1
|
Lee SY, Bharti D, Lee WJ, Son YB, Jin YB, Lee HJ, Jo CH, Oh SJ, Hong CY, Kang SY, Park S, Choe YH, Lee SL. Treatment of Premature Ovarian Failure Mouse Model Using Granulosa-Like Cells Derived from Wharton's Jelly-Mesenchymal Stem Cells. Stem Cells Dev 2025; 34:214-225. [PMID: 40315354 DOI: 10.1089/scd.2025.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025] Open
Abstract
Premature ovarian failure (POF) is a significant reproductive disorder characterized by the loss of ovarian function, leading to infertility and endocrine disruption. Hormone replacement therapy (HRT) remains the most commonly used clinical treatment for POF. However, in patients with a history of ovarian or breast cancer, HRT poses significant risks, necessitating the development of alternative approaches. Stem cell-based therapy has emerged as a promising option for treating female infertility disorders such as POF. This study aimed to evaluate the therapeutic effects of ovarian granulosa-like cells (OGLCs) derived from Wharton's jelly-mesenchymal stem cells (WJ-MSCs) in a POF mouse model. WJ-MSCs were successfully differentiated into OGLCs using combination with a growth factor cocktails, as confirmed by the significant upregulation of granulosa cell-specific markers (P < 0.01). To assess their therapeutic potential, POF was induced in female mice using cyclophosphamide and busulfan, and OGLCs were injected into the ovaries. After 3 weeks, vaginal smear analysis revealed restoration of estrus cycle in OGLC-treated mice. Enzyme-linked immunosorbent assay analysis demonstrated the recovery of serum 17β-estradiol and follicle-stimulating hormone levels (P < 0.05), while histological staining confirmed increased follicular development and restoration of ovarian structure. Furthermore, real-time quantitative polymerase chain reaction analysis showed a significant upregulation of genes related to follicular development and primordial follicle activation, including downstream molecules of the mTOR/PI3K pathway, following OGLCs treatment. These findings suggest that OGLCs possess a strong potential for restoring ovarian function in POF. This study provides evidence supporting the use of OGLCs as a novel cell-based therapeutic approach for female reproductive diseases.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Division of Pulmonary, Critical Care, Sleeping and Occupational Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Bum Son
- Department of Obstetrics, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeon-Jeong Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chae-Yeon Hong
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Seo-Yoon Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sanghyeon Park
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Marin L, Sabbadin C, Faggin G, Radu CM, Armanini D, Paccagnella M, Salata C, Bordin L, Ragazzi E, Ambrosini G, Andrisani A. Endometriotic Follicular Fluid Affects Granulosa Cells' Morphology and Increases Duplication Rate and Connexin-43 Expression. Biomolecules 2025; 15:561. [PMID: 40305294 PMCID: PMC12024943 DOI: 10.3390/biom15040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Endometriosis is a complicated condition characterized by inflammation, low oocyte quality, and decreased uterus receptivity, associated with fertility issues. This study aims to better understand the reduced pregnancy outcome in endometriosis by analyzing both the granulosa cells (GCs) and the follicular fluids (FFs) obtained during the assisted reproductive technology (ART)-related oocyte pick-up. Seventy patients, approaching our ART Center with the diagnosis of infertility for Age-Idiopathic Factor (AIF) (n = 36), endometriosis (ENDO) (n = 23), or male factor (MF) (n = 11), were enrolled in this study. GCs from each group were separately analyzed for morphology, replication, and expression of Connexin-43 and Follicle-Stimulating Hormone Receptor (FSHR) by microscopy, flow cytometry, and immunocytochemistry. Results show that FF in a culture medium allowed GCs to survive and replicate. Upon culturing GCs from each group with ENDO follicular fluid, increases were observed in both population doublings and in the development of fibroblast-like and muscle-like morphologies. Despite undergoing morphological changes, GCs consistently expressed FSHR. However, exposure to ENDO follicular fluid led to an upregulation of Connexin-43 expression across all GC groups. These findings suggest that in endometriosis, FF contains unidentified factors that can induce aberrant replication, morphological differentiation, and overexpression of Connexin-43, potentially contributing to follicular dysfunction.
Collapse
Affiliation(s)
- Loris Marin
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.M.); (G.A.); (A.A.)
| | - Chiara Sabbadin
- Endocrine Unit, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (C.S.)
| | - Giovanni Faggin
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (G.F.); (M.P.); (C.S.)
| | - Claudia Maria Radu
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
| | - Decio Armanini
- Endocrine Unit, Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy; (C.S.)
- Studium Patavinum, University of Padova, 35128 Padova, Italy;
| | - Michele Paccagnella
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (G.F.); (M.P.); (C.S.)
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35128 Padua, Italy; (G.F.); (M.P.); (C.S.)
| | - Luciana Bordin
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.M.); (G.A.); (A.A.)
| | - Eugenio Ragazzi
- Studium Patavinum, University of Padova, 35128 Padova, Italy;
| | - Guido Ambrosini
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.M.); (G.A.); (A.A.)
| | - Alessandra Andrisani
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (L.M.); (G.A.); (A.A.)
| |
Collapse
|
3
|
Lee SB, Abdal Dayem A, Kmiecik S, Lim KM, Seo DS, Kim HT, Kumar Biswas P, Do M, Kim DH, Cho SG. Efficient improvement of the proliferation, differentiation, and anti-arthritic capacity of mesenchymal stem cells by simply culturing on the immobilized FGF2 derived peptide, 44-ERGVVSIKGV-53. J Adv Res 2024; 62:119-141. [PMID: 37777063 PMCID: PMC11331723 DOI: 10.1016/j.jare.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION The stem cell microenvironment has been evidenced to robustly affect its biological functions and clinical grade. Natural or synthetic growth factors, especially, are essential for modulating stem cell proliferation, metabolism, and differentiation via the interaction with specific extracellular receptors. Fibroblast growth factor-2 (FGF-2) possesses pleiotropic functions in various tissues and organs. It interacts with the FGF receptor (FGFR) and activates FGFR signaling pathways, which involve numerous biological functions, such as angiogenesis, wound healing, cell proliferation, and differentiation. OBJECTIVES Here, we aim to explore the molecular functions, mode of action, and therapeutic activity of yet undetermined function, FGF-2-derived peptide, FP2 (44-ERGVVSIKGV-53) in promoting the proliferation, differentiation, and therapeutic application of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) in comparison to other test peptides, canofin1 (FP1), hexafin2 (FP3), and canofin3 (FP4) with known functions. METHODS The immobilization of test peptides that are fused with mussel adhesive proteins (MAP) on the culture plate was carried out via EDC/NHS chemistry. Cell Proliferation assay, colony-forming unit, western blotting analysis, gene expression analysis, RNA-Seq. analysis, osteogenic, and chondrogenic differentiation capacity were applied to test the activity of the test peptides. We additionally utilized three-dimensional (3D) structural analysis and artificial intelligence (AI)-based AlphaFold2 and CABS-dock programs for receptor interaction prediction of the peptide receptor. We also verified the in vivo therapeutic capacity of FP2-cultured hWJ-MSCs using an osteoarthritis mice model. RESULTS Culture of hWJ-MSC onto an FP2-immobilized culture plate showed a significant increase in cell proliferation (n = 3; *p < 0.05, **p < 0.01) and the colony-forming unit (n = 3; *p < 0.05, **p < 0.01) compared with the test peptides. FP2 showed a significantly upregulated phosphorylation of FRS2α and FGFR1 and activated the AKT and ERK signaling pathways (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Interestingly, we detected efficient FP2 receptor binding that was predicted using AI-based tools. Treatment with an AKT inhibitor significantly abrogated the FP2-mediated enhancement of cell differentiation (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001). Intra-articular injection of FP2-cultured MSCs significantly mitigated arthritis symptoms in an osteoarthritis mouse model, as shown through the functional tests (n = 10; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001), modulation of the expression level of the pro-inflammatory and anti-inflammatory genes, and improved osteochondral regeneration as demonstrated by tissue sections. CONCLUSION Our study identified the FGF-2-derived peptide FP2 as a promising candidate peptide to improve the therapeutic potential of hWJ-MSCs, especially in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong Sik Seo
- Stem Cell Research Center of AMOLIFESCIENCE Co., Ltd, 91, Gimpo-daero 1950 Beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Hyeong-Taek Kim
- Stem Cell Research Center of AMOLIFESCIENCE Co., Ltd, 91, Gimpo-daero 1950 Beon-gil, Tongjin-eup, Gimpo-si, Gyeonggi-do 10014, Republic of Korea
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
4
|
Taggi M, Capponi C, Bertani N, Saturno G, Innocenti F, Dovere L, Fabozzi SM, Alesiani O, Arena V, Cimadomo D, Mazzilli R, Rienzi L, Ubaldi FM, Canipari R, Vicini E, Apa R. Role of thyroid stimulating hormone in the maintenance and functioning of the human corpus luteum. J Endocrinol Invest 2024; 47:1719-1732. [PMID: 38190029 DOI: 10.1007/s40618-023-02269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
PURPOSE To evaluate the impact of high thyroid stimulating hormone (TSH) levels on human granulosa-luteal (hGL) cells. METHODS hGL cells were isolated from follicular aspirates derived from patients undergoing IVF treatment without any thyroid disorder (serum TSH 0.5-2 mU/L). Cells were cultured at 37 °C in DMEM, supplemented with 5% FBS. The cells were treated with 1 nM LH and increasing concentrations of TSH. At the end of culture, conditioned medium and cells were collected to analyze progesterone production, cell viability, and mRNA levels of genes involved in the steroidogenesis process. Human ovarian tissues were analyzed for TSH receptor (TSHR) expression by IHC. RESULTS The expression of TSHR was detected in human corpus luteum by IHC and in hGL by RT-PCR. In hGL cells, TSH treatment did not modulate progesterone production nor the expression of steroidogenic genes, such as p450scc and HSD3b 1/2. However, TSH induced a dose-dependent increase in cell death. Finally, TSH did not affect LH-induced p450scc and HSD3b1/2 expression while LH partially reverted TSH negative effect on cell death in hGL. CONCLUSIONS Elevated TSH levels in hypothyroid women may be associated with impaired CL functioning and maintenance. These findings open a new line of research for the importance of the treatment of women with thyroid dysfunction that could contribute to the onset of infertility.
Collapse
Affiliation(s)
- M Taggi
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - C Capponi
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - N Bertani
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
| | - G Saturno
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - F Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - L Dovere
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - S M Fabozzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - O Alesiani
- Department Tutela della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - V Arena
- Department of Woman and Child Health and Public Health, Area of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - D Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - R Mazzilli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - L Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - F M Ubaldi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - R Canipari
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy.
| | - E Vicini
- DAHFMO, Unit of Histology and Medical Embryology, Sapienza, University of Rome, Rome, Italy.
| | - R Apa
- Department Tutela della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Nishimura T, Takebe T. Synthetic human gonadal tissues for toxicology. Reprod Toxicol 2024; 126:108598. [PMID: 38657700 DOI: 10.1016/j.reprotox.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The process of mammalian reproduction involves the development of fertile germ cells in the testis and ovary, supported by the surrounders. Fertilization leads to embryo development and ultimately the birth of offspring inheriting parental genome information. Any disruption in this process can result in disorders such as infertility and cancer. Chemical toxicity affecting the reproductive system and embryogenesis can impact birth rates, overall health, and fertility, highlighting the need for animal toxicity studies during drug development. However, the translation of animal data to human health remains challenging due to interspecies differences. In vitro culture systems offer a promising solution to bridge this gap, allowing the study of mammalian cells in an environment that mimics the physiology of the human body. Current advances on in vitro culture systems, such as organoids, enable the development of biomaterials that recapitulate the physiological state of reproductive organs. Application of these technologies to human gonadal cells would provide effective tools for drug screening and toxicity testing, and these models would be a powerful tool to study reproductive biology and pathology. This review focuses on the 2D/3D culture systems of human primary testicular and ovarian cells, highlighting the novel approaches for in vitro study of human reproductive toxicology, specifically in the context of testis and ovary.
Collapse
Affiliation(s)
- Toshiya Nishimura
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan.
| | - Takanori Takebe
- WPI Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan; Division of Stem Cell and Organoid Medicine, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
6
|
Sun Y, Yu CL, Yan YL, Zhang FL, Chen J, Hu ZY, He J, Meng XY, Wu QF. Inhibitory Effects and Related Molecular Mechanisms of Huanglian-Ganjiang Combination Against H1N1 Influenza Virus. REVISTA BRASILEIRA DE FARMACOGNOSIA 2023; 33:514-522. [PMID: 37151218 PMCID: PMC9994783 DOI: 10.1007/s43450-023-00372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
Influenza is an infectious acute respiratory disease with complications and a high mortality rate; the effective medicines for influenza therapy are limited. "Huanglian" or Coptidis Rhizoma, Coptis chinensis Franch., Ranunculaceae, and "ganjiang" or Zingiberis Rhizoma, Zingiber officinale Roscoe, Zingiberaceae, combination is clinically used for treating respiratory diseases. HPLC was applied for the quantification of berberine hydrochloride (1.101 mg/ml) and 6-gingerol (38.41 μg/ml) in the H2O-soluble extract of the herbal formulation. In this study, the effect of "huanglian"- "ganjiang" extract on influenza virus H1N1-induced acute pulmonary inflammation was evaluated, in addition to the investigation of its anti-influenza mechanism in a mouse model. The analyzed herbal combination inhibited the expression of cytokine IL-6 and stimulated the expression of IL-2 in the serum of influenza virus-infected mice. Meanwhile, the herbal combination downregulated the gene and protein expression levels of TLR3, TLR7, MyD88, RIG-I, MAVS, TRAF3, and NF-κB p65, which are key targets of toll-like and RIG-I-like receptor signaling pathways in mice. In addition, the herbal combination could also promote the combination of intracellular autophagosomes and lysosomes in autophagosome-lysosome formation and improve impaired fusion of autophagosomes and lysosomes by influenza virus. This study suggested that the "huanglian"- "ganjiang" extract may be a candidate therapeutic strategy for the treatment of H1N1 influenza. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00372-z.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-ling Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun-liang Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feng-ling Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi-yi Hu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia He
- No. 903 Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Xiong-yu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao-feng Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Lim KM, Dayem AA, Choi Y, Lee Y, An J, Gil M, Lee S, Kwak HJ, Vellingirl B, Shin HJ, Cho SG. High Therapeutic and Esthetic Properties of Extracellular Vesicles Produced from the Stem Cells and Their Spheroids Cultured from Ocular Surgery-Derived Waste Orbicularis Oculi Muscle Tissues. Antioxidants (Basel) 2021; 10:antiox10081292. [PMID: 34439540 PMCID: PMC8389225 DOI: 10.3390/antiox10081292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are paracrine factors that mediate stem cell therapeutics. We aimed at evaluating the possible therapeutic and esthetic applications of EVs prepared from the waste human facial tissue-derived orbicularis oculi muscle stem cells (OOM-SCs). OOM-SCs were isolated from the ocular tissues (from elders and youngsters) after upper eyelid blepharoplasty or epiblepharon surgeries. EVs were prepared from the OOM-SCs (OOM-SC-EVs) and their three-dimensional spheroids. OOM-SCs showed a spindle-like morphology with trilineage differentiation capacity, positive expression of CD105, CD 90, and CD73, and negative expression of CD45 and CD34, and their stem cell properties were compared with other adult mesenchymal stem cells. OOM-SC-EVs showed a high inhibitory effect on melanin synthesis in B16F10 cells by blocking tyrosinase activity. OOM-SC-EVs treatment led to a significant attenuation of senescence-associated changes, a decrease in reactive oxygen species generation, and an upregulation of antioxidant genes. We demonstrated the regeneration activity of OOM-SC-EVs in in vitro wound healing of normal human dermal fibroblasts and upregulation of anti-wrinkle-related genes and confirmed the therapeutic potential of OOM-SC-EVs in the healing of the in vivo wound model. Our study provides promising therapeutic and esthetic applications of OOM-SC-EVs, which can be obtained from the ocular surgery-derived waste human facial tissues.
Collapse
Affiliation(s)
- Kyung Min Lim
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yujin Choi
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Yoonjoo Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Jongyub An
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Minchan Gil
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Soobin Lee
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Hee Jeong Kwak
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
| | - Balachandar Vellingirl
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India;
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea
- Correspondence: (H.J.S.); (S.-G.C.)
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center (MCRC), Department of Stem Cell & Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.M.L.); (A.A.D.); (Y.C.); (Y.L.); (J.A.); (M.G.); (S.L.); (H.J.K.)
- Correspondence: (H.J.S.); (S.-G.C.)
| |
Collapse
|
8
|
Dompe C, Kranc W, Jopek K, Kowalska K, Ciesiółka S, Chermuła B, Bryja A, Jankowski M, Perek J, Józkowiak M, Moncrieff L, Hutchings G, Janowicz K, Pawelczyk L, Bruska M, Petitte J, Mozdziak P, Kulus M, Piotrowska-Kempisty H, Spaczyński RZ, Nowicki M, Kempisty B. Muscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro Cultivation. J Clin Med 2020; 9:jcm9062006. [PMID: 32604796 PMCID: PMC7355984 DOI: 10.3390/jcm9062006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023] Open
Abstract
Granulosa cells (GCs) have many functions and are fundamental for both folliculogenesis and oogenesis, releasing hormones and communicating directly with the oocyte. Long-term in vitro cultures of GCs show significant stem-like characteristics. In the current study, RNA of human ovarian granulosa cells was collected at 1, 7, 15 and 30 days of long-term in vitro culture. Understanding the process of differentiation of GCs towards different cell lineages, as well as the molecular pathways underlying these mechanisms, is fundamental to revealing other possible stemness markers of this type of cell. Identifying new markers of GC plasticity may help to understand the aetiology and recurrence of a wide variety of diseases and health conditions and reveal possible clinical applications of the ovarian tissue cells, affecting not only the reproductive ability but also sex hormone production. Granulosa cells were the subject of this study, as they are readily available as remnant material leftover after in vitro fertilisation procedures and exhibit significant stem-like characteristics in culture. The change in gene expression was investigated through a range of molecular and bioinformatic analyses. Expression microarrays were used, allowing the identification of groups of genes typical of specific cellular pathways. This candidate gene study focused on ontological groups associated with muscle cell morphogenesis, structure, development and differentiation, namely, “muscle cell development”, “muscle cell differentiation”, “muscle contraction”, “muscle organ development”, “muscle organ morphogenesis”, “muscle structure development”, “muscle system process” and “muscle tissue development”. The results showed that the 10 most upregulated genes were keratin 19, oxytocin receptor, connective tissue growth factor, nexilin, myosin light chain kinase, cysteine and glycine-rich protein 3, caveolin 1, actin, activating transcription factor 3 and tropomyosin, while the 10 most downregulated consisted of epiregulin, prostaglandin-endoperoxide synthase 2, transforming growth factor, interleukin, collagen, 5-hydroxytryptmine, interleukin 4, phosphodiesterase, wingless-type MMTV integration site family and SRY-box 9. Moreover, ultrastructural observations showing heterogeneity of granulosa cell population are presented in the study. At least two morphologically different subpopulations were identified: large, light coloured and small, darker cells. The expression of genes belonging to the mentioned ontological groups suggest the potential ability of GCs to differentiate and proliferate toward muscle lineage, showing possible application in muscle regeneration and the treatment of different diseases.
Collapse
Affiliation(s)
- Claudia Dompe
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Błażej Chermuła
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Artur Bryja
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Joanna Perek
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Lisa Moncrieff
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Krzysztof Janowicz
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.D.); (L.M.); (G.H.); (K.J.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Małgorzata Bruska
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
| | - James Petitte
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Toruń, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Robert Z. Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (L.P.); (R.Z.S.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
| | - Bartosz Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (K.J.); (K.K.); (S.C.); (M.N.)
- Department of Anatomy, Poznan University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland; (W.K.); (A.B.); (M.J.); (J.P.); (M.B.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 20 Jihlavská St., 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +48-61-854-6567; Fax: +48-61-854-6568
| |
Collapse
|
9
|
Liu Y, Jiang Y, Li W, Han C, Qi Z. MicroRNA and mRNA analysis of angiotensin II-induced renal artery endothelial cell dysfunction. Exp Ther Med 2020; 19:3723-3737. [PMID: 32346437 PMCID: PMC7185074 DOI: 10.3892/etm.2020.8613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Continuous activation of angiotensin II (Ang II) induces renal vascular endothelial dysfunction, inflammation and oxidative stress, all of which may contribute to renal damage. MicroRNAs (miRs/miRNAs) play a crucial regulatory role in the pathogenesis of hypertensive nephropathy (HN). The present study aimed to assess the differential expression profiles of potential candidate genes involved in Ang II-induced rat renal artery endothelial cell (RRAEC) dysfunction and explore their possible functions. In the present study, the changes in energy metabolism and autophagy function in RRAECs were evaluated using the Seahorse XF Glycolysis Stress Test and dansylcadaverine/transmission electron microscopy following exposure to Ang II. Subsequently, mRNA-miRNA sequencing experiments were performed to determine the differential expression profiles of mRNAs and miRNAs. Integrated bioinformatics analysis was applied to further explore the molecular mechanisms of Ang II on endothelial injury induced by Ang II. The present data supported the notion that Ang II upregulated glycolysis levels and promoted autophagy activation in RRAECs. The sequencing data demonstrated that 443 mRNAs and 58 miRNAs were differentially expressed (DE) in response to Ang II exposure, where 66 mRNAs and 55 miRNAs were upregulated, while 377 mRNAs and 3 miRNAs were downregulated (fold change >1.5 or <0.67; P<0.05). Functional analysis indicated that DE mRNA and DE miRNA target genes were mainly associated with cell metabolism (metabolic pathways), differentiation (Th1 and Th2 cell differentiation), autophagy (autophagy-animal and autophagy-other) and repair (RNA-repair). To the best of the authors' knowledge, this is the first report on mRNA-miRNA integrated profiles of Ang II-induced RRAECs. The present results provided evidence suggesting that the miRNA-mediated effect on the ‘mTOR signaling pathway’ might play a role in Ang II-induced RRAEC injury by driving glycolysis and autophagy activation. Targeting miRNAs and their associated pathways may provide valuable insight into the clinical management of HN and may improve patient outcome.
Collapse
Affiliation(s)
- Yao Liu
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuehua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Wei Li
- Nephropathy Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Cong Han
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Zhenqiang Qi
- Department of Clinical Chinese Medicine integrated with Western Medicine, First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
10
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
11
|
Rodríguez Gutiérrez D, Biason-Lauber A. Pluripotent Cell Models for Gonadal Research. Int J Mol Sci 2019; 20:ijms20215495. [PMID: 31690065 PMCID: PMC6862629 DOI: 10.3390/ijms20215495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development is a complex process involving many genes and hormones. Defects in this process lead to Differences of Sex Development (DSD), a group of heterogeneous conditions not as rare as previously thought. Part of the obstacles in proper management of these patients is due to an incomplete understanding of the genetics programs and molecular pathways involved in sex development and DSD. Several challenges delay progress and the lack of a proper model system for the single patient severely hinders advances in understanding these diseases. The revolutionary techniques of cellular reprogramming and guided in vitro differentiation allow us now to exploit the versatility of induced pluripotent stem cells to create alternatives models for DSD, ideally on a patient-specific personalized basis.
Collapse
Affiliation(s)
- Daniel Rodríguez Gutiérrez
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Anna Biason-Lauber
- Endocrinology Division, Department of Endocrinology, Metabolism and Cardiovascular System, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
12
|
Ai A, Tang Z, Liu Y, Yu S, Li B, Huang H, Wang X, Cao Y, Zhang W. Characterization and identification of human immortalized granulosa cells derived from ovarian follicular fluid. Exp Ther Med 2019; 18:2167-2177. [PMID: 31452708 PMCID: PMC6704934 DOI: 10.3892/etm.2019.7802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
Follicular fluid serves a crucial role in follicular development and oocyte maturation. Increasing evidence indicates that follicular fluid is rich in proteins and functional cells. In addition to oocyte cells, follicular fluid contains granulosa, thecal and ovarian surface epithelial cells. Granulosa cells (GCs) represent the predominant somatic cell type of the ovarian follicle and are involved in steroidogenesis and folliculogenesis. However, the long-term culture of GCs in vitro remains challenging. The present study aimed to extend the culture of GCs in vitro. Human GCs were collected from the follicular fluid of patients included in an in vitro fertilization program and cultured in the presence of conditioned medium obtained from mouse embryonic fibroblasts. GCs were cultured for over a year and 130 passages, and the population doubling time was ~22 h. Cells presented epithelial-like morphology and a cobblestone-like appearance when they reached confluence. Flow cytometric analysis demonstrated that cells expressed CD29, CD166 and CD49f but not CD31, CD34, CD45, CD90, CD105 or CD13. Immunofluorescence staining revealed that cells expressed follicle stimulating hormone receptor, luteinizing hormone receptor and cytochrome P450 aromatase, which was confirmed by reverse transcription-quantitative polymerase chain reaction. In the presence of androstenedione, cells secreted estradiol. In addition, estradiol level was further stimulated by dibutyryl cAMP treatment. In addition, intracellular cAMP and progesterone expression levels were upregulated by follicle stimulating hormone and/or human chorionic gonadotropin. Furthermore, cells survived in severe combined immunodeficiency mice following intra-ovarian injection. Histological analysis revealed that certain cells formed follicle-like structures. The results from the present study suggested that immortalized GCs may be a useful tool for further research on GC and improve the clinical application of drugs such as follicle-stimulating hormone or human chorionic gonadotropin.
Collapse
Affiliation(s)
- Ai Ai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Zhengya Tang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Yali Liu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Sha Yu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai 200011, P.R. China
| | - He Huang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Xiangsheng Wang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, P.R. China
| |
Collapse
|
13
|
Virant-Klun I, Omejec S, Stimpfel M, Skerl P, Novakovic S, Jancar N, Vrtacnik-Bokal E. Female Age Affects the Mesenchymal Stem Cell Characteristics of Aspirated Follicular Cells in the In Vitro Fertilization Programme. Stem Cell Rev Rep 2019; 15:543-557. [PMID: 31055736 DOI: 10.1007/s12015-019-09889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aspirated follicular cells (AFCs) from the in vitro fertilization program can express various stem cell markers and are even able to differentiate into different types of cells in vitro. The female reproductive potential decreases with increasing age due to lowered ovarian reserve and oocyte quality, but data on the effect of female age on stem cell characteristics of AFCs are scarce. Therefore, the aim of this study was to elucidate whether female age affects the mesenchymal stem cell (MSC) characteristics of AFCs. Follicular aspirates were collected from 12 patients included in the in vitro fertilization programme with a normal ovarian reserve. Patients were divided into four age groups: Group A ≤ 30 years, Group B 31-35 years, Group C 36-39 years and Group D ≥ 40 years. After removal of the oocytes, AFCs were collected from follicular aspirates using hypo-osmotic technique and cultured in vitro, and their stemness was compared according to female age. The cultured AFCs were analysed for gene expression using the Human Mesenchymal Stem Cell RT2 Profiler™ PCR Array, for their potential for differentiation into adipogenic and osteogenic lineage, and for their expression of MSC-related markers using immunocytochemistry. We found that female age can significantly influence their stemness: expression of pluripotency and MSC-related genes, and their differentiation potential. Despite the relatively high expression of MSC-related genes, the AFCs of the oldest patients had the lowest potential to differentiate into osteogenic and adipogenic lineages in vitro, which may be related to their age and the changed ovarian function.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.
| | - S Omejec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000, Ljubljana, Slovenia
| | - M Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - P Skerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - S Novakovic
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - N Jancar
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - E Vrtacnik-Bokal
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
14
|
Xu M, Shaw G, Murphy M, Barry F. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 2019; 37:754-765. [PMID: 30779868 PMCID: PMC6591688 DOI: 10.1002/stem.2993] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
There has been considerable interest in the generation of functional mesenchymal stromal cell (MSC) preparations from induced pluripotent stem cells (iPSCs) and this is now regarded as a potential source of unlimited, standardized, high‐quality cells for therapeutic applications in regenerative medicine. Although iMSCs meet minimal criteria for defining MSCs in terms of marker expression, there are substantial differences in terms of trilineage potential, specifically a marked reduction in chondrogenic and adipogenic propensity in iMSCs compared with bone marrow‐derived (BM) MSCs. To reveal the cellular basis underlying these differences, we conducted phenotypic, functional, and genetic comparisons between iMSCs and BM‐MSCs. We found that iMSCs express very high levels of both KDR and MSX2 compared with BM‐MSCs. In addition, BM‐MSCs had significantly higher levels of PDGFRα. These distinct gene expression profiles were maintained during culture expansion, suggesting that prepared iMSCs are more closely related to vascular progenitor cells (VPCs). Although VPCs can differentiate along the chondrogenic, osteogenic, and adipogenic pathways, they require different inductive conditions compared with BM‐MSCs. These observations suggest to us that iMSCs, based on current widely used preparation protocols, do not represent a true alternative to primary MSCs isolated from BM. Furthermore, this study highlights the fact that high levels of expression of typical MSC markers such as CD73, CD90, and CD105 are insufficient to distinguish MSCs from other mesodermal progenitors in differentiated induced pluripotent stem cell cultures. stem cells2019;37:754–765
Collapse
Affiliation(s)
- Maojia Xu
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
15
|
Souček K, Malenovská A, Kahounová Z, Remšík J, Holubcová Z, Soukup T, Kurfürstová D, Bouchal J, Suchánková T, Slabáková E, Hampl A. Presence of growth/differentiation factor-15 cytokine in human follicular fluid, granulosa cells, and oocytes. J Assist Reprod Genet 2018; 35:1407-1417. [PMID: 29948426 DOI: 10.1007/s10815-018-1230-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of the study was to determine whether the GDF-15 is present in follicular fluid; to evaluate if there is a relation between follicular and serum levels of GDF-15 and fertility status of study subjects; and to test whether granulosa cells, oocytes, or both produce GDF-15. METHODS This study used follicular fluid (FF, serum, and oocytes obtained under informed consent from women undergoing oocyte retrieval for in vitro fertilization. It also used ovaries from deceased preterm newborns. Collection of FF and blood at the time of oocyte retrieval, ELISA and western blot were performed to determine levels and forms of GDF-15. Concentrations of GDF-15 in FF and serum, its expression in ovarian tissue, and secretion from granulosa cells were analyzed. RESULTS GDF-15 concentration in FF ranged from 35 to 572 ng/ml, as determined by ELISA. Western blot analysis revealed the GDF-15 pro-dimer only in FF. Both normal healthy and cancerous granulosa cells secreted GDF-15 into culture media. Primary oocytes displayed cytoplasmic GDF-15 positivity in immunostained newborn ovaries, and its expression was also observed in fully grown human oocytes. CONCLUSIONS To the best of our knowledge, this is the first documentation of cytokine GDF-15 presence in follicular fluid. Its concentration was not associated with donor/patient fertility status. Our data also show that GDF-15 is expressed and inducible in both normal healthy and cancerous granulosa cells, as well as in oocytes.
Collapse
Affiliation(s)
- Karel Souček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Alice Malenovská
- Reprofit International Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Zuzana Kahounová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Ján Remšík
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zuzana Holubcová
- Reprofit International Clinic of Reproductive Medicine, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic
| | - Tomáš Soukup
- Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Charles University in Prague, Hradec Králové, Czech Republic
| | - Daniela Kurfürstová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Tereza Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva Slabáková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic. .,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic.
| |
Collapse
|
16
|
Lai D, Guo Y, Zhang Q, Chen Y, Xiang C. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:998-1005. [PMID: 27590065 DOI: 10.1093/abbs/gmw090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022] Open
Abstract
Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.
Collapse
Affiliation(s)
- Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ying Guo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yifei Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
17
|
Kim J, McMillan E, Kim HS, Venkateswaran N, Makkar G, Rodriguez-Canales J, Villalobos P, Neggers JE, Mendiratta S, Wei S, Landesman Y, Senapedis W, Baloglu E, Chow CWB, Frink RE, Gao B, Roth M, Minna JD, Daelemans D, Wistuba II, Posner BA, Scaglioni PP, White MA. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature 2016; 538:114-117. [PMID: 27680702 PMCID: PMC5161658 DOI: 10.1038/nature19771] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
Abstract
The common participation of oncogenic KRAS proteins in many of the most lethal human cancers, together with the ease of detecting somatic KRAS mutant alleles in patient samples, has spurred persistent and intensive efforts to develop drugs that inhibit KRAS activity. However, advances have been hindered by the pervasive inter- and intra-lineage diversity in the targetable mechanisms that underlie KRAS-driven cancers, limited pharmacological accessibility of many candidate synthetic-lethal interactions and the swift emergence of unanticipated resistance mechanisms to otherwise effective targeted therapies. Here we demonstrate the acute and specific cell-autonomous addiction of KRAS-mutant non-small-cell lung cancer cells to receptor-dependent nuclear export. A multi-genomic, data-driven approach, utilizing 106 human non-small-cell lung cancer cell lines, was used to interrogate 4,725 biological processes with 39,760 short interfering RNA pools for those selectively required for the survival of KRAS-mutant cells that harbour a broad spectrum of phenotypic variation. Nuclear transport machinery was the sole process-level discriminator of statistical significance. Chemical perturbation of the nuclear export receptor XPO1 (also known as CRM1), with a clinically available drug, revealed a robust synthetic-lethal interaction with native or engineered oncogenic KRAS both in vitro and in vivo. The primary mechanism underpinning XPO1 inhibitor sensitivity was intolerance to the accumulation of nuclear IκBα (also known as NFKBIA), with consequent inhibition of NFκB transcription factor activity. Intrinsic resistance associated with concurrent FSTL5 mutations was detected and determined to be a consequence of YAP1 activation via a previously unappreciated FSTL5-Hippo pathway regulatory axis. This occurs in approximately 17% of KRAS-mutant lung cancers, and can be overcome with the co-administration of a YAP1-TEAD inhibitor. These findings indicate that clinically available XPO1 inhibitors are a promising therapeutic strategy for a considerable cohort of patients with lung cancer when coupled to genomics-guided patient selection and observation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/metabolism
- Female
- Follistatin-Related Proteins/genetics
- Genes, Lethal/genetics
- Hippo Signaling Pathway
- Humans
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mutation
- NF-KappaB Inhibitor alpha/metabolism
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/metabolism
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/metabolism
- Porphyrins/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins p21(ras)/genetics
- RNA Interference
- RNA, Small Interfering
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- TEA Domain Transcription Factors
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Verteporfin
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- Exportin 1 Protein
Collapse
Affiliation(s)
- Jimi Kim
- Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Elizabeth McMillan
- Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Hyun Seok Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | - Gurbani Makkar
- Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Saurabh Mendiratta
- Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Shuguang Wei
- Biochemistry, UTSW Medical Center, Dallas, Texas 75390, USA
| | | | | | - Erkan Baloglu
- Karyopharm Therapeutics, Newton, Massachusetts 02459, USA
| | - Chi-Wan B Chow
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Robin E Frink
- Hamon Center, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Boning Gao
- Hamon Center, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Michael Roth
- Biochemistry, UTSW Medical Center, Dallas, Texas 75390, USA
| | - John D Minna
- Hamon Center, UTSW Medical Center, Dallas, Texas 75390, USA
| | - Dirk Daelemans
- KU Leuven Department of Microbiology and Immunology, 3000 Leuven, Belgium
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bruce A Posner
- Biochemistry, UTSW Medical Center, Dallas, Texas 75390, USA
| | | | - Michael A White
- Department of Cell Biology, UTSW Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
18
|
Santos R, Schoevers E, Wu X, Roelen B, Fink-Gremmels J. The protective effect of follicular fluid against the emerging mycotoxins alternariol and beauvericin. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Porcine granulosa cells were cultured in the absence or presence of 10% porcine follicular fluid (FF) at different concentrations (0-20 μM) of the mycotoxins alternariol (AOH) and beauvericin (BEA). The analyses were performed after exposure to these mycotoxins in a medium supplemented or not with FF harvested from gilts and sows. Cell enzymatic activity and nuclear membrane integrity were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and ethidium homodimer-1 labelling. Trolox equivalent antioxidant capacity was measured to calculate the capacity of the cells to counteract reactive oxygen species. qRT-PCR was used to determine the relative gene expression of efflux transporters (ABCG1 and ABCG2) as well CYP11 and CYP19. Mycotoxin cytotoxicity was more related to enzymatic activity than to nuclear membrane damage and no direct relationship with oxidative stress was observed, except when cells were exposed to AOH. In this case, medium supplementation with FF from sows increased the antioxidant capacity of the cells. AOH did not regulate gene expression in the present conditions, but 5 μM BEA led to the up-regulation of ABCG2 gene expression and a down-regulation of CYP19 expression. In conclusion, follicular fluid from sows is capable to decrease toxicity of AOH and of BEA.
Collapse
Affiliation(s)
- R.R. Santos
- Division of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Rua Augusto Corrêa, Campus Básico, CEP 66075-110 Belém, Pará, Brazil
| | - E.J. Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| | - X. Wu
- Division of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| | - B.A.J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| | - J. Fink-Gremmels
- Division of Veterinary Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
19
|
Lai D, Wang F, Chen Y, Wang L, Wang Y, Cheng W. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility. BMC DEVELOPMENTAL BIOLOGY 2013; 13:34. [PMID: 24006896 PMCID: PMC3844331 DOI: 10.1186/1471-213x-13-34] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Human amniotic fluid cells (hAFCs) may differentiate into multiple cell lineages and thus have a great potential to become a donor cell source for regenerative medicine. The ability of hAFCs to differentiate into germ cell and oocyte-like cells has been previously documented. Herein we report the potential use of hAFCs to help restore follicles in clinical condition involving premature ovarian failure. RESULTS Human amniotic fluid was obtained via amniocentesis, yielding a subpopulation of cloned hAFCs that was able to form embryoid bodies (EBs) and differentiate into three embryonic germ layers. Moreover, culture of EBs in medium containing human follicular fluid (HFF) or a germ cell maturation factor cocktail (FAC), expressed germ cells markers such as BLIMP1, STELLA, DAZL, VASA, STRA8, SCP3, SCP1, and GDF9. Furthermore, one cell line was grown from clone cells transfected with lentivirus-GFP and displaying morphological characteristics of mesenchymal cells, had the ability to restore ovarian morphology following cell injection into the ovaries of mice sterilized by intraperitoneal injection of cyclophosphamide and busulphan. Restored ovaries displayed many follicle-enclosed oocytes at all stages of development, but no oocytes or follicles were observed in sterilized mice whose ovaries had been injected with medium only (control). Notably, identification of GFP-labeled cells and immunostaining with anti-human antigen-specific antibodies demonstrated that grafted hAFCs survived and differentiated into granulosa cells which directed oocyte maturation. Furthermore, labeling of ovarian tissue for anti-Müllerian hormone expression, a functional marker of folliculogenesis, was strong in hAFCs-transplanted ovaries but inexistent in negative controls. CONCLUSION These findings highlight the possibility of using human amniotic fluid-derived stem cells in regenerative medicine, in particular in the area of reproductive health.
Collapse
Affiliation(s)
- Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of medicine, Shanghai Jiaotong University, Shanghai 200030, China.
| | | | | | | | | | | |
Collapse
|
20
|
Cells with stem cell characteristics in somatic compartments of the ovary. BIOMED RESEARCH INTERNATIONAL 2012; 2013:310859. [PMID: 23484108 PMCID: PMC3591217 DOI: 10.1155/2013/310859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF), it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology.
Collapse
|