1
|
Duan Y, Yao Y, Yang H, Yu Q, Yang W, Liang M, Xie L, Ni L, Yu Y, Zhang B. Decreased expressions of calcium- and integrin-binding protein 4 in the testes of patients with azoosperma and in the ejaculated spermatozoa of patients with abnormal semen parameters. Eur J Obstet Gynecol Reprod Biol 2025; 311:114045. [PMID: 40398143 DOI: 10.1016/j.ejogrb.2025.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 04/16/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE Oligoasthenozoospermia (OAZS), asthenozoospermia (AZS), and azoospermia are the major causes of male infertility with no effective therapeutic treatment. To determine the expression and distribution of calcium- and integrin-binding protein 4 (CIB4) in the patients with azoospermia and OAZS, it is important to explore novel targets and treatment strategies for patients with abnormal semen parameters. DESIGN A small piece of testicular tissue was obtained by multi-site testicular biopsy from each of a total of 16 patients with azoospermia revealed in two groups, i.e., nonobstructive azoospermia (NOA; n = 8) and obstructive azoospermia (OA; n = 8). Sperm samples were collected from 24 infertile men categorized in two groups, OAZS (n = 11) and AZS (n = 13). The control group contained a total of 20 fertile men. Computer-assisted semen analysis (CASA) was performed to assess the sperm motility. Quantitative real-time PCR (RT-qPCR) and Western blot analyses were performed to examine the expression of CIB4. RESULTS The results of RT-qPCR and Western blotting analyses revealed the decreased expression levels of CIB4 mRNA and CIB4 protein in both the sperm of the OAZS patients and the testis tissue of NOA patients. The results of linear regression analysis of CIB4 mRNA expression with the clinical features of participants showed that the CIB4 mRNA level was positively correlated with sperm progressive motility (r = 0.397, P < 0.01) and sperm viability (r = 0.364, P < 0.05). CONCLUSIONS We conclude that decreased expression level of CIB4 in human testis and sperm, may be a contributor or a downstream indicator for some cases of azoospermia, especially OA and OAZS. The high expression level of CIB4 mRNA in patients with normal semen parameters suggests that CIB4 in human-ejaculated spermatozoa would potentially contribute to the diagnosis and treatment of male infertility caused by deficient sperm motility and count. These results provide novel insights into the molecular mechanisms underlying the male infertility and the clinical importance of CIB4 in the treatment of infertility.
Collapse
Affiliation(s)
- Yuyao Duan
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Yi Yao
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Huailiang Yang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Qing Yu
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Weina Yang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Ming Liang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Linlin Xie
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Linlin Ni
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China
| | - Yan Yu
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China.
| | - Bin Zhang
- Reproductive Medical Center, The Second Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan 250001 Shandong, China.
| |
Collapse
|
2
|
Michailov Y, Friedler S, Saar-Ryss B. First clinical pregnancy and delivery achieved after using a new 3D imaging technology for sperm selection: a case report. FRONTIERS IN REPRODUCTIVE HEALTH 2025; 7:1559684. [PMID: 40124653 PMCID: PMC11925932 DOI: 10.3389/frph.2025.1559684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Objective To report a case of a patient who, after experiencing recurrent failed implantations, underwent a novel technological intervention-using the Q300 device-which successfully led to a pregnancy and delivery of a healthy baby. Design Case report. Setting Barzilai University Medical Center. Patient s A 33-year-old woman with primary infertility experienced recurrent implantation failure (RIF), while her 32-year-old male partner was diagnosed with severe oligo-astheno-teratozoospermia (OTA) syndrome. Intervention Using Q300 device for selection of the morphologically compliant sperm cells for intracytoplasmic sperm injection (ICSI). Main outcome measures Successful pregnancy and delivery. Results A unique case of clinical pregnancy and delivery involving a couple facing RIF and severe OTA. In this case, a new technology for sperm selection was used. The semen sample was examined using the Q300 device to choose WHO2021-morphologically compliant sperm cells for micro-injection. The resulting embryos were developed and then frozen. Later, a frozen-thawed embryo transfer was performed during the following natural menstrual cycle, leading to successful pregnancy and delivery. Conclusion The utilization of this new 3D imaging technology underscores the evolving landscape of reproductive medicine and the potential it holds for transforming outcomes in challenging cases. By documenting such cases, we contribute to the ongoing dialogue to refine assisted reproductive technology (ART) protocols and improve reproductive outcomes for individuals facing similar challenges. Trial registration NCT06232720 https://clinicaltrials.gov/study/NCT06232720. Date of registration: 15 Feb 2023. Date of enrollment of the first subject: 20 August 2023.
Collapse
Affiliation(s)
- Yulia Michailov
- Obstetrics and Gynecology Department, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Shevach Friedler
- Obstetrics and Gynecology Department, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Bozhena Saar-Ryss
- Obstetrics and Gynecology Department, Barzilai University Medical Center, Ashkelon, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
3
|
Naderi N, Tavalaee M, Nasr-Esfahani MH. The epigenetic approach of varicocele: a focus on sperm DNA and m6A-RNA methylation. Hum Reprod Update 2025; 31:81-101. [PMID: 39673728 DOI: 10.1093/humupd/dmae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/21/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Varicocele is an abnormal dilation and torsion of the pampiniform venous plexus in the scrotum due to venous reflux, primarily affecting the left side. It affects 15% of men and is a prevalent contributor to male infertility. Varicocele is a complex disorder influenced by genetic, epigenetic, and environmental factors. Epigenetic modifications, which regulate genome activity independently of DNA or RNA sequences, may contribute to the development and severity of varicocele. These include DNA methylation, histone modifications, and RNA modifications like N6-methyladenosine (m6A). Irregularities in DNA and m6A-RNA methylation during spermatogenesis can cause gene expression abnormalities, DNA damage, and decreased fertility in varicocele patients. OBJECTIVE AND RATIONALE The review aims to comprehensively understand the underlying mechanisms of varicocele, a condition that can significantly impact male fertility. By exploring the role of methylation modifications, specifically DNA and m6A-RNA methylation, the review aims to synthesize evidence from basic, preclinical, and clinical research to expand the existing knowledge on this subject. The ultimate goal is to identify potential avenues for developing targeted treatments that can effectively improve varicocele and ultimately increase sperm quality in affected individuals. SEARCH METHODS A thorough investigation of the scientific literature was conducted through searches in PubMed, Google Scholar, and Science Direct databases until May 2024. All studies investigating the relationship between DNA and m6A-RNA methylation and male infertility, particularly varicocele were reviewed, and the most pertinent reports were included. Keywords such as varicocele, epigenetics, DNA methylation, m6A-RNA methylation, hypermethylation, hypomethylation, spermatozoa, semen parameters, spermatogenesis, and male infertility were used during the literature search, either individually or in combination. OUTCOMES The sperm has a specialized morphology essential for successful fertilization, and its epigenome is unique, potentially playing a key role in embryogenesis. Sperm DNA and RNA methylation, major epigenetic marks, regulate the expression of testicular genes crucial for normal spermatogenesis. This review explores the role of DNA and m6A-RNA methylation, in responding to oxidative stress and how various nutrients influence their function in varicocele condition. Evidence suggests a potential link between varicocele and aberrant DNA/m6A-RNA methylation patterns, especially hypomethylation, but the body of evidence is still limited. Further studies are needed to understand how abnormal expression of DNA/m6A-RNA methylation regulators affects testicular gene expression. Thus, analyzing sperm DNA 5mC/5hmC levels and m6A-RNA methylation regulators may reveal spermatogenesis defects and predict reproductive outcomes. WIDER IMPLICATIONS Nutri-epigenomics is an emerging field that could enhance the knowledge and management of diseases with unpredictable risks and consequences, even among individuals with similar lifestyles, by elucidating the influence of nutrition on DNA/m6A-RNA methylation through one-carbon metabolism. However, the importance of one-carbon metabolism to varicocele is not well-recognized. Health status and diet influence one-carbon metabolism and its associated DNA/m6A-RNA methylation modification. Future research should identify optimal methylation patterns that promote health and investigate modulating one-carbon metabolism to achieve this. Furthermore, additional studies are necessary to develop personalized dietary strategies through clinical and longitudinal research. However, a research gap exists on dietary interventions utilizing epigenetics as a therapeutic method for treating varicocele. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Nushin Naderi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Pooyesh & Rooyesh Fertility Center, Isfahan, Iran
| |
Collapse
|
4
|
Hamim FM, Durairajanayagam D, Daud SB, Singh HJ. Physical activity and male reproductive function. Reprod Fertil Dev 2025; 37:RD24196. [PMID: 39903601 DOI: 10.1071/rd24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Fecundity is declining in humans, which is partly due to male infertility. Poor sperm parameters, the main contributors to male infertility, are associated with sedentary, unhealthy lifestyle and poor dietary habits. Long periods of sedentary work lead to visceral adiposity and persistently elevated scrotal temperatures, which adversely affect spermatogenesis. Apart from increasing scrotal temperatures, excessive visceral adiposity exacerbates adipocyte dysfunction with increased pro-inflammatory adipokine release, like leptin. These, together with the increased scrotal temperature, are responsible for the poor sperm quality. The importance of regular physical activity in male fertility remains a matter of debate, as not all forms of exercises have been found to benefit sperm function. Sperm parameters are, nevertheless, somewhat better in active than in sedentary men. It now appears that low-to-moderate intensity exercises are more beneficial for male reproductive health than high-intensity exercises, which have a negative effect on spermatozoa. Low-to-moderate intensity exercises, in general, improve the overall organ-system function in the body, improve the management of body weight and oxidative stress, consequently improving sperm parameters. The detrimental effects of high-intensity exercises on spermatozoa result from disruption in the hypothalamus-pituitary-gonadal-axis, raised testicular temperature and increased oxidative stress. It, therefore, seems that not all types of exercises are beneficial for male reproductive health. Although some low-to-moderate intensity exercises improve male reproductive function, there remains a need to identify the best form of low-to-moderate intensity exercises, particularly those that do not increase testicular temperature or oxidative stress, to help maintain normal body weight and male reproductive health.
Collapse
Affiliation(s)
- Farhanah Mohd Hamim
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Suzanna Binti Daud
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| | - Harbindar Jeet Singh
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sg Buloh Campus, Sg Buloh, Selangor, Malaysia
| |
Collapse
|
5
|
Guo L, Guo A, Lan X, Tian S, Sun F, Su Y, Chen ZJ, Cao Y, Li Y. Oligoasthenospermia is correlated with increased preeclampsia incidence in subfertile couples undergoing in vitro fertilization and embryo transfer: a secondary analysis of a randomized clinical trial. F&S SCIENCE 2024; 5:386-394. [PMID: 39153572 DOI: 10.1016/j.xfss.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE To evaluate whether intergroup differences in the risk of maternal pregnancy complications after in vitro fertilization (IVF) vary with male factor. DESIGN A post hoc exploratory secondary analysis of data from a multicenter, randomized, controlled noninferiority trial (NCT03118141). SETTING Academic fertility centers. PATIENT(S) A total of 1,131 subfertile women with complete recording of their male partner's semen parameters during the trial were enrolled. All participants underwent intracytoplasmic sperm injection followed by frozen embryo transfer (ET) as part of their assisted reproductive technology treatment protocol. INTERVENTION(S) Women were divided into the oligoasthenospermia (n = 405) and normospermia (n = 726) groups according to the quality of male sperm. MAIN OUTCOME MEASURE(S) Pregnancy complications, principally including the incidence of preeclampsia. RESULT(S) Notably, we found that the risk of maternal preeclampsia was significantly higher in the oligoasthenospermia group than in the normospermia group. After adjustments for confounding factors by multivariate logistic regression analysis, the incidence of preeclampsia in the oligoasthenospermia group was still significantly higher than that in the normospermia group (6.55% vs. 3.60%; odds ratio, 0.529; 95% confidence interval, 0.282-0.992). However, there were no significant differences in terms of embryo quality, cumulative live birth rate, other pregnancy complications, or neonatal outcomes between the 2 groups. CONCLUSION(S) Oligoasthenospermia was associated with a higher risk of maternal preeclampsia in subfertile couples undergoing IVF-ET treatment. In clinical practice, it is essential to thoroughly evaluate the sperm quality and quantity of male partners before IVF-ET. Further research is needed to establish the causal relationships between semen quality and adverse pregnancy complications, particularly preeclampsia, and explore potential interventions.
Collapse
Affiliation(s)
- Ling Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, People's Republic of China
| | - Anliang Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiangxin Lan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, People's Republic of China
| | - Siqi Tian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, People's Republic of China
| | - Fengxuan Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yaxin Su
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yongzhi Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, People's Republic of China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Hosseini M, Khalafiyan A, Zare M, Karimzadeh H, Bahrami B, Hammami B, Kazemi M. Sperm epigenetics and male infertility: unraveling the molecular puzzle. Hum Genomics 2024; 18:57. [PMID: 38835100 PMCID: PMC11149391 DOI: 10.1186/s40246-024-00626-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The prevalence of infertility among couples is estimated to range from 8 to 12%. A paradigm shift has occurred in understanding of infertility, challenging the notion that it predominantly affects women. It is now acknowledged that a significant proportion, if not the majority, of infertility cases can be attributed to male-related factors. Various elements contribute to male reproductive impairments, including aberrant sperm production caused by pituitary malfunction, testicular malignancies, aplastic germ cells, varicocele, and environmental factors. MAIN BODY The epigenetic profile of mammalian sperm is distinctive and specialized. Various epigenetic factors regulate genes across different levels in sperm, thereby affecting its function. Changes in sperm epigenetics, potentially influenced by factors such as environmental exposures, could contribute to the development of male infertility. CONCLUSION In conclusion, this review investigates the latest studies pertaining to the mechanisms of epigenetic changes that occur in sperm cells and their association with male reproductive issues.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Zare
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniye Karimzadeh
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Basireh Bahrami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Mottola F, Palmieri I, Carannante M, Barretta A, Roychoudhury S, Rocco L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes (Basel) 2024; 15:539. [PMID: 38790168 PMCID: PMC11121722 DOI: 10.3390/genes15050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | | | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| |
Collapse
|
9
|
Li L, Ding X, Sheft AP, Schimenti JC. A high throughput CRISPR perturbation screen identifies epigenetic regulators impacting primordial germ cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582097. [PMID: 38463983 PMCID: PMC10925113 DOI: 10.1101/2024.02.26.582097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Certain environmental factors can impact fertility and reproductive parameters such as the number and quality of sperm and eggs. One possible mechanism is the perturbation of epigenetic landscapes in the germline. To explore this possibility, we conducted a CRISPRi screen of epigenetic-related genes to identify those that specifically perturb the differentiation of embryonic stem cells (ESCs) into primordial germ cell-like cells (PGCLCs), exploiting a highly scalable cytokine-free platform. Of the 701 genes screened, inhibition of 53 decreased the efficiency of PGCLC formation. NCOR2, a transcriptional repressor that acts via recruitment of Class I and Class IIa histone deacetylases (HDACs) to gene targets, was particularly potent in suppressing PGCLC differentiation. Consistent with evidence that histone deacetylation is crucial for germline differentiation, we found that the HDAC inhibitors (HDACi) valproic acid (VPA; an anti-convulsant) and sodium butyrate (SB; a widely-used dietary supplement) also suppressed ESC>PGCLC differentiation. Furthermore, exposure of developing mouse embryos to SB or VPA caused hypospermatogenesis. Transcriptome analyses of HDACi-treated, differentiating ESC>PGCLC cultures revealed suppression of germline-associated pathways and enhancement of somatic pathways. This work demonstrates the feasibility of conducting large-scale functional screens of genes, chemicals, or other agents that may impact germline development.
Collapse
|
10
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
11
|
Sengupta P, Dutta S, Jegasothy R, Slama P, Cho CL, Roychoudhury S. 'Intracytoplasmic sperm injection (ICSI) paradox' and 'andrological ignorance': AI in the era of fourth industrial revolution to navigate the blind spots. Reprod Biol Endocrinol 2024; 22:22. [PMID: 38350931 PMCID: PMC10863146 DOI: 10.1186/s12958-024-01193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
The quandary known as the Intracytoplasmic Sperm Injection (ICSI) paradox is found at the juncture of Assisted Reproductive Technology (ART) and 'andrological ignorance' - a term coined to denote the undervalued treatment and comprehension of male infertility. The prevalent use of ICSI as a solution for severe male infertility, despite its potential to propagate genetically defective sperm, consequently posing a threat to progeny health, illuminates this paradox. We posit that the meteoric rise in Industrial Revolution 4.0 (IR 4.0) and Artificial Intelligence (AI) technologies holds the potential for a transformative shift in addressing male infertility, specifically by mitigating the limitations engendered by 'andrological ignorance.' We advocate for the urgent need to transcend andrological ignorance, envisaging AI as a cornerstone in the precise diagnosis and treatment of the root causes of male infertility. This approach also incorporates the identification of potential genetic defects in descendants, the establishment of knowledge platforms dedicated to male reproductive health, and the optimization of therapeutic outcomes. Our hypothesis suggests that the assimilation of AI could streamline ICSI implementation, leading to an overall enhancement in the realm of male fertility treatments. However, it is essential to conduct further investigations to substantiate the efficacy of AI applications in a clinical setting. This article emphasizes the significance of harnessing AI technologies to optimize patient outcomes in the fast-paced domain of reproductive medicine, thereby fostering the well-being of upcoming generations.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University (GMU), Ajman, UAE.
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, UAE
| | - Ravindran Jegasothy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Chak-Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
12
|
Xiong X, Huang X, Zhu Y, Hai Z, Fei X, Pan B, Yang Q, Xiong Y, Fu W, Lan D, Zhang X, Li J. Testis-specific knockout of Kdm2a reveals nonessential roles in male fertility but partially compromises spermatogenesis. Theriogenology 2023; 209:9-20. [PMID: 37354760 DOI: 10.1016/j.theriogenology.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Lysine-specific histone demethylase 2 (Kdm2a) is a regulatory factor of histone modifications that participates in gametogenesis and embryonic development. The mis-regulation of Kdm2a can lead to aberrant gene expression, thereby contributing to abnormal cell proliferation, differentiation, apoptosis, and tumorigenesis. However, due to the potential confounding effects that are secondary to the loss of Kdm2a function from the soma in existing whole-animal mutants, the in vivo function of Kdm2a in spermatogenesis for male fertility remains unknown. Herein, we focus on exploring the spatiotemporal expression profile and biological functions of Kdm2a in the spermatogenesis and fertility of male mice. A testis-specific knockout Kdm2a model (Kdm2a cKO) was established by using the Stra8-Cre/loxP recombinase system to explore the roles of Kdm2a in male fertility. Our results showed that Kdm2a was ubiquitously expressed and dynamically distributed in multiple tissues and cell types in the testis of mice. Surprisingly, Kdm2a-deficient adult males were completely fertile and comparable with their control (Kdm2aflox/flox) counterparts. Despite the significantly reduced total number of sperm and density of seminiferous tubules in Kdm2a cKO testis accompanied by the degeneration of spermatogenesis, the fertilization ability and embryonic developmental competence of the Kdm2a cKO were comparable with those of their control littermates, suggesting that Kdm2a disruption did not markedly affect male fertility, at least during younger ages. Furthermore, Kdm2a homozygous mutants exhibited a lower total number and motility of sperm than the control group and showed notably affected serum 17β-estradiol concentration. Interestingly, the transcriptome sequencing revealed that the loss of Kdm2a remarkably upregulated the expression level of Kdm2b. This effect, in turn, may induce compensative effects in the case of Kdm2a deficiency to maintain normal male reproduction. Together, our results reveal that Kdm2a shows spatiotemporal expression during testicular development and that its loss is insufficient to compromise the production of spermatozoa completely. The homologous Kdm2b gene might compensate for the loss of Kdm2a. Our work provides a novel Kdm2a cKO mouse allowing for the efficient deletion of Kdm2a in a testis-specific manner, and further investigated the biological function of Kdm2a and the compensatory effects of Kdm2b. Our study will advance our understanding of underlying mechanisms in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xiangyue Huang
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Yanjin Zhu
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Zhuo Hai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xixi Fei
- Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Qinhui Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China
| | - Xiaojian Zhang
- Center for Assisted Reproduction, Sichuan Academy of Medical Science, Sichuan Provincial People's Hospital, Chengdu, 610072, PR China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China; Key Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
13
|
Mukherjee AG, Gopalakrishnan AV. Unlocking the mystery associated with infertility and prostate cancer: an update. Med Oncol 2023; 40:160. [PMID: 37099242 DOI: 10.1007/s12032-023-02028-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Male-specific reproductive disorders and cancers have increased intensely in recent years, making them a significant public health problem. Prostate cancer (PC) is the most often diagnosed cancer in men and is one of the leading causes of cancer-related mortality. Both genetic and epigenetic modifications contribute to the development and progression of PC, even though the exact underlying processes causing this disease have yet to be identified. Male infertility is also a complex and poorly understood phenomenon believed to afflict a significant portion of the male population. Chromosomal abnormalities, compromised DNA repair systems, and Y chromosome alterations are just a few of the proposed explanations. It is becoming widely accepted that infertility shares a link with PC. Much of the link between infertility and PC is probably attributable to common genetic defects. This article provides an overview of PC and spermatogenic abnormalities. This study also investigates the link between male infertility and PC and uncovers the underlying reasons, risk factors, and biological mechanisms contributing to this association.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
14
|
Kaltsas A, Moustakli E, Zikopoulos A, Georgiou I, Dimitriadis F, Symeonidis EN, Markou E, Michaelidis TM, Tien DMB, Giannakis I, Ioannidou EM, Papatsoris A, Tsounapi P, Takenaka A, Sofikitis N, Zachariou A. Impact of Advanced Paternal Age on Fertility and Risks of Genetic Disorders in Offspring. Genes (Basel) 2023; 14:486. [PMID: 36833413 PMCID: PMC9957550 DOI: 10.3390/genes14020486] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The average age of fathers at first pregnancy has risen significantly over the last decade owing to various variables, including a longer life expectancy, more access to contraception, later marriage, and other factors. As has been proven in several studies, women over 35 years of age have an increased risk of infertility, pregnancy problems, spontaneous abortion, congenital malformations, and postnatal issues. There are varying opinions on whether a father's age affects the quality of his sperm or his ability to father a child. First, there is no single accepted definition of old age in a father. Second, much research has reported contradictory findings in the literature, particularly concerning the most frequently examined criteria. Increasing evidence suggests that the father's age contributes to his offspring's higher vulnerability to inheritable diseases. Our comprehensive literature evaluation shows a direct correlation between paternal age and decreased sperm quality and testicular function. Genetic abnormalities, such as DNA mutations and chromosomal aneuploidies, and epigenetic modifications, such as the silencing of essential genes, have all been linked to the father's advancing years. Paternal age has been shown to affect reproductive and fertility outcomes, such as the success rate of in vitro fertilisation (IVF), intracytoplasmic sperm injection (ICSI), and premature birth rate. Several diseases, including autism, schizophrenia, bipolar disorders, and paediatric leukaemia, have been linked to the father's advanced years. Therefore, informing infertile couples of the alarming correlations between older fathers and a rise in their offspring's diseases is crucial, so that they can be effectively guided through their reproductive years.
Collapse
Affiliation(s)
- Aris Kaltsas
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelos N. Symeonidis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Markou
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Theologos M. Michaelidis
- Department of Biological Applications and Technologies, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45500 Ioannina, Greece
| | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho chi Minh City 70000, Vietnam
| | - Ioannis Giannakis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Athanasios Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian Univesity of Athens, 15126 Athens, Greece
| | - Panagiota Tsounapi
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Atsushi Takenaka
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
15
|
Zhong D, Zhang L, Huang K, Chen M, Chen Y, Liu Q, Shi D, Li H. circRNA-miRNA-mRNA network analysis to explore the pathogenesis of abnormal spermatogenesis due to aberrant m6A methylation. Cell Tissue Res 2023; 392:605-620. [PMID: 36656346 DOI: 10.1007/s00441-022-03725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/10/2022] [Indexed: 01/20/2023]
Abstract
Many studies have shown that circRNAs and miRNAs play important roles in many different life processes. However, the function of circRNAs in spermatogenesis remains unknown. Here, we aimed to explore the mechanisms whereby circRNA-miRNAs-mRNAs regulate abnormal m6A methylation in GC-1spg spermatogonia. We first reduced m6A methylation in GC-1spg whole cells after knocking down the m6A methyltransferase enzyme, METTL3. Then, we performed circRNA- and miRNA-seq on GC-1spg cells with low m6A methylation and identified 48 and 50 differentially expressed circRNAs and miRNAs, respectively. We also predicted the targets of the differentially expressed miRNAs by using Miranda software and further constructed the differentially expressed circRNA-differentially expressed miRNA-mRNA ceRNA network. GO analysis was performed on the differentially expressed circRNAs and miRNA-targeted mRNAs, and an interaction network between the proteins of interest was constructed using Cytoscape. The final GO analysis showed that the target mRNAs were involved in sperm formation. Therefore, a PPI network was subsequently constructed and 2 hub genes (H2afx and Dnmt3a) were identified. In this study, we constructed a ceRNA network and explored the regulatory roles of circRNAs and miRNAs in the pathogenesis of abnormal spermatogenesis caused by low levels of methylated m6A. Also, we identified two pivotal genes that may be key factors in infertility caused by abnormal m6A methylation. This may provide some ideas for the treatment of infertility resulting from abnormal spermatogenesis.
Collapse
Affiliation(s)
- Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China. .,Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
16
|
Abd-Alameer M, Rajabibazl M, Esmaeilizadeh Z, Fazeli Z. SAG-dihydrochloride enhanced the expression of germ cell markers in the human bone marrow- mesenchymal stem cells (BM-MSCs) through the activation of GLI-independent hedgehog signaling pathway. Gene X 2023; 849:146902. [DOI: 10.1016/j.gene.2022.146902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
|
17
|
Yahaya TO, Bashar DM, Oladele EO, Umar J, Anyebe D, Izuafa A. Epigenetics in the etiology and management of infertility. World J Med Genet 2022; 10:7-21. [DOI: 10.5496/wjmg.v10.i2.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/28/2022] [Accepted: 10/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic disruptions have been implicated in some cases of infertility and can serve as therapeutic targets. However, the involvement of epigenetics in infertility has not received adequate attention.
AIM This study aimed to determine the epigenetic basis of infertility in order to enhance public knowledge.
METHODS Relevant articles on the subject were collected from PubMed, RCA, Google Scholar, SpringerLink, and Scopus. The articles were pooled together and duplicates were removed using Endnote software.
RESULTS Available information shows that epigenetic mechanisms, mainly DNA methylation, histone modification, and microRNA interference are necessary for normal gametogenesis and embryogenesis. As a result, epigenetic disruptions in genes that control gametogenesis and embryogenesis, such as DDX3X, ADH4, AZF, PLAG1, D1RAS3, CYGB, MEST, JMJD1A, KCNQ1, IGF2, H19, and MTHFR may result in infertility. Aberrant DNA methylation during genomic imprinting and parental epigenetic mark erasures, in particular, may affect the DNA epigenomes of sperm and oocytes, resulting in reproductive abnormalities. Histone epigenetic dysregulation during oocyte development and histone-protamine replacement in the sperm may also cause reproductive abnormalities. Furthermore, overexpression or repression of certain microRNAs embedded in the ovary, testis, embryo, as well as granulosa cells and oocytes may impair reproduction. Male infertility is characterized by spermatogenesis failure, which includes oligozoospermia, asthenozoospermia, and teratozoospermia, while female infertility is characterized by polycystic ovary syndrome. Some epigenetic modifications can be reversed by deactivating the regulatory enzymes, implying that epigenetic reprogramming could help treat infertility in some cases. For some disorders, epigenetic drugs are available, but none have been formulated for infertility.
CONCLUSION Some cases of infertility have an epigenetic etiology and can be treated by reversing the same epigenetic mechanism that caused it. As a result, medical practitioners are urged to come up with epigenetic treatments for infertility that have an epigenetic cause.
Collapse
Affiliation(s)
| | - Danlami M Bashar
- Department of Microbiology, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Esther O Oladele
- Biology Unit, Distance Learning Institute, University of Lagos, Lagos State 23401, Nigeria
| | - Ja'afar Umar
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Daniel Anyebe
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| | - Abdulrazaq Izuafa
- Department of Biological Sciences, Federal University Birnin Kebbi, Kebbi State 23401, Nigeria
| |
Collapse
|
18
|
Raad MV, Fesahat F, Talebi AR, Hosseini-Sharifabad M, Horoki AZ, Afsari M, Sarcheshmeh AA. Altered methyltransferase gene expression, mitochondrial copy number and 4977-bp common deletion in subfertile men with variable sperm parameters. Andrologia 2022; 54:e14531. [PMID: 35841193 DOI: 10.1111/and.14531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022] Open
Abstract
Semen parameters have been found to predict reproductive success poorly and are the most prevalent diagnostic tool for male infertility. There are few conflicting reports regarding the correlation of DNMT genes expression, mitochondrial DNA copy number (mtDNAcn) and deletion (mtDNAdel) with different sperm parameters. To investigate DNMT mRNA level, mtDNAcn and deletion in infertile men, with different sperm parameters, compared with fertile men, semen samples from 30 men with unknown male infertility and normal sperm parameters (experimental group I), 30 infertile patients with at least two abnormal sperm parameters (experimental group II) and 30 fertile normozoospermic men (control group) were collected. After semen analysis, total RNA and DNA were extracted. The isolated DNA was used for assessing the respective mtDNAcn and the presence of common 4977 bp deletion in mtDNA by applying real-time quantitative PCR and multiplex PCR, respectively. Synthesized cDNA from total RNAs was used to quantify DNMT1, DNMT3A and DNMT3B transcripts in study groups by using real-time quantitative reverse-transcription PCR. Significantly higher proportions of mtDNAcn were found in experimental group II. DNMT1 was significantly downregulated in both experimental groups and 4977 bp deletion was not detected. Progressive motility and normal morphology were significantly and negatively correlated with mtDNAcn. A significant positive correlation was detected between sperm parameters and DNMT1 mRNA levels. In conclusion, infertile men with different sperm parameter qualities showed elevated mtDNA content. Abnormal sperm parameters associated with DNMT1 gene expression indicate the possibility of changes in some epigenetic aspects of spermatogenesis in subfertile men with different sperm parameters.
Collapse
Affiliation(s)
- Minoo Vahedi Raad
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Reza Talebi
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Zare Horoki
- Department of Urology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maliheh Afsari
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
19
|
Fine A, Dayan N, Djerboua M, Pudwell J, Fell DB, Vigod SN, Ray JG, Velez MP. Attention-deficit hyperactivity disorder in children born to mothers with infertility: a population-based cohort study. Hum Reprod 2022; 37:2126-2134. [PMID: 35670758 PMCID: PMC9433852 DOI: 10.1093/humrep/deac129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
STUDY QUESTION Is the risk of attention-deficit hyperactivity disorder (ADHD) increased in children born to mothers with infertility, or after receipt of fertility treatment, compared to mothers with unassisted conception? SUMMARY ANSWER Infertility itself may be associated with ADHD in the offspring, which is not amplified by the use of fertility treatment. WHAT IS KNOWN ALREADY Infertility, and use of fertility treatment, is common. The long-term neurodevelopmental outcome of a child born to a mother with infertility, including the risk of ADHD, remains unclear. STUDY DESIGN, SIZE, DURATION This population-based cohort study comprised all singleton and multiple hospital births in Ontario, Canada, 2006–2014. Outcomes were assessed up to June 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS Linked administrative datasets were used to capture all hospital births in Ontario, maternal health and pregnancy measures, fertility treatment and child outcomes. Included were all children born at ≥24 weeks gestation between 2006 and 2014, and who were alive at age 4 years. The main exposure was mode of conception, namely (i) unassisted conception (reference group), (ii) infertility without fertility treatment (history of an infertility consultation with a physician within 2 years prior to conception but no fertility treatment), (iii) ovulation induction (OI) or intrauterine insemination (IUI) and (iv) IVF or intracytoplasmic sperm injection (ICSI). The main outcome was a diagnosis of ADHD after age 4 years and assessed up to June 2020. Hazard ratios (HRs) were adjusted for maternal age, income quintile, rurality, immigration status, smoking, obesity, parity, any drug or alcohol use, maternal history of mental illness including ADHD, pre-pregnancy diabetes mellitus or chronic hypertension and infant sex. In addition, we performed pre-planned stratified analyses by mode of delivery (vaginal or caesarean delivery), infant sex, multiplicity (singleton or multiple), timing of birth (term or preterm <37 weeks) and neonatal adverse morbidity (absent or present). MAIN RESULTS AND THE ROLE OF CHANCE The study included 925 488 children born to 663 144 mothers, of whom 805 748 (87%) were from an unassisted conception, 94 206 (10.2%) followed infertility but no fertility treatment, 11 777 (1.3%) followed OI/IUI and 13 757 (1.5%) followed IVF/ICSI. Starting at age 4 years, children were followed for a median (interquartile range) of 6 (4–8) years. ADHD occurred among 7.0% of offspring in the unassisted conception group, 7.5% in the infertility without fertility treatment group, 6.8% in the OI/IUI group and 6.3% in the IVF/ICSI group. The incidence rate (per 1000 person-years) of ADHD was 12.0 among children in the unassisted conception group, 12.8 in the infertility without fertility treatment group, 12.9 in the OI/IUI group and 12.2 in the IVF/ICSI group. Relative to the unassisted conception group, the adjusted HR for ADHD was 1.19 (95% CI 1.16–1.22) in the infertility without fertility treatment group, 1.09 (95% CI 1.01–1.17) in the OI/IUI group and 1.12 (95% CI 1.04–1.20) in the IVF/ICSI group. In the stratified analyses, these patterns of risk for ADHD were largely preserved. An exception was seen in the sex-stratified analyses, wherein females had lower absolute rates of ADHD but relatively higher HRs compared with that seen among males. LIMITATIONS, REASONS FOR CAUTION Some mothers in the isolated infertility group may have received undocumented OI oral therapy, thereby leading to possible misclassification of their exposure status. Parenting behaviour, schooling and paternal mental health measures were not known, leading to potential residual confounding. WIDER IMPLICATIONS OF THE FINDINGS Infertility, even without treatment, is a modest risk factor for the development of ADHD in childhood. The reason underlying this finding warrants further study. STUDY FUNDING/COMPETING INTEREST(s) This study was made possible with funding from the Canadian Institutes of Health Research, Grant number PJT 165840. The authors report no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Alexa Fine
- Department of Obstetrics and Gynaecology, Queen’s University, Kingston Health Sciences Centre , Kingston, ON, Canada
| | - Natalie Dayan
- Department of Medicine, Obstetrics and Gynaecology and Research Institute, McGill University Health Centre , Montreal, QC, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University , Montreal, QC, Canada
| | | | - Jessica Pudwell
- Department of Obstetrics and Gynaecology, Queen’s University, Kingston Health Sciences Centre , Kingston, ON, Canada
| | - Deshayne B Fell
- ICES , Toronto, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute , Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa , Ottawa, ON, Canada
| | - Simone N Vigod
- ICES , Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto , Toronto, ON, Canada
- Women’s College Hospital and Women’s College Research Institute , Toronto, ON, Canada
| | - Joel G Ray
- ICES , Toronto, ON, Canada
- Department of Medicine and Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, St Michael’s Hospital , Toronto, ON, Canada
| | - Maria P Velez
- Department of Obstetrics and Gynaecology, Queen’s University, Kingston Health Sciences Centre , Kingston, ON, Canada
- ICES , Toronto, ON, Canada
- Department of Public Health Sciences, Queen’s University , Kingston, ON, Canada
| |
Collapse
|
20
|
Tahmasbpour Marzouni E, Ilkhani H, Beigi Harchegani A, Shafaghatian H, Layali I, Shahriary A. Epigenetic Modifications, A New Approach to Male Infertility Etiology: A Review. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2022; 16:1-9. [PMID: 35103425 PMCID: PMC8808252 DOI: 10.22074/ijfs.2021.138499.1032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
Recent studies have indicated that epigenetic alterations are critical for normal function and development of spermatozoa during the fertilization process. This review will focus on the latest advances in epigenome profiling of the chromatin modifications during sperm development, as well as the potential roles of epigenetic mechanisms in the context of male infertility. In this review, all data were collected from published studies that considered the effect of epigenetic abnormalities on human spermatogenesis, sperm parameters quality, fertilization process, embryo development and live births. The database PubMed was searched for all experimental and clinical studies using the Keywords "epigenetic modifications", "male infertility", "spermatogenesis", "embryo development" and "reproductive function". Post-translational modifications of histone, DNA methylations and chromatin remodeling are among the most common forms of epigenetic modifications that regulate all stages of spermatogenesis and fertilization process. Incorrect epigenetic modifications of certain genes involved in the spermatogenesis and sperm maturation may be a main reason of male reproductive disorder and infertility. Most importantly, abnormal patterns of epigenetic modifications or transgenerational phenotypes and miRNAs expression may be transmitted from one generation to the next through assisted reproductive techniques (ART) and cause an increased risk of birth defects, infertility and congenital anomalies in children. Epigenetic modifications must be considered as a one of the main factors of unexplained male infertility etiology. Due to high risk of transmitting incorrect primary imprints to offspring, there is a need for more research into epigenetic alterations in couples who benefit of ART support.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Hanieh Ilkhani
- Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Asghar Beigi Harchegani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Shafaghatian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Issa Layali
- Department of Biochemistry, Islamic Azad University, Sari Branch, Sari, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,P.O.Box: 19945-581Chemical Injuries Research CenterSystems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
21
|
Pool KR, Chazal F, Smith JT, Blache D. Estrogenic Pastures: A Source of Endocrine Disruption in Sheep Reproduction. Front Endocrinol (Lausanne) 2022; 13:880861. [PMID: 35574027 PMCID: PMC9097266 DOI: 10.3389/fendo.2022.880861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Phytoestrogens can impact on reproductive health due to their structural similarity to estradiol. Initially identified in sheep consuming estrogenic pasture, phytoestrogens are known to influence reproductive capacity in numerous species. Estrogenic pastures continue to persist in sheep production systems, yet there has been little headway in our understanding of the underlying mechanisms that link phytoestrogens with compromised reproduction in sheep. Here we review the known and postulated actions of phytoestrogens on reproduction, with particular focus on competitive binding with nuclear and non-nuclear estrogen receptors, modifications to the epigenome, and the downstream impacts on normal physiological function. The review examines the evidence that phytoestrogens cause reproductive dysfunction in both the sexes, and that outcomes depend on the developmental period when an individual is exposed to phytoestrogen.
Collapse
|
22
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K. Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
23
|
Pachetti M, D’Amico F, Zupin L, Luppi S, Martinelli M, Crovella S, Ricci G, Pascolo L. Strategies and Perspectives for UV Resonance Raman Applicability in Clinical Analyses of Human Sperm RNA. Int J Mol Sci 2021; 22:ijms222313134. [PMID: 34884939 PMCID: PMC8658360 DOI: 10.3390/ijms222313134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Developing a deeper knowledge about the impact of DNA and RNA epigenetic mutations on sperm production and fertilization performance is essential for selecting best quality samples in Assisted Reproductive Technologies (ART). Indeed, sperm RNAs adenine and guanine are likely to be methylated in low quality RNA sperm samples and their study requires the employment of techniques able to isolate high quality nucleic acids. UV resonance Raman spectroscopy represents a valuable tool that is able to monitor peculiar molecular modifications occurring predominantly in nucleic acids, being less sensitive to the presence of other biological compounds. In this work, we used an UV Resonance Raman (UVRR) setup coupled to a synchrotron radiation source tuned at 250 nm, in order to enhance sperm RNAs adenine and guanine vibrational signals, reducing also the impact of a fluorescence background typically occurring at lower energies. Despite that our protocol should be further optimized and further analyses are requested, our results support the concept that UVRR can be applied for setting inexpensive tools to be employed for semen quality assessment in ART.
Collapse
Affiliation(s)
- Maria Pachetti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (S.L.); (M.M.); (G.R.); (L.P.)
- Correspondence: (M.P.); (F.D.)
| | - Francesco D’Amico
- Elettra—Sincrotrone Trieste S.C.p.A., SS14—km 163.5, 34149 Trieste, Italy
- Correspondence: (M.P.); (F.D.)
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (S.L.); (M.M.); (G.R.); (L.P.)
| | - Stefania Luppi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (S.L.); (M.M.); (G.R.); (L.P.)
| | - Monica Martinelli
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (S.L.); (M.M.); (G.R.); (L.P.)
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, P.O. Box 2713, Doha 122104, Qatar;
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (S.L.); (M.M.); (G.R.); (L.P.)
- Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy; (L.Z.); (S.L.); (M.M.); (G.R.); (L.P.)
| |
Collapse
|
24
|
Mortimer R, James K, Bormann CL, Harris AL, Yeh J, Toth TL, Souter I, Roberts DJ, Sacha CR. Male factor infertility and placental pathology in singleton live births conceived with in vitro fertilization. J Assist Reprod Genet 2021; 38:3223-3232. [PMID: 34704166 PMCID: PMC8666390 DOI: 10.1007/s10815-021-02344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE We sought to determine whether pregnancies conceived in those with male factor infertility have unique placental pathology profiles compared to those undergoing infertility treatments for other indications. METHODS This was a retrospective cohort study of placental pathology from 464 live births conceived from autologous fresh IVF cycles at an academic fertility center from 2004 to 2017. Placental pathology was compared between live births arising from patients with male factor infertility alone and those with another infertility diagnosis. Placental outcomes were compared with parametric or non-parametric tests; logistic regression was performed to account for potential confounders. RESULTS Compared to cycles performed for a non-male factor diagnosis, male factor infertility cycles had a higher mean paternal age (38.2 years vs. 36.5 years, p < 0.001), a higher female mean BMI (24.3 vs. 23.3 kg/m2, p = 0.01), and a lower day 3 follicle stimulating hormone (FSH) level (6.8 vs. 7.3 IU/mL, p = 0.02). The mean numbers of embryos transferred, and day of transfer were similar between groups, and more cycles used ICSI in the male factor infertility group (90.6% vs. 22.5%, p < 0.001). Placental pathology in our adjusted model was similar between the male factor and non-male factor groups. In our unadjusted subgroup analysis, cycles for male factor using ICSI appeared to lead to more small placentas by weight compared to cycles performed with conventional insemination (45.8% < 10th percentile vs. 18.8%, p = 0.04). CONCLUSION Male factor infertility is not associated with significantly different placental pathology compared to other infertility diagnoses.
Collapse
Affiliation(s)
- Roisin Mortimer
- Department of OB/GYN, Massachusetts General Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - K James
- Center for Outcomes Research, Department of OB/GYN, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C L Bormann
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| | - A L Harris
- Department of Women's Health, Wright Patterson Air Force Base, Wright Patterson AFB, Dayton, OH, USA
- Department of OB/GYN, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - J Yeh
- Division of Reprod Endo & Infertil, UMass Medical, Worcester, MA, USA
| | - T L Toth
- Boston IVF, Department of OB/GYN, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - I Souter
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| | - D J Roberts
- Department of Pathology, Harvard Medical School and Massachusetts General, Boston Hospital, Boston, MA, USA
| | - C R Sacha
- Massachusetts General Hospital Fertility Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Zambrano E, Nathanielsz PW, Rodríguez-González GL. Developmental programming and ageing of male reproductive function. Eur J Clin Invest 2021; 51:e13637. [PMID: 34107063 DOI: 10.1111/eci.13637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Developmental programming predisposes offspring to metabolic, behavioural and reproductive dysfunction in adult life. Evidence is accumulating that ageing phenotype and longevity are in part developmentally programmed in each individual. Unfortunately, there are few studies addressing the effects of developmental programming by maternal nutrition on the rate of ageing of the male reproductive system. This review will discuss effects of foetal exposure to maternal environmental challenges on male offspring fertility and normal ageing of the male reproductive system. We focus on several key factors involved in reproductive ageing such as decreased hormone production, DNA fragmentation, oxidative stress, telomere shortening, epigenetics, maternal lifestyle and nutrition. There is compelling evidence that ageing of the male reproductive system is developmentally programmed. Both maternal over- or undernutrition accelerate ageing of male offspring reproductive function through similar mechanisms such as decreased serum testosterone levels, increase in oxidative stress biomarkers in both the testes and sperm and changes in sperm quality. Importantly, even in adult life, exercise in male offspring of obese mothers improves adverse effects of programming on reproductive function. Maternal consumption of a low-protein diet causes transgenerational effects in progeny via the paternal line. The seminal fluid has effects on the intrauterine environment. Programming by male factors may involve more than just the sperm. Improving knowledge on developmental programming ageing interactions will improve not only male health and life span but also the health of future generations by reducing programming via the paternal line.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | | | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| |
Collapse
|
26
|
Eshghifar N, Dehghan BK, Do AA, Koukhaloo SZ, Habibi M, Pouresmaeili F. Infertility cell therapy and epigenetic insights. Hum Antibodies 2021; 29:17-26. [PMID: 33554898 DOI: 10.3233/hab-200438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in assisted reproductive technology (ART) have allowed couples with severe infertility to conceive, but the methods are not effective for all cases. Stem cells as undifferentiated cells which are found in different stages of embryonic, fetal and adult life are known to be capable of forming different cell types, tissues, and organs. Due to their unlimited resources and the incredible power of differentiation are considered as potential new therapeutic biological tools for treatment of infertility. For reproductive medicine, stem cells are stimulated in vitro to develop various specialized functional cells including male and female gametes. The epigenetic patterns can be modified in the genome under certain drugs exposure or lifestyle alterations. Therefore, epigenetics-related disorders may be treated if the nature of the modifications is completely admissible. It is proved that our understanding of epigenetic processes and its association with infertility would help us not only to understand the etiological factors but also to treat some type of male infertilities. Exploration of both genetic and epigenetic variations in the disease development could help in the identification of the interaction patterns between these two phenomena and possible improvement of therapeutic methods.
Collapse
Affiliation(s)
- Nahal Eshghifar
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnam Kamali Dehghan
- Department of Medical Genetics, National Institute of Medical Engineering and Biotechnology (NIGEB), Tehran, Iran.,Medical Genetics, Jiroft University of Medical Sciences and Health Services, Jiroft, Kerman, Iran.,Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atieh Abedin Do
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec, Canada
| | | | - Mohsen Habibi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Turner KJ, Watson EM, Skinner BM, Griffin DK. Telomere Distribution in Human Sperm Heads and Its Relation to Sperm Nuclear Morphology: A New Marker for Male Factor Infertility? Int J Mol Sci 2021; 22:ijms22147599. [PMID: 34299219 PMCID: PMC8306796 DOI: 10.3390/ijms22147599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility is a problem affecting an increasing number of couples worldwide. Currently, marker tests for male factor infertility are complex, highly technical and relatively subjective. Up to 40% of cases of male factor infertility are currently diagnosed as idiopathic therefore, there is a clear need for further research into better ways of diagnosing it. Changes in sperm telomere length have been associated with infertility and closely linked to DNA damage and fragmentation, which are also known to be related to infertility. However, telomere distribution is a parameter thus far underexplored as an infertility marker. Here, we assessed morphological parameters of sperm nuclei in fertile control and male factor infertile cohorts. In addition, we used 2D and 3D fluorescence in situ hybridization (FISH) to compare telomere distribution between these two groups. Our findings indicate that the infertile cohort sperm nuclei were, on average, 2.9% larger in area and showed subtle differences in sperm head height and width. Telomeres were mainly distributed towards the periphery of the nuclei in the control cohort, with diminishing telomere signals towards the center of the nuclei. Sperm nuclei of infertile males, however, had more telomere signals towards the center of the nuclei, a finding supported by 3D imaging. We conclude that, with further development, both morphology and telomere distribution may prove useful investigative tools in the fertility clinic.
Collapse
Affiliation(s)
- Kara J. Turner
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
| | - Eleanor M. Watson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Benjamin M. Skinner
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (E.M.W.); (B.M.S.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Giles Lane, Canterbury CT2 7NH, UK;
- Correspondence:
| |
Collapse
|
28
|
Tekayev M, Vuruskan AK. Clinical values and advances in round spermatid injection (ROSI). Reprod Biol 2021; 21:100530. [PMID: 34171715 DOI: 10.1016/j.repbio.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Azoospermia is defined as the complete absence of sperm cells in the ejaculate. Approximately 10-15 % of infertile men display azoospermia. Azoospermia can be subdivided into two types, obstructive azoospermia (OA) and non-obstructive azoospermia (NOA). NOA azoospermia might be the result due to primary testicular damage, secondary testicular damage, or incomplete testicular development. NOA azoospermia accounts for a considerable proportion of male infertility. A significant percentage of men with NOA azoospermia have foci of active spermatogenesis up to the stage of round spermatid. Round spermatid injection (ROSI) is a technique of assisted in-vitro fertilization (IVF) in assisted reproductive technology (ART). ROSI technique involves the injection of haploid germ cells derived from testicular biopsies into the recipient oocytes. The present study demonstrates that more participants and long-term follow-up studies are required to assess the reliability of the ROSI technique. In order to increase the success rate of the ROSI technique, round spermatids should be correctly evaluated and selected. Our study refers to the clinical values, challenges, and innovations in round spermatid injection (ROSI).
Collapse
Affiliation(s)
- Muhammetnur Tekayev
- Department of Histology and Embryology, Faculty of Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey
| | - Ayse Kose Vuruskan
- Department of Histology and Embryology, Faculty of Medicine, Institute of Health Sciences, University of Health Sciences, Istanbul 34668, Turkey; IVF Unit, Additional Service Building of Suleymaniye Obstetrics and Pediatrics Hospital, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul 34116, Turkey.
| |
Collapse
|
29
|
Zhang JM, Wang QY, Han XY, He QL, Liu L, Zhang YT, Meng XQ, Cheng D, Zhang TL, Liu SZ. Effects of 2,3',4,4',5-pentachlorobiphenyl exposure during pregnancy on DNA methylation in the testis of offspring in the mouse. Reprod Fertil Dev 2021; 32:1048-1059. [PMID: 32758352 DOI: 10.1071/rd19412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants, and the widespread use of PCBs has had adverse effects on human and animal health. This study experiment explored the effects of 2,3',4,4',5-pentachlorobiphenyl (PCB118) on the mammalian reproductive system. PCB118 was administered to pregnant mice from 7.5 to 12.5 days of gestation; F1 mice were obtained and the reproductive system of F1 male mice was examined. PCB118 damaged the reproductive system in male F1 mice, as evidenced by negative effects on the testicular organ coefficient (testes weight/bodyweight), a decrease in the diameter of seminiferous tubules and a significant reduction in the anogenital distance in 35-day-old F1 mice. In addition, methylation levels of genomic DNA were reduced, with reductions in the expression of the DNA methyltransferases DNMT1, DNMT3A and DNMT3B, as well as that of the epigenetic regulatory factor ubiquitin like with PHD and ring finger domains 1 (Uhrf1). Together, the results of this study provide compelling evidence that exposure of pregnant mice to PCB118 during primordial germ cell migration in the fetus affects the reproductive system of the offspring and decreases global methylation levels in the testis.
Collapse
Affiliation(s)
- Jian-Mei Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qiu-Yue Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiao-Ying Han
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Li Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yong-Tao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiao-Qian Meng
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Dong Cheng
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Tian-Liang Zhang
- Department of Toxicology, Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China; and Corresponding author.
| |
Collapse
|
30
|
Hung JH, Cheng HY, Tsai YC, Pan HA, Omar HA, Chiu CC, Su YM, Lin YM, Teng YN. LRWD1 expression is regulated through DNA methylation in human testicular embryonal carcinoma cells. Basic Clin Androl 2021; 31:12. [PMID: 34011267 PMCID: PMC8136200 DOI: 10.1186/s12610-021-00130-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sperm growth and maturation are correlated with the expression levels of Leucine-rich repeat and WD repeat-containing protein 1 (LRWD1), a widely expressed protein in the human testicles. The decrease in LRWD1 cellular level was linked to the reduction in cell growth and mitosis and the rise in cell microtubule atrophy rates. Since DNA methylation has a major regulatory role in gene expression, this study aimed at exploring the effect of the modulation of DNA methylation on LRWD1 expression levels. RESULTS The results revealed the presence of a CpG island up of 298 bps (- 253 ~ + 45) upon LRWD1 promoter in NT2/D1 cells. The hypermethylation of the LRWD1 promoter was linked to a reduction in the transcription activity in NT2/D1 cells, as indicated by luciferase reporter assay. The methylation activator, floxuridine, confirmed the decrease in the LRWD1 promoter transcriptional activity. On the other hand, 5-Aza-2'-deoxycytidine (5-Aza-dc, methylation inhibitor), significantly augmented LRWD1 promoter activity and the expression levels of mRNA and proteins. Furthermore, DNA methylation status of LRWD1 promoter in human sperm genomic DNA samples was analyzed. The results indicated that methylation of LRWD1 promoter was correlated to sperm activity. CONCLUSIONS Thus, the regulation of LRWD1 expression is correlated with the methylation status of LRWD1 promoter, which played a significant role in the modulation of spermatogenesis, sperm motility, and vitality. Based on these results, the methylation status of LRWD1 promoter may serve as a novel molecular diagnostic marker or a therapeutic target in males' infertility.
Collapse
Affiliation(s)
- Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Han-Yi Cheng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Chi-Mei Medical Center; Department of Sport Management, and Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Mei Su
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan
| | - Yung-Ming Lin
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yen-Ni Teng
- Department of Biological Sciences and Technology, National University of Tainan, No.33, Sec. 2, Shulin St., West Central District, Tainan City, 700, Taiwan.
| |
Collapse
|
31
|
Tallon E, O'Donovan L, Delanty N. Reversible male infertility with valproate use: A review of the literature. Epilepsy Behav Rep 2021; 16:100446. [PMID: 34027381 PMCID: PMC8127004 DOI: 10.1016/j.ebr.2021.100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/29/2022] Open
Abstract
Sodium valproate is a broad spectrum anti-seizure medication useful in the treatment of both generalized and focal epilepsies. The association between valproate and female reproductive disorders is well understood and delineated. Male infertility however is an under-recognised adverse effect of Valproate therapy. Previous case reports have detailed reversible male infertility secondary to valproate. One report demonstrated a relationship between valproate dose and abnormal sperm parameters. We submit a case report suggesting a dose dependent effect of valproate on sperm parameters and a possible relationship between the duration of valproate therapy and its deleterious effect on male fertility. Men on valproate should be counselled about the possibility of progressive but reversible infertility. Valproate should be stopped and replaced by an alternative agent in those men who are infertile and where the couple are trying to conceive, particularly if there are associated abnormal sperm parameters while on the drug.
Collapse
Affiliation(s)
- Eva Tallon
- Neurology Department, Beaumont Hospital Dublin, Co. Dublin D09A0EA, Ireland
| | - Louise O'Donovan
- Clinical Pharmacist, Neurology Department, Beaumont Hospital Dublin, Co. Dublin D09A0EA, Ireland
| | - Norman Delanty
- Consultant Neurologist, Beaumont Hospital, and Honorary Clinical Professor, School of Pharmacy and Biomolecular Sciences, FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Co. Dublin D09A0EA, Ireland
| |
Collapse
|
32
|
Loganathan C, Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Kumar SA, Anbarasu K, Prahalathan C. The possible role of sirtuins in male reproduction. Mol Cell Biochem 2021; 476:2857-2867. [PMID: 33738675 DOI: 10.1007/s11010-021-04116-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Global influence of male infertility is increasing in recent decades. Proper understanding of genetics, anatomy, physiology and the intricate interrelation of male reproductive system are much needed for explaining the etiology of male infertility; and a detailed study on the epigenetics, indeed, will reveal the molecular mechanism behind its etiology. Sirtuins, the molecular sensors, are NAD+ dependent histone deacetylases and ADP- ribosyl transferases, participate in the chief events of epigenetics. In mammals, sirtuin family comprises seven members (SIRT1-SIRT7), and they all possess a conserved NAD+ binding catalytic domain, termed the sirtuin core domain which is imperative for their activity. Sirtuins exert a pivotal role in cellular homeostasis, energy metabolism, apoptosis, age-related disorders and male reproductive system. However, their exact role in male reproduction is still obscure. This article specifically reviews the role of mammalian sirtuins in male reproductive function, thereby, prompting further research to discover the restorative methods and its implementation in reproductive medicine.
Collapse
Affiliation(s)
- Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India
| | | | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India. .,Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, India.
| |
Collapse
|
33
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
34
|
Cao M, Shao X, Chan P, Cheung W, Kwan T, Pastinen T, Robaire B. High-resolution analyses of human sperm dynamic methylome reveal thousands of novel age-related epigenetic alterations. Clin Epigenetics 2020; 12:192. [PMID: 33317634 PMCID: PMC7735420 DOI: 10.1186/s13148-020-00988-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Background Children of aged fathers are at a higher risk of developing mental disorders. Alterations in sperm DNA methylation have been implicated as a potential cause. However, age-dependent modifications of the germ cells’ epigenome remain poorly understood. Our objective was to assess the DNA methylation profile of human spermatozoa during aging.
Results We used a high throughput, customized methylC-capture sequencing (MCC-seq) approach to characterize the dynamic DNA methylation in spermatozoa from 94 fertile and infertile men, who were categorized as young, 48 men between 18–38 years or old 46 men between 46–71 years. We identified more than 150,000 age-related CpG sites that are significantly differentially methylated among 2.65 million CpG sites covered. We conducted machine learning using our dataset to predict the methylation age of subjects; the age prediction accuracy based on our assay provided a more accurate prediction than that using the 450 K chip approach. In addition, we found that there are more hypermethylated (62%) than hypomethylated (38%) CpG sites in sperm of aged men, corresponding to 798 of total differential methylated regions (DMRs), of which 483 are hypermethylated regions (HyperDMR), and 315 hypomethylated regions (HypoDMR). Moreover, the distribution of age-related hyper- and hypomethylated CpGs in sperm is not random; the CpG sites that were hypermethylated with advanced age were frequently located in the distal region to genes, whereas hypomethylated sites were near to gene transcription start sites (TSS). We identified a high density of age-associated CpG changes in chromosomes 4 and 16, particularly HyperDMRs with localized clusters, the chr4 DMR cluster overlaps PGC1α locus, a protein involved in metabolic aging and the chr16 DMR cluster overlaps RBFOX1 locus, a gene implicated in neurodevelopmental disease. Gene ontology analysis revealed that the most affected genes by age were associated with development, neuron projection, differentiation and recognition, and behaviour, suggesting a potential link to the higher risk of neurodevelopmental disorders in children of aged fathers. Conclusion We identified thousands of age-related and sperm-specific epigenetic alterations. These findings provide novel insight in understanding human sperm DNA methylation dynamics during paternal aging, and the subsequently affected genes potentially related to diseases in offspring.
Collapse
Affiliation(s)
- Mingju Cao
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
| | - Xiaojian Shao
- Department of Human Genetics, McGill University, 740 Docteur-Penfield Avenue, Montreal, QC, H3A 0G1, Canada.,McGill University Genome Quebec Innovation Centre, 740 Docteur-Penfield Avenue, Montreal, QC, H3A 0G1, Canada.,Digital Technologies Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Peter Chan
- Department of Urology, McGill University Health Centre, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
| | - Warren Cheung
- Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, 2401 Gilham Road, Kansas City, MO, 64108, USA
| | - Tony Kwan
- Department of Human Genetics, McGill University, 740 Docteur-Penfield Avenue, Montreal, QC, H3A 0G1, Canada.,McGill University Genome Quebec Innovation Centre, 740 Docteur-Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, 740 Docteur-Penfield Avenue, Montreal, QC, H3A 0G1, Canada.,McGill University Genome Quebec Innovation Centre, 740 Docteur-Penfield Avenue, Montreal, QC, H3A 0G1, Canada.,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, 2401 Gilham Road, Kansas City, MO, 64108, USA
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada. .,Department of Obstetric and Gynecology, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
35
|
Global Methylation and Protamine Deficiency in Ram Spermatozoa Correlate with Sperm Production and Quality but Are Not Influenced by Melatonin or Season. Animals (Basel) 2020; 10:ani10122302. [PMID: 33291841 PMCID: PMC7762013 DOI: 10.3390/ani10122302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Though environmental factors can alter the epigenome of mammalian spermatozoa, it is currently unclear whether these epigenetic changes are linked to sperm production, quality and fertility. This study aimed to identify whether the hormone melatonin, responsible for upregulating ram reproductive function, is able to alter broad epigenetic markers in spermatozoa, namely sperm global methylation and protamine deficiency. It was also investigated whether these parameters corresponded to ram endocrinology, semen production and quality. Though no effects of season or melatonin were found, both sperm global methylation and protamine deficiency correlated with several semen production and quality parameters. These moderate associations with sperm production and quality support that sperm protamine deficiency and global methylation are broadly indicative of testicular function. Abstract This study assessed whether the seasonal effects of melatonin that upregulate ram reproductive function alter sperm global methylation or protamine deficiency and whether these parameters corresponded to ram endocrinology, semen production and quality. Ejaculates were assessed from rams that received melatonin implants (n = 9) or no implants (n = 9) during the non-breeding season. Ejaculates (n = 2/ram/week) were collected prior to implantation (week 0), 1, 6 and 12 weeks post implantation and during the following breeding season (week 30). Flow cytometry was used to assess the sperm global methylation and protamine deficiency in each ejaculate, which had known values for sperm concentration, motility, morphology, DNA fragmentation, seminal plasma levels of melatonin, anti-Mullerian hormone and inhibin A. Serum levels of testosterone and melatonin were also evaluated. Though there was no effect of melatonin or season, sperm protamine deficiency was negatively correlated with sperm production and seminal plasma levels of anti-Mullerian hormone and positively correlated with sperm DNA fragmentation and morphology. Global methylation of spermatozoa was positively correlated with sperm DNA fragmentation, morphology and serum testosterone and negatively correlated with sperm motility. These moderate associations with sperm production and quality suggest that sperm protamine deficiency and global methylation are indicative of ram testicular function.
Collapse
|
36
|
Markoula S, Siarava E, Kostoulas C, Zikopoulos A, Georgiou I. An open study of valproate in subfertile men with epilepsy. Acta Neurol Scand 2020; 142:317-322. [PMID: 33378111 DOI: 10.1111/ane.13311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES The aim of the study was to assess whether, male patients with epilepsy, switching from valproic acid (VPA) to levetiracetam (LEV) or lamotrigine (LMG) critically improves sperm counts and parameters, increasing chance of patients' female partners to spontaneously conceive. MATERIALS AND METHODS This is an observational prospective study recruiting all consecutive infertile male patients with epilepsy followed up at the outpatient Epilepsy Clinic of University Hospital of Ioannina, Northwest Greece. Infertile couples were referred to the Laboratory of Assisted Reproduction and Treatment of the University Hospital of Ioannina to conduct semen analysis. The first sample was collected while the patients were receiving VPA, and the second semen sample was collected after the patients were switched to LEV or LMG. RESULTS Seventeen infertile male patients were recruited in the study. Nine patients were switched to LEV, and eight patients were switched to LMG. The mean sperm count increased after VPA withdraw P = .06. Motility was improved with an increase of total motility and non-progressive motility (P = .02 and P = .03, accordingly), whether sperm defects were decreased, mainly head defects (P = .03). Differences between patients switched to LEV or LMG were minimal and showed no significant findings. Spontaneous pregnancies were reported in three of the patients' partners, without any other clinical intervention offered to the couple. CONCLUSION Switching from valproic acid to levetiracetam or lamotrigine improved sperm counts and other sperm parameters in subfertile male patients and increased the chance of spontaneously conceiving in subfertile couples.
Collapse
Affiliation(s)
- Sofia Markoula
- Department of Neurology University of Ioannina Ioannina Greece
- University Hospital of Ioannina Ioannina Greece
| | - Eleftheria Siarava
- Department of Neurology University of Ioannina Ioannina Greece
- University Hospital of Ioannina Ioannina Greece
| | | | | | - Ioannis Georgiou
- Laboratory of Assisted Reproduction University of Ioannina Ioannina Greece
| |
Collapse
|
37
|
Li L, Zhang L, Zhang Z, Keyhani NO, Xin Q, Miao Z, Zhu Z, Wang Z, Qiu J, Zheng N. Comparative transcriptome and histomorphology analysis of testis tissues from mulard and Pekin ducks. Arch Anim Breed 2020; 63:303-313. [PMID: 32964101 PMCID: PMC7500171 DOI: 10.5194/aab-63-303-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Testicular transcriptomes were analyzed to characterize the
differentially expressed genes between mulard and Pekin ducks, which will
help establish gene expression datasets to assist in further determination
of the mechanisms of genetic sterility in mulard ducks. Paraffin sections
were made to compare the developmental differences in testis tissue between
mulard and Pekin ducks. Comparative transcriptome sequencing of testis
tissues was performed, and the expression of candidate genes was verified by
quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In
mulard ducks, spermatogonia and spermatocytes were arranged in a disordered
manner, and no mature sperm were observed in the testis tissue. However,
different stages of development of sperm were observed in seminiferous
tubules in the testis tissue of Pekin ducks. A total of 43.84 Gb of clean
reads were assembled into 193 535 UniGenes. Of these, 2131 transcripts
exhibited differential expression (false discover rate <0.001 and
fold change ≥2), including 997 upregulated and 1134 downregulated
transcripts in mulard ducks as compared to those in Pekin duck testis
tissues. Several upregulated genes were related to reproductive functions,
including ryanodine receptor 2 (RYR2), calmodulin (CALM), argininosuccinate
synthase and delta-1-pyrroline-5-carboxylate synthetase ALDH18A1 (P5CS).
Downregulated transcripts included the testis-specific
serine/threonine-protein kinase 3, aquaporin-7 (AQP7) and glycerol kinase
GlpK (GK). The 10 related transcripts involved in the developmental biological
process were identified by GO (Gene Ontology) annotation. The KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways indicated that peroxisome
proliferator-activated receptors (PPARs) and calcium signaling pathways were
significantly (P<0.001) associated with normal testis physiology.
The differential expression of select genes implicated in reproductive
processes was verified by qRT-PCR, which was consistent with the expression
trend of transcriptome sequencing (RNA-seq). Differentially expressed candidate genes RYR2, CALM, P5CS,
AQP7 and GK were identified by transcriptional analysis in mulard and Pekin
duck testes. These were important for the normal development of the male
duck reproductive system. These data provide a framework for the further
exploration of the molecular and genetic mechanisms of sterility in mulard
ducks.
Highlights. The mulard duck is an intergeneric sterile hybrid
offspring resulting from mating between Muscovy and Pekin ducks. The
transcriptomes of testis tissue from mulard and Pekin ducks were
systematically characterized, and differentially expressed genes were screened, in
order to gain insights into potential gonad gene expression mechanisms
contributing to genetic sterility in mulard ducks.
Collapse
Affiliation(s)
- Li Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Linli Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhenghong Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Qingwu Xin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhongwei Miao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhiming Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Zhengchao Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Junzhi Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nenzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
38
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
39
|
Sai L, Jia Q, Zhang Y, Han R, Geng X, Yu G, Li S, Shao H, Zheng Y, Peng C. Genome-wide analysis of DNA methylation in testis of male rat exposed to chlorpyrifos. Toxicol Res (Camb) 2020; 9:509-518. [PMID: 32905263 PMCID: PMC7467273 DOI: 10.1093/toxres/tfaa050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 11/14/2022] Open
Abstract
In our previous study, we found that subchronic exposure of chlorpyrifos (CPF) can cause reproductive damage in male rats. However, the mechanisms underlying the reproductive effects of CPF are not well understood. DNA methylation is essential for epigenetic gene regulation in development and disease. Therefore, we aim to compare DNA methylation profiles between controls and CPF-treated rats in order to identify the epigenetic mechanism of male reproductive toxicity induced by CPF. Methylated DNA immunoprecipitation with high-throughput sequencing (MeDIP-seq) was used to investigate the genome-wide DNA methylation pattern in testes of control and CPF-treated rats for 90 days. We identified 27 019 differentially methylated regions (DMRs) (14 150 upmethylated and 12 869 downmethylated) between CPF-exposed and control groups. The DMR-related genes are mainly involved in 113 pathways predicted by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The result showed that high methylation gene PIK3CD may play a key role in epigenetic regulation of multiple pathways, such as Ras signaling pathway, AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, VEGF signaling pathway, and glioma and Fc epsilon RI signaling pathway in rats exposed to CPF. Our study provides significant explanations for the epigenetic mechanism of male reproductive toxicology induced by CPF.
Collapse
Affiliation(s)
- Linlin Sai
- Department of Toxicology, Public Health College, Qingdao University, 308 Ningxia Road, Shinan District Qingdao, Shandong 266071, China
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Qiang Jia
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Yecui Zhang
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Ru Han
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Xiao Geng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Gongchang Yu
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Shumin Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Lixia District, Ji’nan, Shandong 250062, China
| | - Yuxin Zheng
- Department of Toxicology, Public Health College, Qingdao University, 308 Ningxia Road, Shinan District Qingdao, Shandong 266071, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
40
|
Cito G, Coccia ME, Salvianti F, Fucci R, Picone R, Giachini C, Cocci A, Falcone P, Micelli E, Verrienti P, Minervini A, Carini M, Pinzani P, Natali A. Blood plasma miR-20a-5p expression as a potential non-invasive diagnostic biomarker of male infertility: A pilot study. Andrology 2020; 8:1256-1264. [PMID: 32406197 DOI: 10.1111/andr.12816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recently, alterations in miRNAs expression profile in semen have been linked to damaged spermatogenesis, suggesting miRNAs could be used as potential infertility biomarkers. In previous animal studies, miR-20a-5p was found to be down-expressed in low motile spermatozoa, implying its potential target of genes associated with cell apoptosis. OBJECTIVE To investigate miR-20a-5p expression in blood plasma of patients suffering from non-obstructive azoospermia (NOA), compared to normozoospermic controls. MATERIALS AND METHODS Between January 2018 and December 2019, from 52 infertile couples eligible for the study, 24 couples were finally enrolled in this monocentric observational prospective pilot study. Patients were included into two groups: Group 1 comprised men with NOA (n = 14) and Group 2 fertile men partners of women with female tubal factor infertility (n = 10). All NOA patients underwent testicular sperm extraction. The expression of circulating miR-20a-5p in plasma samples was assessed by RT-qPCR. A relative quantification strategy was adopted using the 2-ΔCq method to calculate the target miR-20a-5p expression with respect to miR-16-5p as endogenous control. RESULTS Median blood plasma miR-20a-5p was significantly higher in patients affected by NOA (0.16 2-ΔCt , range: 0.05-0.79 2-ΔCt ) than in fertile controls (0.06 2-ΔCt , range: 0.04-0.10 2-ΔCt ), P < .001. MiR-20a-5p was positively correlated with follicle-stimulating hormone (FSH) (rrho = -0.490, P = .015) and luteinizing hormone (LH) (rrho = -0.462, P = .023), and negatively correlated with serum total testosterone (TT) (rrho = -0.534, P = .007) and right and left testicular size (rrho = -0.473, P = .020 and rrho = -0.471, P = .020, respectively). Successful sperm retrieval (SR) rate was 50.0%. Median value of miR-20a-5p did not differ significantly among patients with successful SR and those with negative SR. Testicular histological examination showed: hypospermatogenesis in 6/14 (42.8%), maturation arrest in 4/14 (28.6%), sertoli cell-only syndrome in 4/14 (28.6%). No significant differences in miR-20a-5p were found between histopathological patterns (P > .05). CONCLUSIONS MiR-20a-5p could represent a novel non-invasive diagnostic biomarker of male infertility.
Collapse
Affiliation(s)
- Gianmartin Cito
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Maria Elisabetta Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesca Salvianti
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rossella Fucci
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Rita Picone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Claudia Giachini
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Andrea Cocci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Patrizia Falcone
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Elisabetta Micelli
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Pierangelo Verrienti
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Andrea Minervini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Clinical Biochemistry and Clinical Molecular Biology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Natali
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
41
|
Heidary Z, Saliminejad K, Zaki-Dizaji M, Khorram Khorshid HR. Genetic aspects of idiopathic asthenozoospermia as a cause of male infertility. HUM FERTIL 2020; 23:83-92. [PMID: 30198353 DOI: 10.1080/14647273.2018.1504325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infertility is a worldwide problem affecting about 15% of couples trying to conceive. Asthenozoospermia (AZS) is one of the major causes of male infertility, diagnosed by reduced sperm motility, and has no effective therapeutic treatment. To date, a few genes have been found to be associated with AZS in humans and mice, but in most of cases its molecular aetiology remains unknown. Genetic causes of AZS may include chromosomal abnormalities, specific mutations of nuclear and mitochondrial genes. However recently, epigenetic factors, altered microRNAs expression signature, and proteomics have shed light on the pathophysiological basis of AZS. This review article summarises the reported genetic causes of AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Department of Medical Genetics School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Centre, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Centre University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
42
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
43
|
Rezaeian A, Karimian M, Hossienzadeh Colagar A. Methylation Status of MTHFR Promoter and Oligozoospermia Risk: An Epigenetic Study and in Silico Analysis. CELL JOURNAL 2020; 22:482-490. [PMID: 32347042 PMCID: PMC7211284 DOI: 10.22074/cellj.2021.6498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/21/2019] [Indexed: 11/09/2022]
Abstract
Objective In this study, we evaluated the effects of promoter methylation of MTHFR on oligozoospermia risk, followed by an
in silico analysis.
Materials and Methods In a case-control study, semen samples were collected from infertile and healthy control men.
MTHFR promoter region was amplified by methylation-specific polymerase chain reaction (PCR). Finally, the promoter
region of MTHFR was analyzed by bioinformatics software.
Results Our data revealed significant associations of CpG island promoter methylation with oligozoospermia in a
case-control study. In silico analysis showed that promoter contains a strong nucleosome exclusion region, a bonafide
CGIs, six PROSITE motifs without a defined TATA box and 14 transcription factor (TF) binding sites, which are directly
involved in spermatogenesis
Conclusion Based on our findings, methylation of the MTHFR gene promoter region may be a risk factor for
oligozoospermia. However, this is a preliminary report representing data for future comprehensive studies to make
a clinical conclusion on the potential biomarker role of methylation of this promoter in elevating susceptibility to
oligozoospermia.
Collapse
Affiliation(s)
- Atefeh Rezaeian
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.Electronic Address:
| | - Abasalt Hossienzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran. Electronic Address:
| |
Collapse
|
44
|
Abstract
The male contribution to infertility has traditionally been overlooked, or at best oversimplified. In recent years efforts have been made to optimize diagnostic and therapeutic techniques to maximize fertility outcomes. A renewed focus on the male partner has resulted in an increased understanding of both genetic and epigenetic changes within the male germline. Furthermore, single-nucleotide polymorphisms, copy-number variants, DNA damage, sperm cryopreservation, obesity, and paternal age have recently been recognized as important factors that play a role in male fertility. Developing a deeper knowledge of these issues could potentially lead to improved success with assisted reproductive technology.
Collapse
|
45
|
Abstract
There is increasing evidence that male infertility may be a harbinger of comorbid medical illness. Existing studies have shed light on associations between infertility and the prevalence of cardiovascular, metabolic, and oncologic disease, along with rates of hospitalization and overall mortality. Although theorized mechanisms include genetic, developmental, and behavioral precipitants, the exact nature of these associations remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Jeremy T Choy
- Division of Endocrinology, Gerontology, and Metabolism, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Babakhanzadeh E, Nazari M, Ghasemifar S, Khodadadian A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int J Gen Med 2020; 13:29-41. [PMID: 32104049 PMCID: PMC7008178 DOI: 10.2147/ijgm.s241099] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Infertility is defined as the inability of couples to have a baby after one year of regular unprotected intercourse, affecting 10 to 15% of couples. According to the latest WHO statistics, approximately 50-80 million people worldwide sufer from infertility, and male factors are responsible for approximately 20-30% of all infertility cases. The diagnosis of infertility in men is mainly based on semen analysis. The main parameters of semen include: concentration, appearance and motility of sperm. Causes of infertility in men include a variety of things including hormonal disorders, physical problems, lifestyle problems, psychological issues, sex problems, chromosomal abnormalities and single-gene defects. Despite numerous efforts by researchers to identify the underlying causes of male infertility, about 70% of cases remain unknown. These statistics show a lack of understanding of the mechanisms involved in male infertility. This article focuses on the histology of testicular tissue samples, the male reproductive structure, factors affecting male infertility, strategies available to find genes involved in infertility, existing therapeutic methods for male infertility, and sperm recovery in infertile men.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Ghasemifar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
47
|
Kuchta-Gładysz M, Andraszek K, Szeleszczuk O, Niedbała P, Otwinowska-Mindur A. Analysis of sperm chromatin structure in blue foxes (Alopex lagopus) and silver foxes (Vulpes vulpes). Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Czubaszek M, Andraszek K, Banaszewska D. Influence of the age of the individual on the stability of boar sperm genetic material. Theriogenology 2019; 147:176-182. [PMID: 31767186 DOI: 10.1016/j.theriogenology.2019.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 02/02/2023]
Abstract
Routine evaluation of the sperm of livestock animals involves detection of morphological abnormalities. However, most sperm defects that reduce fertilizing capacity are a result of anomalies in spermatogenesis. The aim of the study was to evaluate the effect of a boar's age on the stability of the genetic material of its sperm. The age of the boar was found to have a significant effect on sperm DNA stability and chromatin structure. The highest percentage of spermatozoa with DNA fragmentation was found in the oldest group of boars (0,61%), while the highest proportion of spermatozoa with abnormal histone retention (8,01%) and protamination (9,78%) was found in the youngest group of boars. Aniline blue (AB), chromomycin A3 (CMA3) and acridine orange (AO) staining should be routinely used in individuals used for artificial insemination especially young animals at the start of their exploitation for breeding, as well as older individuals with an age-related decrease in the stability of genetic material. Earlier diagnosis based on additional tests would allow for stricter selection and elimination of males with fertility disorders from breeding, to be replaced by breeders of full value. It was also demonstrated that all three staining methods mentioned above can be used in classical morphological analysis, because they clearly distinguish the sperm head from the background of the slide. Chromomycin staining clearly reveals the midpiece and thus can be used as a specific staining method for its evaluation. Staining with aniline blue is a fast and simple test whose result can be analysed under a light microscope. This staining technique can be recommended for use at insemination stations.
Collapse
Affiliation(s)
- Magdalena Czubaszek
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Institute of Bioengineering and Animal Breeding, 14 Prusa Str, 08-110, Siedlce, Poland
| | - Katarzyna Andraszek
- Department of Animal Genetics and Horse Breeding, Siedlce University of Natural Sciences and Humanities, Institute of Bioengineering and Animal Breeding, 14 Prusa Str, 08-110, Siedlce, Poland.
| | - Dorota Banaszewska
- Department of Breeding Methods and Poultry Breeding, Siedlce University of Natural Sciences and Humanities, Institute of Bioengineering and Animal Breeding, 14 Prusa Str, 08-110, Siedlce, Poland
| |
Collapse
|
49
|
Fraz S, Lee AH, Pollard S, Srinivasan K, Vermani A, David E, Wilson JY. Paternal Exposure to Carbamazepine Impacts Zebrafish Offspring Reproduction Over Multiple Generations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12734-12743. [PMID: 31393713 DOI: 10.1021/acs.est.9b03393] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic low-concentration chemical exposures may have both direct health outcomes on adults and indirect effects on their offspring. Using zebrafish, we examined the impacts of chronic, low-concentration carbamazepine (CBZ) exposure on a suite of male reproductive endpoints in the parents and four generations of offspring reared in clean water. CBZ is one of the most frequently detected pharmaceutical residues in water, is a histone deacetylase inhibitor in mammals, and is reported to lower androgens in mammals and fish. Exposure of adult zebrafish to 10 μg/L CBZ for 6 weeks decreased reproductive output, courtship and aggressive behaviors, 11-ketotestosterone (11KT), and sperm morphology but did not impact milt volume or sperm swimming speed. Pairwise breeding generated lineages of offspring with both parents exposed and two lineages where only one parent was exposed; the control lineage had unexposed parents. Reproductive output and male reproductive indices were assessed in F1-F4 offspring to determine whether parental CBZ exposure had transgenerational impacts. The offspring of CBZ-exposed males had lower 11KT, reproductive output, altered courtship, aggression, and sperm morphology compared to the lineage from unexposed parents. Our results indicate that parental carbamazepine exposure history impacts the unexposed progeny up to the F4 generations and that paternal, but not maternal, exposure is most important for the reproductive health of male offspring.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abigail H Lee
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Simon Pollard
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Krishna Srinivasan
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abhilasha Vermani
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Ephraim David
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Joanna Y Wilson
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| |
Collapse
|
50
|
El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019; 11:E515. [PMID: 31484408 PMCID: PMC6784030 DOI: 10.3390/toxins11090515] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Mycotoxins are ubiquitous and unavoidable harmful fungal products with the ability to cause disease in both animals and humans, and are found in almost all types of foods, with a greater prevalence in hot humid environments. These mycotoxins vary greatly in structure and biochemical effects; therefore, by better understanding the toxicological and pathological aspects of mycotoxins, we can be better equipped to fight the diseases, as well as the biological and economic devastations, they induce. Multiple studies point to the association between a recent increase in male infertility and the increased occurrence of these mycotoxins in the environment. Furthermore, understanding how mycotoxins may induce an accumulation of epimutations during parental lifetimes can shed light on their implications with respect to fertility and reproductive efficiency. By acknowledging the diversity of mycotoxin molecular function and mode of action, this review aims to address the current limited knowledge on the effects of these chemicals on spermatogenesis and the various endocrine and epigenetics patterns associated with their disruptions.
Collapse
Affiliation(s)
- Diala El Khoury
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Salma Fayjaloun
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Marc Nassar
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Joseph Sahakian
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon
| | - Pauline Y Aad
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, Zouk Mosbeh 2207, Lebanon.
| |
Collapse
|