defence Science & Technology, National Defence University Of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Nurul Farhana Abu Kasim
- Faculty of Defence Science & Technology, National Defence University Of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Nur Amira Mamat Razali
- Faculty of Defence Science & Technology, National Defence University Of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Kurdistan Region of Iraq, Sulaymaniyah 46001, Iraq
| | - Khairol Amali Ahmad
- Faculty of Engineering, National Defence University of Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Norazman Mohamad Nor
- Faculty of Engineering, National Defence University of Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
5
|
Exploring Different Binders for a LiFePO4 Battery, Battery Testing, Modeling and Simulations. ENERGIES 2022. [DOI: 10.3390/en15072332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper focuses on the LiFePO4 (LFP) battery, a classical and one of the safest Li-ion battery technologies. To facilitate and make the cathode manufacture more sustainable, two Kynar® binders (Arkema, France) are investigated which are soluble in solvents with lower boiling points than the usual solvent for the classical PVDF binder. Li-LFP and graphite-Li half cells and graphite-LFP full cells are fabricated and tested in electrochemical impedance spectroscopy, cyclic voltammetry (CV) and galvanostatic charge-discharge cycling. The diffusion coefficients are determined from the CV plots, employing the Rendles-Shevchik equation, for the LFP electrodes with the three investigated binders and the graphite anode, and used as input data in simulations based on the single-particle model. Microstructural and surface composition characterization is performed on the LFP cathodes, pre-cycling and after 25 cycles, revealing the aging effects of SEI formation, loss of active lithium, surface cracking and fragmentation. In simulations of battery cycling, the single particle model is compared with an equivalent circuit model, concluding that the latter is more accurate to predict “future” cycles and the lifetime of the LFP battery by easily adjusting some of the model parameters as a function of the number of cycles on the basis of historical data of cell cycling.
Collapse
|