1
|
Wei C, Zeng X, Wang K, Wang M, Lei M, Zhu Z, Xu Y, Zhao Y, Yang Q, Sun Y. Nicotinamide riboside supplementation protects against maternal diabetes-associated decline in oocyte quality. Reproduction 2025; 169:e240350. [PMID: 40110863 PMCID: PMC12023624 DOI: 10.1530/rep-24-0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 03/22/2025]
Abstract
In brief NAD+ levels were reduced in streptozotocin (STZ)-induced diabetic mice, but nicotinamide riboside (NR) supplementation improved these levels in diabetic ovaries and oocytes, enhancing oocyte quality and early embryo development by improving mitochondrial function and lowering reactive oxygen species (ROS) levels. Abstract Diabetes mellitus is strongly correlated with a decline in oocyte quality; however, noninvasive and effective methods to improve this issue have yet to be fully development. Here, we demonstrate that in vivo supplementation with NR 400 mg/kg/day for 14 days effectively enhances the quality of oocytes from diabetic mice induced by streptozocin 190 mg/kg by restoring nicotinamide adenine dinucleotide (NAD+) levels. NR supplementation not only improved superovulation function of diabetic mice but also improved their oocyte quality and embryonic development potential after fertilization by maintaining normal spindle structure and alleviating mitochondrial dysfunction. In addition, NR supplementation reduced ROS levels in oocytes from diabetic mice. Overall, our findings suggest that dietary NR supplementation is a viable strategy to protect oocytes from diabetes-related deterioration, thereby enhancing reproductive outcomes in maternal diabetes and improving the efficacy of assisted reproductive technology.
Collapse
Affiliation(s)
- Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keer Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Ryabukha YA, Zatsepina OV, Rubtsov YP. The completing of the second meiotic division by MII mouse oocytes correlates with the positioning of F-actin and mitochondria in the ooplasm. Biochimie 2025; 230:55-67. [PMID: 39577618 DOI: 10.1016/j.biochi.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024]
Abstract
Actin filaments play an essential role in the process of oocyte maturation and completion of meiosis. However, whether the localization of F-actin in the ooplasm is associated with normal completion of the second meiotic division remains unclear. Mitochondrial distribution is another important parameter correlating directly with MII oocyte capacity to finalize meiosis. Our objective was to examine the role of actin microfilaments in the distribution of mitochondria and, respectively, Metaphase II (MII) oocytes meiotic potential. We show monoclonal antibody-mediated inhibition of actin polymerization in young mouse oocytes, reduction of the amount of F-actin, and induction of mitochondrial clustering induced by antibody treatment. Similar phenotype, even in untreated eggs, was observed in in vitro oocyte aging experiments. Observed changes correlate with reduced ability of MII oocytes to extrude the second polar body and form the pronuclei. Changes in colocalization of F-actin and mitochondria likely resulted from disturbed cytoskeleton architecture. The perturbations in the amount of F-actin and its distribution largely coincide with mitochondrial redistribution. Based on these data, we suggest actin microfilament's participation in redistribution of mitochondria during MII oocyte aging in vitro. Accordingly, patterning of F-actin is indicative of high rate of the completed second meiotic division. These results help evaluating oocyte's quality and choosing optimal time between placement into culture and in vitro fertilization.
Collapse
Affiliation(s)
- Yana A Ryabukha
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Olga V Zatsepina
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yury P Rubtsov
- Laboratory of Molecular Virology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
3
|
Torkashvand H, Shabani R, Artimani T, Amiri I, Pilehvari S, Torkashvand L, Mehdizadeh R, Mehdizadeh M. Oocyte competence develops: nuclear maturation synchronously with cytoplasm maturation. ZYGOTE 2024; 32:421-428. [PMID: 39552507 DOI: 10.1017/s0967199424000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human oocyte maturation is a lengthy process that takes place over the course of which oocytes gain the inherent ability to support the next developmental stages in a progressive manner. This process includes intricate and distinct events related to nuclear and cytoplasmic maturation. Nuclear maturation includes mostly chromosome segregation, whereas rearrangement of organelles, storage of mRNAs and transcription factors occur during cytoplasmic maturation.Human oocyte maturation, both in vivo and in vitro, occurs through a process that is not yet fully understood. However, it is believed that the second messenger, cyclic adenosine monophosphate (cAMP), plays a pivotal role in the upkeep of the meiotic blocking of the human oocyte. Relatively high levels of cAMP in the human oocyte are required to maintain meiosis blocked, whereas lower levels of cAMP in the oocyte enable meiosis to resume. Oocyte cAMP concentration is controlled by a balance between adenylate cyclase and phosphodiesterases, the enzymes responsible for cAMP generation and breakdown.In addition to nuclear maturation, the female gamete requires a number of complicated structural and biochemical modifications in the cytoplasmic compartment to be able to fertilize normally. According to ultrastructural studies, during the transition from the germinal vesicle stage to metaphase II (MII), several organelles reorganize their positions. The cytoskeletal microfilaments and microtubules found in the cytoplasm facilitate these movements and regulate chromosomal segregation.The aim of this review is to focus on the nuclear and cytoplasmic maturation by investigating the changes that take place in the process of oocytes being competent for development.
Collapse
Affiliation(s)
- Hossein Torkashvand
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebe Artimani
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shamim Pilehvari
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Clinical Research Development Unit of Fatemieh Hospital, Department of Gynecology, Medicine School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Torkashvand
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Mehdizadeh
- School of Dentistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Santos T, Pires-Luís AS, Calado AM, Oliveira E, Cunha M, Silva J, Viana P, Teixeira-da-Silva J, Oliveira C, Barros A, Sá R, Sousa M. Stereological study of organelle distribution in human mature oocytes. Sci Rep 2024; 14:25816. [PMID: 39468218 PMCID: PMC11519492 DOI: 10.1038/s41598-024-76893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology. Statistical tests compared the means of the relative volumes occupied by organelles among oocyte regions. The most abundant organelles were elements of the smooth endoplasmic reticulum (SER), such as SER small vesicles, SER medium vesicles, SER large vesicles and SER isolated tubules, along with mitochondria, followed by SER tubular aggregates, cortical vesicles and lysosomes. Significant differences between oocyte regions were found for lysosomes, cortical vesicles and SER large vesicles. Comparisons of MII oocytes to previous findings in GV and MI oocytes evidenced specific patterns of organelle distribution and relative volumes. This final evaluation thus enables to track organelle spatial reorganization across oocyte stages, which, in addition to gathered knowledge, may be useful to assist in improvements of stimulation protocols, in-vitro maturation media and cryopreservation techniques.
Collapse
Affiliation(s)
- Tânia Santos
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana S Pires-Luís
- Department of Pathology, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Unidade 1, Rua Conceição Fernandes 1079, 4434-502, Vila Nova de Gaia, Portugal
| | - Ana Margarida Calado
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Elsa Oliveira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - José Teixeira-da-Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Cristiano Oliveira
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
- Service of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, RISE Health Research Network, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Hao X, Zhao J, Rodriguez-Wallberg KA. Comprehensive atlas of mitochondrial distribution and dynamics during oocyte maturation in mouse models. Biomark Res 2024; 12:125. [PMID: 39415247 PMCID: PMC11484396 DOI: 10.1186/s40364-024-00672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Oocytes, the largest cells in mammals, harbor numerous mitochondria within their cytoplasm. These highly dynamic organelles are crucial for providing energy resources and serving as central regulators during oogenesis. Mitochondrial dynamics ensure proper energy distribution for various cellular processes involved in oocyte maturation. Previous studies have used alterations in mitochondrial distribution as a biomarker to assess the oocyte health. However, there are discrepancies between studies regarding mitochondrial distribution profiles in healthy oocytes. Consequently, a comprehensive mitochondrial distribution profile in oocytes during maturation has not been fully characterized. Additionally, there is a lack of objective, quantitative methods to evaluate alterations in mitochondrial distribution profiles in oocytes. METHODS This study aims to provide an in-depth overview of mitochondrial distribution profiles in mouse oocytes at different maturation stages: germinal vesicle (GV) stage, metaphase I (MI), and mature metaphase II (MII). Freshly collected mouse GV, MI and MII oocytes were stained with MitoTracker Red. Confocal microscopy was used to obtain images of mitochondrial distribution profiles in these oocytes. Using the Imaris software, we reconstructed three-dimensional (3D) surface renderings of each oocyte and quantitatively illustrated the mitochondrial distribution profiles. RESULTS At the GV stage, mitochondria in oocytes were evenly distributed throughout the ooplasm. As oocytes progressed to MI and MII stages, mitochondria aggregated and formed clusters, the mean size of mitochondrial clusters and the proportions of clustered mitochondria increased along with the maturation of oocytes. CONCLUSIONS Our findings reveal that mitochondria in mouse oocytes are highly dynamic, undergoing significant reorganizations during oocyte maturation. We for the first time provided comprehensive mitochondrial distribution profiles in mouse oocytes at the GV, MI and MII stages. These mitochondrial distribution profiles were further quantitatively evaluated. Our methods provide an objective and standardized approach for evaluating alterations in mitochondrial dynamics, which can be used as biomarkers to monitor oocyte conditions during maturation.
Collapse
Affiliation(s)
- Xia Hao
- Department of Oncology-Pathology, Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden.
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden.
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
6
|
Bahety D, Böke E, Rodríguez-Nuevo A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol Metab 2024; 35:902-917. [PMID: 38599901 DOI: 10.1016/j.tem.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.
Collapse
Affiliation(s)
- Devesh Bahety
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
7
|
Mihalas BP, Marston AL, Wu LE, Gilchrist RB. Reproductive Ageing: Metabolic contribution to age-related chromosome missegregation in mammalian oocytes. Reproduction 2024; 168:e230510. [PMID: 38718822 PMCID: PMC11301428 DOI: 10.1530/rep-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
In brief Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.
Collapse
Affiliation(s)
- Bettina P Mihalas
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Adele L Marston
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsay E Wu
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Robert B Gilchrist
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
8
|
Petrogiannis N, Chatzovoulou K, Filippa M, Grimbizis G, Kolibianakis E, Chatzimeletiou K. In vitro maturation of oocytes in light of ovarian mitochondrial improvement: effectiveness and safety. ZYGOTE 2024; 32:183-189. [PMID: 38953841 DOI: 10.1017/s0967199424000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In vitro maturation of oocytes (IVM) represents an assisted reproductive technique that involves the minimal or absence of ovarian stimulation and is beneficial to specific groups of patients. These may include women with polycystic ovarian syndrome and/or patients who need a fertility preservation option before undergoing gonadotoxic treatment. However, when IVM is applied in cases where it is not recommended, it can be considered as an add-on technique, as described by the ESHRE Guideline Group on Female Fertility Preservation. Interestingly, IVM has not been proven yet to be as effective as conventional IVF in the laboratory, in terms of clinical pregnancy and live birth rates, while concerns have been raised for its long-term safety. As a result, both safety and efficacy of IVM remain still questionable and additional data are needed to draw conclusions.
Collapse
Affiliation(s)
| | | | | | - Grigoris Grimbizis
- Unit for Human Reproduction, 1st Department of Obstetrics and Gynaecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Efstratios Kolibianakis
- Unit for Human Reproduction, 1st Department of Obstetrics and Gynaecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Katerina Chatzimeletiou
- Unit for Human Reproduction, 1st Department of Obstetrics and Gynaecology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| |
Collapse
|
9
|
Qu J, Hu H, Niu H, Sun X, Li Y. Melatonin restores the declining maturation quality and early embryonic development of oocytes in aged mice. Theriogenology 2023; 210:110-118. [PMID: 37490796 DOI: 10.1016/j.theriogenology.2023.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
With increase in women's age, the reproductive capability of female mammals decreases dramatically caused by age-related oxidative stress, coinciding with the decline in the ovarian reserve, and the quality and quantity of oocytes, which is the main determinant of female fertility. Melatonin, as an effective antioxidant and antiaging substance, is secreted by the pineal gland and been found in the follicular fluid as well, which has been turned out to enable to protect oocytes from oxidative stress during ovulation. However, the beneficial effects of melatonin on meiotic maturation in vitro and early embryo development of aged oocytes are still not fully understood. Thus, the aim of this study is to explore the potential mechanism of melatonin to improve the oocytes maturation and early embryonic development. The results suggested that oocyte quality decreased with age, whereas 10-6 M melatonin supplementation can significantly prompt the maturation quality of oocytes, the rate of fertilization and the formation rate of blastocyst. Mechanistic investigation indicated that melatonin supplementation not only restored the function of mitochondria by reducing reactive oxygen species (ROS) generation and early apoptosis, but also increased the level of ATP and total GSH through enhancing the mRNA expression levels of SIRT1, SIRT3, GPX4, SOD1 and SOD2. In conclusion, melatonin could alleviate the impairment of age-related oxidative stress to meiotic maturation and early embryonic development of oocytes. This study may provide a potential remediation strategy to improve the quality of oocytes from aged women and the efficiency of assisted reproductive technologies.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The Department of Animal and Veterinary Science, University of Vermont, Burlington, VT, 05405, USA.
| | - Huiru Hu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Qu J, Qin L, Guo J, Zhu L, Luo Y, Li C, Xie J, Wang J, Shi C, Huang G, Li J. Near-infrared fluorophore IR-61 improves the quality of oocytes in aged mice via mitochondrial protection. Biomed Pharmacother 2023; 162:114571. [PMID: 36989715 DOI: 10.1016/j.biopha.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Maternal aging is associated with a decline in oocyte quality, which leads to the decreased fertility. Therefore, developing approaches to reduce aging-induced deterioration of oocyte quality in older women is important. Near-infrared cell protector-61 (IR-61), a novel heptamethine cyanine dye, has the potential for antioxidant effects. In this study, we found that IR-61 can accumulate in the ovaries and improved ovarian function of naturally aged mice; it also increased the oocyte maturation rate and quality by maintaining the integrity of the spindle/chromosomal structure and reducing the aneuploidy rate. In addition, the embryonic developmental competence of aged oocytes was improved. Finally, RNA-sequencing analysis indicated that IR-61 might perform the beneficial effects on aged oocytes by regulating mitochondrial function, this was confirmed by immunofluorescence analysis of mitochondrial distribution and reactive oxygen species. Taken together, our findings demonstrate that IR-61 supplementation in vivo can increase oocyte quality and protect oocytes from aging-induced mitochondrial dysfunction, and thus could improve the fertility of older women and efficiency of assisted reproductive technology.
Collapse
Affiliation(s)
- Jiadan Qu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Lifeng Qin
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yunyao Luo
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Chong Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China.
| |
Collapse
|
11
|
Kang MH, Kim YJ, Lee JH. Mitochondria in reproduction. Clin Exp Reprod Med 2023; 50:1-11. [PMID: 36935406 PMCID: PMC10030209 DOI: 10.5653/cerm.2022.05659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.
Collapse
Affiliation(s)
- Min-Hee Kang
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
12
|
Xue Y, Meng TG, Ouyang YC, Liu SL, Guo JN, Wang ZB, Schatten H, Song CY, Guo XP, Sun QY. Miro1 regulates mitochondrial homeostasis and meiotic resumption of mouse oocyte. J Cell Physiol 2022; 237:4477-4486. [PMID: 36183380 DOI: 10.1002/jcp.30890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 12/06/2022]
Abstract
Miro1, a mitochondrial Rho GTPase1, is a kind of mitochondrial outer membrane protein involved in the regulation of mitochondrial anterograde transport and its subcellular distribution. Mitochondria influence reproductive processes of mammals in some aspects. Mitochondria are important for oocyte maturation, fertilization and embryonic development. The purpose of this study was to evaluate whether Miro1 regulates mouse oocyte maturation by altering mitochondrial homeostasis. We showed that Miro1 was expressed in mouse oocyte at different maturation stages. Miro1 mainly distributed in the cytoplasm and around the spindle during oocyte maturation. Small interference RNA-mediated Miro1 depletion caused significantly abnormal distribution of mitochondria and endoplasmic reticulum as well as mitochondrial dysfunction, resulting in severely impaired germinal vesicle breakdown (GVBD) of mouse oocytes. For those oocytes which went through GVBD in the Miro1-depleted group, part of them were inhibited in meiotic prophase I stage with abnormal chromosome arrangement and scattered spindle length. Our results suggest that Miro1 is essential for maintaining the maturation potential of mouse oocyte.
Collapse
Affiliation(s)
- Yue Xue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Reproductive Science Institute, Taiyuan, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Chun-Ying Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Reproductive Science Institute, Taiyuan, China
| | - Xing-Ping Guo
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Reproductive Science Institute, Taiyuan, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
13
|
N-Acetyl cysteine reduces the levels of reactive oxygen species and improves in vitro maturation of oocytes from medium-sized bovine antral follicles. ZYGOTE 2022; 30:882-890. [PMID: 36148786 DOI: 10.1017/s0967199422000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study aims to evaluate the effects of N-acetylcysteine (NAC) on bovine oocyte maturation, mitochondrial activity and transzonal projections (TZP), as well as on the levels of reactive oxygen species (ROS) and messenger RNA (mRNA) for catalase (CAT) superoxide dismutase (SOD), periredoxin-6 (Prdx6), glutathione peroxidase (GPx), growth and differentiation factor-9 (GDF9), histone H1Foo, cyclin B1 (CCNB1) and c-Mos. Bovine cumulus-oocyte complexes (COC) of medium-sized antral follicles (3.0-6.0 mm) were prematured in TCM-199 for 8 h at 38.5°C in 5% CO2. After prematuration in the presence of forskolin and C-type natriuretic peptide, COCs were matured in TCM-199 alone or with 0.1, 0.5 or 2.5 mM NAC. Then, oocytes were classified according to the stage of chromatin. Furthermore, mitochondrial activity and intracellular levels of ROS and TZP were also evaluated. The levels of mRNAs for CAT, SOD, Prdx6, GPx, GDF9, H1Foo, CCNB1 and c-Mos were evaluated using real-time polymerase chain reaction (RT-PCR). The results showed that NAC significantly increased the percentages of oocytes with resumption of meiosis when compared with those oocytes matured in control medium. Oocytes had homogeneous mitochondrial distribution, and those cultured with 0.1 and 0.5 mM NAC had lower levels of ROS when compared with the control. In addition, 0.5 mM NAC reduced TZP and the levels of mRNA for CCNB1. In contrast, NAC did not influence the expression of CAT, GPx, Prdx6, SOD, GDF9, H1Foo, and c-Mos. In conclusion, 0.5 mM NAC reduced the levels of ROS, TZP and mRNA for CCNB1, and improved in vitro resumption of meiosis in oocytes from medium-sized bovine antral follicles.
Collapse
|
14
|
Ultrastructural Evaluation of the Human Oocyte at the Germinal Vesicle Stage during the Application of Assisted Reproductive Technologies. Cells 2022; 11:cells11101636. [PMID: 35626673 PMCID: PMC9139706 DOI: 10.3390/cells11101636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
After its discovery in 1825 by the physiologist J.E. Purkinje, the human germinal vesicle (GV) attracted the interest of scientists. Discarded after laparotomy or laparoscopic ovum pick up from the pool of retrieved mature oocytes, the leftover GV was mainly used for research purposes. After the discovery of Assisted Reproductive Technologies (ARTs) such as in vitro maturation (IVM), in vitro fertilization and embryo transfer (IVF-ET) and intracytoplasmic sperm injection (ICSI), its developing potential was explored, and recognized as an important source of germ cells, especially in the case of scarce availability of mature oocytes for pathological/clinical conditions or in the case of previous recurrent implantation failure. We here review the ultrastructural data available on GV-stage human oocytes and their application to ARTs.
Collapse
|
15
|
Yang ZY, Ye M, Xing YX, Xie QG, Zhou JH, Qi XR, Kee K, Chian RC. Changes in the Mitochondria-Related Nuclear Gene Expression Profile during Human Oocyte Maturation by the IVM Technique. Cells 2022; 11:297. [PMID: 35053413 PMCID: PMC8774259 DOI: 10.3390/cells11020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
To address which mitochondria-related nuclear differentially expressed genes (DEGs) and related pathways are altered during human oocyte maturation, single-cell analysis was performed in three oocyte states: in vivo matured (M-IVO), in vitro matured (M-IVT), and failed to mature in vitro (IM-IVT). There were 691 DEGs and 16 mitochondria-related DEGs in the comparison of M-IVT vs. IM-IVT oocytes, and 2281 DEGs and 160 mitochondria-related DEGs in the comparison of M-IVT vs. M-IVO oocytes, respectively. The GO and KEGG analyses showed that most of them were involved in pathways such as oxidative phosphorylation, pyruvate metabolism, peroxisome, and amino acid metabolism, i.e., valine, leucine, isoleucine, glycine, serine, and threonine metabolism or degradation. During the progress of oocyte maturation, the metabolic pathway, which derives the main source of ATP, shifted from glucose metabolism to pyruvate and fatty acid oxidation in order to maintain a low level of damaging reactive oxygen species (ROS) production. Although the immature oocytes could be cultured to a mature stage by an in vitro technique (IVM), there were still some differences in mitochondria-related regulations, which showed that the mitochondria were regulated by nuclear genes to compensate for their developmental needs. Meanwhile, the results indicated that the current IVM culture medium should be optimized to compensate for the special need for further development according to this disclosure, as it was a latent strategy to improve the effectiveness of the IVM procedure.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China;
| | - Min Ye
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Ya-Xin Xing
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
| | - Qi-Gui Xie
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Q.-G.X.); (J.-H.Z.)
| | - Jian-Hong Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Q.-G.X.); (J.-H.Z.)
| | - Xin-Rui Qi
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China;
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Ri-Cheng Chian
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
| |
Collapse
|
16
|
Zhao S, Heng N, Wang H, Wang H, Zhang H, Gong J, Hu Z, Zhu H. Mitofusins: from mitochondria to fertility. Cell Mol Life Sci 2022; 79:370. [PMID: 35725948 PMCID: PMC9209398 DOI: 10.1007/s00018-022-04386-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023]
Abstract
Germ cell formation and embryonic development require ATP synthesized by mitochondria. The dynamic system of the mitochondria, and in particular, the fusion of mitochondria, are essential for the generation of energy. Mitofusin1 and mitofusin2, the homologues of Fuzzy onions in yeast and Drosophila, are critical regulators of mitochondrial fusion in mammalian cells. Since their discovery mitofusins (Mfns) have been the source of significant interest as key influencers of mitochondrial dynamics, including membrane fusion, mitochondrial distribution, and the interaction with other organelles. Emerging evidence has revealed significant insight into the role of Mfns in germ cell formation and embryonic development, as well as the high incidence of reproductive diseases such as asthenospermia, polycystic ovary syndrome, and gestational diabetes mellitus. Here, we describe the key mechanisms of Mfns in mitochondrial dynamics, focusing particularly on the role of Mfns in the regulation of mammalian fertility, including spermatogenesis, oocyte maturation, and embryonic development. We also highlight the role of Mfns in certain diseases associated with the reproductive system and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Nuo Heng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haoyu Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Haobo Zhang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jianfei Gong
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Zhihui Hu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
17
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
18
|
The Role of Mitochondria in Oocyte Maturation. Cells 2021; 10:cells10092484. [PMID: 34572133 PMCID: PMC8469615 DOI: 10.3390/cells10092484] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
With the nucleus as an exception, mitochondria are the only animal cell organelles containing their own genetic information, called mitochondrial DNA (mtDNA). During oocyte maturation, the mtDNA copy number dramatically increases and the distribution of mitochondria changes significantly. As oocyte maturation requires a large amount of ATP for continuous transcription and translation, the availability of the right number of functional mitochondria is crucial. There is a correlation between the quality of oocytes and both the amount of mtDNA and the amount of ATP. Suboptimal conditions of in vitro maturation (IVM) might lead to changes in the mitochondrial morphology as well as alternations in the expression of genes encoding proteins associated with mitochondrial function. Dysfunctional mitochondria have a lower ability to counteract reactive oxygen species (ROS) production which leads to oxidative stress. The mitochondrial function might be improved with the application of antioxidants and significant expectations are laid on the development of new IVM systems supplemented with mitochondria-targeted reagents. Different types of antioxidants have been tested already on animal models and human rescue IVM oocytes, showing promising results. This review focuses on the recent observations on oocytes’ intracellular mitochondrial distribution and on mitochondrial genomes during their maturation, both in vivo and in vitro. Recent mitochondrial supplementation studies, aiming to improve oocyte developmental potential, are summarized.
Collapse
|
19
|
Kolarov AI, Hadzhinesheva VP, Chakarova IV, Zhivkova RS, Delimitreva SM, Markova MD, Mourdjeva MS, Nikolova VP. Prostaglandin F2α Causes Fast Degenerative Changes in Ovulated Mouse Oocytes. Folia Biol (Praha) 2021; 67:208-212. [PMID: 35439854 DOI: 10.14712/fb2021067050208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The effects of prostaglandin F2α on the cytoskeleton and membrane organelles of oocytes was investigated by culturing ovulated mouse oocytes in its presence (50 or 100 ng/ml) for 3 h. Tubulin, fibrillar actin, membranes and chromatin were visualized by specific antibodies, phalloidin, lipophilic dye DiOC6 and Hoechst 33342, respectively. Control oocytes were characterized by a meiotic spindle with chromosomes aligned at its equator, and a cortical layer of microfilaments with an actin cap. Intracellular membranes were localized mostly in the central region in metaphase I and in a broader volume, but still excluding the cell periphery, in metaphase II, and were slightly concentrated around the chromosomes. In oocytes treated with 50 ng/ml prostaglandin, cortical actin staining was diminished, the membrane distribution was clustered, and chromosomes showed signs of misalignment despite the apparently preserved spindle. In cells treated with 100 ng/ml prostaglandin, both the spindle and the actin cortex had degenerated or disappeared as microscopic objects. Metaphase plates were on average broader and more disorganized than in the 50 ng/ml group, and the distribution of membrane organelles had become uniform. These effects, to our knowledge observed for the first time, did not require presence of the cumulus during the incubation. They could be regarded as acceleration of the oocyte postovulatory aging, in which cytoskeletal deterioration seemed to have a leading role.
Collapse
Affiliation(s)
- A I Kolarov
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - V P Hadzhinesheva
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - I V Chakarova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - R S Zhivkova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - S M Delimitreva
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - M D Markova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| | - M S Mourdjeva
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - V P Nikolova
- Department of Biology, Medical Faculty, Medical University of Sofia, Bulgaria
| |
Collapse
|
20
|
Soares M, Sousa AP, Fernandes R, Ferreira AF, Almeida-Santos T, Ramalho-Santos J. Aging-related mitochondrial alterations in bovine oocytes. Theriogenology 2020; 157:218-225. [PMID: 32814249 DOI: 10.1016/j.theriogenology.2020.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Advanced maternal age is an emerging health problem which involves many functional and structural alterations in oocytes, and its study is relevant to design better approaches to improve the reproductive function in women of advanced age. A constraint to this type of studies is the limited amount of samples and the ethical problems of working with human gametes. This study aims to characterize the in vitro-induced age-related modifications in a bovine model, as well as to determine if this model is a reliable approach to study human aging. For this purpose, we have focused on aging-related alterations related to oocyte mitochondrial dysfunction, a key hallmark in aging. Morphological and bioenergetic in vitro-induced alterations in bovine oocytes were compared to an in vivo aged group and to the already reported information regarding humans and other animal models. Parameters monitored included ooplasmic volume; mitochondrial mass, distribution and aggregation, assessed by MitoTracker Green; mitochondrial activity, monitored by JC-1; and the mitochondrial levels of hydrogen peroxide (H2O2), quantified using MitoPY. Results show a significant decrease in oocyte cytoplasmic volume after both in vitro and in vivo aging (p < 0.001). Additionally, the levels of H2O2 increased significantly after in vitro and in vivo aging (p < 0.001) and mitochondrial aggregation patterns were significantly different after 30 h of in vitro maturation, with MII oocytes presenting small aggregates inside the cytoplasm, whereas aged oocytes had a lack of granularity (p < 0.001). In contrast, there were no differences between the different aging groups in terms of mitochondrial mass, distribution and activity. In conclusion, this in vitro approach of inducing aging-related alterations may be considered as a reliable approach to study the aging process in human female gametes, since it causes the same types of alterations in both species.
Collapse
Affiliation(s)
- Maria Soares
- CNC - Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Celas, 3004-504, University of Coimbra, Portugal
| | - Ana Paula Sousa
- CNC - Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Celas, 3004-504, University of Coimbra, Portugal; Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Praceta, R. Prof. Mota Pinto, 3004-561, Coimbra, Portugal
| | - Raquel Fernandes
- CNC - Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Celas, 3004-504, University of Coimbra, Portugal
| | - Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Praceta, R. Prof. Mota Pinto, 3004-561, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - Teresa Almeida-Santos
- CNC - Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Celas, 3004-504, University of Coimbra, Portugal; Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Praceta, R. Prof. Mota Pinto, 3004-561, Coimbra, Portugal; University of Coimbra, Faculty of Medicine, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC - Center for Neuroscience and Cell Biology, CIBB, Azinhaga de Santa Comba, Celas, 3004-504, University of Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
21
|
Ferrer-Vaquer A, Barragán M, Rodríguez A, Vassena R. Altered cytoplasmic maturation in rescued in vitro matured oocytes. Hum Reprod 2020; 34:1095-1105. [PMID: 31119269 DOI: 10.1093/humrep/dez052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do culture conditions affect cytoplasmic maturation in denuded immature non-GV oocytes? SUMMARY ANSWER The maturation rate of denuded non-GV oocytes is not affected by culture media, but in vitro maturation seems to alter the mitochondrial membrane potential, endoplasmic reticulum (ER) and actin cytoskeleton compared with in vivo maturation. WHAT IS KNOWN ALREADY In vitro maturation of denuded immature non-GV oocytes benefits cycles with poor in vivo MII oocyte collection, but maturation levels of non-GV oocytes are only scored by polar body extrusion. Since oocyte maturation involves nuclear as well as cytoplasmic maturation for full meiotic competence, further knowledge is needed about cytoplasmic maturation in in vitro culture. STUDY DESIGN, SIZE, DURATION This basic research study was carried out between January 2017 and September 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 339 denuded immature non-GV oocytes were cultured in SAGE 1-Step (177) or G-2 PLUS (162) for 6-8 h after retrieval, and 72 in vivo matured MII oocytes were used as controls. Cultured immature non-GV oocytes were scored for polar body extrusion and analysed for mitochondrial membrane potential (ΔΨm), ER clusters, cortical granules number and distribution, spindle morphology and actin cytoskeleton organization. The obtained parameter values were compared to in vivo matured MII oocyte parameter values. MAIN RESULTS AND THE ROLE OF CHANCE The maturation rates of oocytes cultured in G-2 PLUS and SAGE 1-Step were similar (65% vs 64.2%; P = 0.91). The differences observed in cortical granule density were not statistically significant. Also spindle morphometric parameters were mostly similar between in vitro and in vivo matured MII oocytes. However, the number of ER clusters, the ΔΨm and the cortical actin thickness showed significant differences between in vivo MII oocytes and denuded immature non-GV oocytes cultured in vitro until meiosis completion. LIMITATIONS, REASONS FOR CAUTION Frozen-thawed oocytes together with fresh oocytes were used as controls. Due to technical limitations (fixation method and fluorochrome overlap), only one or two parameters could be studied per oocyte. Thus, a global view of the maturation status for each individual oocyte could not be obtained. WIDER IMPLICATIONS OF THE FINDINGS Characterization of in vitro matured oocytes at the cellular level will help us to understand the differences observed in the clinical outcomes reported with rescue IVM compared to in vivo MII oocytes and to improve the culture methods applied. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by intramural funding of Clinica Eugin and by the Torres Quevedo Program to A.F.-V. from the Spanish Ministry of Economy and Competitiveness. No competing interests are declared.
Collapse
|
22
|
Hosseinzadeh Shirzeyli M, Amidi F, Shamsara M, Nazarian H, Eini F, Hosseinzadeh Shirzeyli F, Majidi Zolbin M, Ghaffari Novin M, Daliri Joupari M. Exposing Mouse Oocytes to MitoQ During In Vitro Maturation Improves Maturation and Developmental Competence. IRANIAN JOURNAL OF BIOTECHNOLOGY 2020; 18:e2454. [PMID: 33850943 PMCID: PMC8035425 DOI: 10.30498/ijb.2020.154641.2454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background and Purpose: Mitochondrion is the main indicator of oocyte quality and one of the components of oocyte, which is sensitive to oxidative damage during the maturation process. Mitoquinone mesylate (MitoQ) is a strong antioxidant targeting mitochondria as well as anti-apoptotic agent. However, the effect of MitoQ on the quality of oocytes during in vitro maturation (IVM) is still unknown. Objectives: This study investigated the possible effects of MitoQ on maturation and developmental competency in mice oocytes. Materials and Methods: The oocytes were collected at germinal vesicle stage from 6-8-week old female NMRI mice and then cultured in TCM-199 medium supplemented with 0, 0.01, 0.02 and 0.04 µM MitoQ. The sham group was treated with DMSO (0.01% v.v). Then intracellular Glutathione (GSH), reactive oxygen species (ROS) levels, mitochondria membrane potential (ΔΨm), as well as in vitro fertilization (IVF) rate in the 18-20 h matured oocytes and metaphase II (MII) oocytes (in vivo-control), were assessed. Results: The results showed that between three dose of MitoQ, the 0.02 µM significantly increased nuclear maturation rate, GSH level, fertilization rate and blastulation (92.6, 231.7, 90.19 and 81.66%, respectively) than the in vitro-control (71.14, 152, 78.84 and 73.50%, respectively) and more comparable to that of the in vivo matured oocytes (100, 243.5, 92.10 and 83%, respectively). Also, the mitochondria membrane potential in the 0.02 µM MitoQ was significantly higher compared with those in the other groups (4.4). However, the intracellular ROS level in 0.02 µM MitoQ was significantly decreased (38.72%) compared to in vitro-control (82.2%) and was similar to the in vivo-control (33.5%). Conclusion: The results indicated that supplementation of IVM medium with MitoQ (specially 0.02 µM) enhance maturation and fertilization rate. In conclusion, MitoQ might be considered as a novel component that could be added to IVM media.
Collapse
Affiliation(s)
| | - Fardin Amidi
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hamid Nazarian
- Department of Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Farhad Hosseinzadeh Shirzeyli
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Cellular and Molecular Biology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Daliri Joupari
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
23
|
Wang XH, Yin S, Ou XH, Luo SM. Increase of mitochondria surrounding spindle causes mouse oocytes arrested at metaphase I stage. Biochem Biophys Res Commun 2020; 527:1043-1049. [PMID: 32439172 DOI: 10.1016/j.bbrc.2020.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 11/19/2022]
Abstract
During oocyte meiosis, mitochondria usually surround spindle to meet the energy demand of spindle migration and chromosome segregation. Therefore, the mitochondrion surrounding spindle is widely accepted as an important indicator to demonstrate the mitochondrial function in oocyte studies. However, the role of mitochondria surrounding spindle in oocyte quality is not exactly addressed. Mitofusin-2 (MFN2) is a mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Here, we increased the mitochondria surrounding spindle by overexpression of MFN2 in mouse oocytes. Results indicate that the increase of mitochondria surrounding spindle has little effect on germinal vesicle breakdown (GVBD), spindle migration, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production and Endoplasmic reticulum (ER) distribution, while blocks chromosome segregation, destroys the spindle, and finally causes most of the oocytes to arrest at metaphase I stage. Collectively, our results demonstrate the mitochondria surrounding spindle is precisely regulated during oocyte maturation, while too much of it may cause abnormal oocyte meiosis. Therefore, although mitochondrion surrounding spindle is a typical biological event during oocyte maturation, utilizing it to demonstrate the mitochondrial function and oocyte quality should be much careful.
Collapse
Affiliation(s)
- Xing-Hua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Shi-Ming Luo
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
24
|
Harvey AJ. Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 2020; 157:R159-R179. [PMID: 30870807 DOI: 10.1530/rep-18-0431] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022]
Abstract
Mitochondria, originally of bacterial origin, are highly dynamic organelles that have evolved a symbiotic relationship within eukaryotic cells. Mitochondria undergo dynamic, stage-specific restructuring and redistribution during oocyte maturation and preimplantation embryo development, necessary to support key developmental events. Mitochondria also fulfil a wide range of functions beyond ATP synthesis, including the production of intracellular reactive oxygen species and calcium regulation, and are active participants in the regulation of signal transduction pathways. Communication between not only mitochondria and the nucleus, but also with other organelles, is emerging as a critical function which regulates preimplantation development. Significantly, perturbations and deficits in mitochondrial function manifest not only as reduced quality and/or poor oocyte and embryo development but contribute to post-implantation failure, long-term cell function and adult disease. A growing body of evidence indicates that altered availability of metabolic co-factors modulate the activity of epigenetic modifiers, such that oocyte and embryo mitochondrial activity and dynamics have the capacity to establish long-lasting alterations to the epigenetic landscape. It is proposed that preimplantation embryo development may represent a sensitive window during which epigenetic regulation by mitochondria is likely to have significant short- and long-term effects on embryo, and offspring, health. Hence, mitochondrial integrity, communication and metabolism are critical links between the environment, the epigenome and the regulation of embryo development.
Collapse
Affiliation(s)
- Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
25
|
Barros VRP, Monte APO, Lins TLBG, Santos JM, Menezes VG, Cavalcante AYP, Araújo VR, Gouveia BB, Matos MHT. In vitro survival, growth, and maturation of sheep oocytes from secondary follicles cultured in serum-free conditions: impact of a constant or a sequential medium containing recombinant human FSH. Domest Anim Endocrinol 2019; 67:71-79. [PMID: 30765293 DOI: 10.1016/j.domaniend.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/07/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022]
Abstract
This study evaluated the in vitro development and maturation of ovine oocytes from secondary follicles cultured in serum-free medium containing fixed or sequential concentrations of recombinant human FSH (rhFSH). Follicles were cultured in α-MEM+ alone or with constant (500, 750, or 1,000 ng/mL) or sequential concentrations of rhFSH (seq. 1: day 6 = 500; day 12 = 750; day 18 = 1,000 ng/mL and seq. 2: day 6 = 100; day 12 = 500; day 18 = 1,000 ng/mL). At the end of the experiment, follicular survival was higher (P < 0.05) in 750 ng/mL rhFSH than the control and 1,000 ng/mL rhFSH. As early as day 6 of culture, antral cavity formation was observed in all treatments. Follicular diameter increased progressively and significantly in all treatments throughout 18 d of culture. Furthermore, addition of rhFSH to the medium promoted a significant increase in the percentage of fully grown oocytes in all treatments compared to α-MEM+. Mitochondrial activity was higher in rhFSH treatments than in the control, except in rhFSH seq. 2 (P < 0.05). Maturation rates increased in oocytes from intact follicles cultured in 750 ng/mL rhFSH compared to the control (P < 0.05). In conclusion, rhFSH at 750 ng/mL maintained the survival of secondary follicles cultured in serum-free medium, improved oocyte growth, mitochondrial activity, and oocyte maturation.
Collapse
Affiliation(s)
- V R P Barros
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - A P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - T L B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - J M Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - V G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - A Y P Cavalcante
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - V R Araújo
- Health Center Science, State University of Ceará, 60714-903 Fortaleza, CE, Brazil
| | - B B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil
| | - M H T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE 56300-990, Brazil.
| |
Collapse
|
26
|
Zhao H, Li T, Zhao Y, Tan T, Liu C, Liu Y, Chang L, Huang N, Li C, Fan Y, Yu Y, Li R, Qiao J. Single-Cell Transcriptomics of Human Oocytes: Environment-Driven Metabolic Competition and Compensatory Mechanisms During Oocyte Maturation. Antioxid Redox Signal 2019; 30:542-559. [PMID: 29486586 PMCID: PMC6338670 DOI: 10.1089/ars.2017.7151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The mechanisms coordinating maturation with an environment-driven metabolic shift, a critical step in determining the developmental potential of human in vitro maturation (IVM) oocytes, remain to be elucidated. Here we explored the key genes regulating human oocyte maturation using single-cell RNA sequencing and illuminated the compensatory mechanism from a metabolic perspective by analyzing gene expression. RESULTS Three key genes that encode CoA-related enzymes were screened from the RNA sequencing data. Two of them, ACAT1 and HADHA, were closely related to the regulation of substrate production in the Krebs cycle. Dysfunction of the Krebs cycle was induced by decreases in the activity of specific enzymes. Furthermore, the activator of these enzymes, the calcium concentration, was also decreased because of the failure of influx of exogenous calcium. Although release of endogenous calcium from the endoplasmic reticulum and mitochondria met the requirement for maturation, excessive release resulted in aneuploidy and developmental incompetence. High nicotinamide nucleotide transhydrogenase expression induced NADPH dehydrogenation to compensate for the NADH shortage resulting from the dysfunction of the Krebs cycle. Importantly, high NADP+ levels activated DPYD to enhance the repair of DNA double-strand breaks to maintain euploidy. INNOVATION The present study shows for the first time that exposure to the in vitro environment can lead to the decline of energy metabolism in human oocytes during maturation but that a compensatory action maintains their developmental competence. CONCLUSION In vitro maturation of human oocytes is mediated through a cascade of competing and compensatory actions driven by genes encoding enzymes.
Collapse
Affiliation(s)
- Hongcui Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tianjie Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yue Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tao Tan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Changyu Liu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yali Liu
- 3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Liang Chang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Ning Huang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Chang Li
- 2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Yong Fan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yang Yu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Rong Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Jie Qiao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| |
Collapse
|
27
|
Influence of interleukin 1 beta and tumour necrosis factor alpha on the in vitro growth, maturation and mitochondrial distribution of bovine oocytes from small antral follicles. ZYGOTE 2018; 26:381-387. [PMID: 30378512 DOI: 10.1017/s0967199418000382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThis study aimed to investigate the effects of IL1β and TNFα on growth and maturation of oocytes from small follicles (1-3 mm) during in vitro culture. To this end, cumulus-oocyte complexes (COCs) with diameters of ~110 µm were cultured in TCM-199 medium alone or supplemented with IL1β (10 ng/ml), TNFα (10 ng/ml) or both for 48 h. The oocytes were measured at the beginning and at the end of the culture period. COCs were cultured for 20 h in pre-maturation medium and then half of the COCs of each group was destined for in vitro maturation and the remaining COCs were used to evaluate meiotic progression, mitochondrial distribution and the expression of mRNAs for GDF-9, c-Mos, Cyclin-B1 and H1foo. The results showed that COCs cultured with TNFα alone or together with IL1β had higher diameters than those cultured in control medium alone or supplemented with IL1β. Control oocytes isolated from large antral follicles (>5 mm) had heterogeneous distribution of mitochondria. Oocytes isolated from small antral follicles, that had been grown in vitro in TCM-199 alone or supplemented with TNFα had similar heterogeneous mitochondrial distribution before in vitro maturation (IVM). After IVM, mitochondria were heterogeneously distribution when cultured in TCM-199. However, when cultured with TNFα and/or IL1β, mitochondria were homogeneously distributed. Presence of TNFα and/or IL1β in TCM-199 culture medium did not influence the expression of mRNAs for GDF-9, c-Mos, Cyclin-B1 and H1foo. In conclusion, TNFα and a mixture of TNFα and IL1β both stimulated the growth of bovine oocytes during their in vitro culture, but do not influence gene expression in grown oocytes.
Collapse
|
28
|
Amoushahi M, Salehnia M, Ghorbanmehr N. The mitochondrial DNA copy number, cytochrome c oxidase activity and reactive oxygen species level in metaphase II oocytes obtained from in vitro culture of cryopreserved ovarian tissue in comparison with in vivo-obtained oocyte. J Obstet Gynaecol Res 2018; 44:1937-1946. [PMID: 30084218 DOI: 10.1111/jog.13747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
AIM To evaluate the mitochondrial DNA (mtDNA) copy number, reactive oxygen species (ROS) level and intensity of mitochondrial enzyme activity in metaphase II oocytes derived from vitrified cultured immature mouse ovarian tissue in comparison with nonvitrified group and in vivo-obtained oocytes. METHODS Vitrified and nonvitrified ovaries from neonate female mice were cultured for 7 days. Then, preantral follicles were isolated and cultured in a three-dimensional culture system. Follicular development and oocyte maturation were evaluated and compared in both groups. Some of the collected metaphase II oocytes derived from in vitro and in vivo conditions were inseminated with capacitated spermatozoa, and then, the fertilization and embryo developmental rates were assessed. In the other series of oocytes, mtDNA copy number, distribution and enzyme activity and ROS level were analyzed. RESULTS The embryo development, mtDNA copy number and mitochondrial enzyme activity in collected metaphase II oocytes from two in vitro-cultured groups were significantly lower, and the ROS level was higher than those of the in vivo group (P < 0.05), but there was no significant difference between vitrified and nonvitrified groups. CONCLUSION This study showed that a two-step in vitro culture of mouse ovarian tissue decreased the mtDNA copy number and cytochrome c oxidase activity of metaphase II oocytes through an increase in their ROS level in comparison with in vivo-obtained oocytes. Thus, the in vitro culture methods should be improved.
Collapse
Affiliation(s)
| | - Mojdeh Salehnia
- Department of Anatomy, Tarbiat Modares University, Tehran, Iran
| | - Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
29
|
Hatırnaz Ş, Ata B, Hatırnaz ES, Dahan MH, Tannus S, Tan J, Tan SL. Oocyte in vitro maturation: A sytematic review. Turk J Obstet Gynecol 2018; 15:112-125. [PMID: 29971189 PMCID: PMC6022428 DOI: 10.4274/tjod.23911] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
In vitro maturation (IVM) is one of the most controversial aspects of assisted reproductive technology. Although it has been studied extensively, it is still not a conventional treatment option and is accepted as an alternative treatment. However, studies have shown that IVM can be used in almost all areas where in vitro fertilization (IVF) is used and it has a strong place in fertility protection and Ovarian Hyperstimulation syndrome management. The aim of this systematic review was to address all aspects of the current knowledge of IVM treatment together with the evolution of IVM and IVF.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana International Hospital, In Vitro Fertilization Center, Samsun, Turkey
| | - Barış Ata
- Koç University Faculty of Medicine, Department of Obstetrics and Gynecology, In Vitro Fertilization Center, İstanbul, Turkey
| | | | - Michael Haim Dahan
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Samer Tannus
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Justin Tan
- Mc Gill University Faculty of Medicine, Department of Obstetrics and Gynecology, Quebec, Canada
| | - Seang Lin Tan
- Originelle Women and Reproductive Medicine Center, Clinic of Obstetrics and Gynecology, Montreal, Quebec, Canada
| |
Collapse
|
30
|
No difference in mitochondrial distribution is observed in human oocytes after cryopreservation. Arch Gynecol Obstet 2017. [DOI: 10.1007/s00404-017-4428-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Pnma5 is essential to the progression of meiosis in mouse oocytes through a chain of phosphorylation. Oncotarget 2017; 8:96809-96825. [PMID: 29228573 PMCID: PMC5722525 DOI: 10.18632/oncotarget.18425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
PNMA (paraneoplastic antigen MA) family includes Pnma1–6. Although other members have been found to be involved in paraneoplastic neurological disorders, death receptor-dependent apoptosis, and tumorigenesis, Pnma5 was thought to be a female fertility factor, as indicated by one genome-wide study. But until now there have not been any further functional studies about Pnma5 in female meiosis. Our preliminary study indicated that Pnma5 might play important roles in meiosis. To further address this, Pnma5 was knocked down in in-vitro maturated (IVM) mouse oocytes, which are common models for mammalian female meiosis, by specific siRNA, and results showed that the loss of Pnma5 significantly delayed the progression of meiosis I and increased chromosome segregation errors during anaphase I. In in-vitro fertilization (IVF), Pnma5 knockdown caused significantly lower fertilization. To assess how it affects meiosis, Pnma5 knockdown was found to significantly decrease the stability of spindle microtubules and altered F-actin organization within actin cap regions, cause significantly abnormal mitochondria aggregation and lower ATP concentration. Next we have found that phosphorylation at Thr533 re-located Pnma5 strongly to spindles & cortex and was required for the phosphorylation of Akt and Gsk3β, while Src and Erk1/2 phosphorylation was required for the phosphorylation of Pnma5, indicating that phosphorylated Pnma5 is the active form and subsequently activates Akt and Gsk3β. Collectively this study suggests that Pnma5 is important for meiosis and is the pivot of Src→Erk1/2→Pnma5→Akt→Gsk3β pathway.
Collapse
|
32
|
Vitrification of Mouse MII Oocyte Decreases the Mitochondrial DNA Copy Number, TFAM Gene Expression and Mitochondrial Enzyme Activity. J Reprod Infertil 2017; 18:343-351. [PMID: 29201664 PMCID: PMC5691250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The objective of this study was determination of the changes in the reactive oxygen species (ROS) level, mitochondrial DNA (mtDNA) copy number and enzyme activity and transcription factor A (TFAM) gene expression in oocytes after vitrification. METHODS The oocytes at metaphase II (MII) stage (n=320) were collected from super-ovulated adult female mice (n=40). These oocytes were divided into vitrified and non-vitrified groups (n=160 in each group). After vitrification of oocytes, ROS level, mtDNA copy number; TFAM gene expression and mitochondrial enzymes activity (cytochrome C oxidase and succinate dehydrogenase) were assessed and compared with non-vitrified group. Visualization of the mitochondria was done using Mitotracker green staining under confocal microscope. Data were compared by independent T-test. Values of p<0.05 were considered as statistically significant. RESULTS The survival rate of oocytes after vitrification and warming was 96.05%. The intensity of cytochrome C oxidase activity, mtDNA copy number and TFAM gene expression in non-vitrified oocytes were significantly lower and the level of ROS was higher in vitrified oocytes in comparison with non-vitrified group (p<0.05). But the intensity of succinate dehydrogenase activity was not significantly different between the two groups. The pattern of mitochondrial distribution in two groups of study was similar but the intensity of Mitotracker green in non-vitrified oocytes was significantly higher than vitrified oocytes (p<0.05). CONCLUSION This study showed that vitrification of mouse MII oocytes reduced the mtDNA copy number and mitochondrial cytochrome C oxidase activity by increasing ROS level, thus the subsequent embryo development may be affected.
Collapse
|