1
|
Taylor L, Hood A, Mancuso F, Horan S, Walker Z. Effects of Assisted Reproductive Technology on Genetics, Obstetrics, and Neonatal Outcomes. Neoreviews 2025; 26:e89-e99. [PMID: 39889767 DOI: 10.1542/neo.26-2-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/11/2024] [Indexed: 02/03/2025]
Abstract
The prevalence of infertility has increased in the United States over the past decade with 1 in 5 reproductive-aged women suffering from this diagnosis. The use of assisted reproductive technology (ART) to achieve pregnancy has correspondingly steadily increased. After examining the outcomes of ART births, clear trends of increased preterm birth rate, higher-order multiples, and imprinting disorders have been established among ART-related outcomes. However, the relationship between ART and birth defects, abnormal placentation, and stillbirth require further investigation. This review aims to highlight current literature surrounding ART and its relationship with key obstetrical outcomes, neonatal outcomes, and medical genetics.
Collapse
Affiliation(s)
- Lateia Taylor
- University of Chicago School of Medicine, Chicago, Illinois
| | - Alexis Hood
- University of Chicago School of Medicine, Chicago, Illinois
| | | | - Sofia Horan
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Zachary Walker
- Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Yu X, Xu J, Song B, Zhu R, Liu J, Liu YF, Ma YJ. The role of epigenetics in women's reproductive health: the impact of environmental factors. Front Endocrinol (Lausanne) 2024; 15:1399757. [PMID: 39345884 PMCID: PMC11427273 DOI: 10.3389/fendo.2024.1399757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This paper explores the significant role of epigenetics in women's reproductive health, focusing on the impact of environmental factors. It highlights the crucial link between epigenetic modifications-such as DNA methylation and histones post-translational modifications-and reproductive health issues, including infertility and pregnancy complications. The paper reviews the influence of pollutants like PM2.5, heavy metals, and endocrine disruptors on gene expression through epigenetic mechanisms, emphasizing the need for understanding how dietary, lifestyle choices, and exposure to chemicals affect gene expression and reproductive health. Future research directions include deeper investigation into epigenetics in female reproductive health and leveraging gene editing to mitigate epigenetic changes for improving IVF success rates and managing reproductive disorders.
Collapse
Affiliation(s)
- Xinru Yu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiawei Xu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Bihan Song
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Runhe Zhu
- College Of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine School, Jinan, Shandong, China
| | - Jiaxin Liu
- College Of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yi Fan Liu
- Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Jie Ma
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Cardoso LCDA, Parra A, Gil CR, Arias P, Gallego N, Romanelli V, Kantaputra PN, Lima L, Llerena Júnior JC, Arberas C, Guillén-Navarro E, Nevado J, Spanish OverGrowth Registry Initiative, Tenorio-Castano J, Lapunzina P. Clinical Spectrum and Tumour Risk Analysis in Patients with Beckwith-Wiedemann Syndrome Due to CDKN1C Pathogenic Variants. Cancers (Basel) 2022; 14:cancers14153807. [PMID: 35954470 PMCID: PMC9367242 DOI: 10.3390/cancers14153807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Beckwith-Wiedemann syndrome spectrum (BWSp) is an overgrowth disorder caused by imprinting or genetic alterations at the 11p15.5 locus. Clinical features include overgrowth, macroglossia, neonatal hypoglycaemia, omphalocele, hemihyperplasia, cleft palate, and increased neoplasm incidence. The most common molecular defect observed is hypomethylation at the imprinting centre 2 (KCNQ1OT1:TSS DMR) in the maternal allele, which accounts for approximately 60% of cases, although CDKN1C pathogenic variants have been reported in 5-10% of patients, with a higher incidence in familial cases. In this study, we examined the clinical and molecular features of all cases of BWSp identified by the Spanish Overgrowth Registry Initiative with pathogenic or likely pathogenic CDKN1C variants, ascertained by Sanger sequencing or next-generation sequencing, with special focus on the neoplasm incidence, given that there is scarce knowledge of this feature in CDKN1C-associated BWSp. In total, we evaluated 21 cases of BWSp with CDKN1C variants; 19 were classified as classical BWS according to the BWSp scoring classification by Brioude et al. One of our patients developed a mediastinal ganglioneuroma. Our study adds evidence that tumour development in patients with BWSp and CDKN1C variants is infrequent, but it is extremely relevant to the patient's follow-up and supports the high heterogeneity of BWSp clinical features associated with CDKN1C variants.
Collapse
Affiliation(s)
- Leila Cabral de Almeida Cardoso
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Alejandro Parra
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Cristina Ríos Gil
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Pedro Arias
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Natalia Gallego
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | | | - Piranit Nik Kantaputra
- Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Leonardo Lima
- Instituto Fernandes Figueira IFF/FIOCRUZ, Rio de Janeiro 22250-020, Brazil
| | | | - Claudia Arberas
- Hospital de Niños Dr. Ricardo Gutiérrez, Sección Genética Médica Gallo 1330, C1425EFD CABA, Argentina
| | - Encarna Guillén-Navarro
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Universidad de Murcia, El Palmar, 30120 Murcia, Spain
| | - Julián Nevado
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | | | - Jair Tenorio-Castano
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
| | - Pablo Lapunzina
- INGEMM-Instituto de Genética Médica y Molecular, Instituto de Investigación Sanitaria Hospital La Paz (IdiPAZ), Hospital Universitario La Paz, 28046 Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA-European Reference Network, Hospital La Paz, 28046 Madrid, Spain
- Correspondence: or ; Tel.: +34-91-727-72-17; Fax: +34-91-207-10-40
| |
Collapse
|
4
|
Ma GC, Chen TH, Wu WJ, Lee DJ, Lin WH, Chen M. Proposal for Practical Approach in Prenatal Diagnosis of Beckwith–Wiedemann Syndrome and Review of the Literature. Diagnostics (Basel) 2022; 12:diagnostics12071709. [PMID: 35885613 PMCID: PMC9315620 DOI: 10.3390/diagnostics12071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Beckwith–Wiedemann syndrome (BWS) is a phenotypically and genetically heterogeneous disorder associated with epigenetic/genetic aberrations on chromosome 11p15.4p15.5. There is no consensus criterion for prenatal diagnosis of BWS. Methods: Three BWS patients with their clinical histories, prenatal ultrasonographic features, and results of molecular diagnosis were presented. Likewise, by incorporating the findings of our cases and literature review, the phenotypic spectrum and genotype–phenotype correlations of fetal BWS were summarized, and a practical approach in prenatal diagnosis of BWS was proposed. Results: A total of 166 BWS cases with prenatal features were included for analysis. Common fetal features include abdominal wall defects (42.8%), polyhydramnios (33.1%), and macrosomia (32.5%). Molecular pathologies include methylation changes in imprinting control region 1 and 2 (ICR1 and ICR2), paternal uniparental disomy of chromosome 11p15.5, copy number change involving 11p15, etc. Some genotype–phenotype correlations were observed. However, the broad phenotypic spectrum but limited features manifested by affected fetuses rendering ultrasonographic diagnosis not easy. Conclusions: Molecular tests are used for prenatal diagnosis of BWS suspected by ultrasonography. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is recommended as the first-line molecular tool because it simultaneously detects ICR1/ICR2 methylation statuses and copy numbers that solve the majority of clinical cases in the prenatal scenario.
Collapse
Affiliation(s)
- Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (G.-C.M.); (W.-J.W.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan
| | - Tze-Ho Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Wan-Ju Wu
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (G.-C.M.); (W.-J.W.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Dong-Jay Lee
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Wen-Hsiang Lin
- Welgene Biotechnology Company, Nangang Business Park, Taipei 11560, Taiwan;
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan; (G.-C.M.); (W.-J.W.)
- Research Department, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 50006, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 10041, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biomedical Science, Da-Yeh University, Changhua 51591, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: or ; Tel.: +886-4722-5121 (ext. 2323)
| |
Collapse
|
5
|
Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS. Placental Abnormalities are Associated With Specific Windows of Embryo Culture in a Mouse Model. Front Cell Dev Biol 2022; 10:884088. [PMID: 35547813 PMCID: PMC9081528 DOI: 10.3389/fcell.2022.884088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
Assisted Reproductive Technologies (ART) employ gamete/embryo handling and culture in vitro to produce offspring. ART pregnancies have an increased risk of low birth weight, abnormal placentation, pregnancy complications, and imprinting disorders. Embryo culture induces low birth weight, abnormal placental morphology, and lower levels of DNA methylation in placentas in a mouse model of ART. Whether preimplantation embryos at specific stages of development are more susceptible to these perturbations remains unresolved. Accordingly, we performed embryo culture for several discrete periods of preimplantation development and following embryo transfer, assessed fetal and placental outcomes at term. We observed a reduction in fetal:placental ratio associated with two distinct windows of preimplantation embryo development, one prior to the morula stage and the other from the morula to blastocyst stage, whereas placental morphological abnormalities and reduced imprinting control region methylation were only associated with culture prior to the morula stage. Extended culture to the blastocyst stage also induces additional placental DNA methylation changes compared to embryos transferred at the morula stage, and female concepti exhibited a higher loss of DNA methylation than males. By identifying specific developmental windows of susceptibility, this study provides a framework to optimize further culture conditions to minimize risks associated with ART pregnancies.
Collapse
Affiliation(s)
- Lisa A. Vrooman
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Eric A. Rhon-Calderon
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kashviya V. Suri
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Asha K. Dahiya
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Yemin Lan
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Richard M. Schultz
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Horánszky A, Becker JL, Zana M, Ferguson-Smith AC, Dinnyés A. Epigenetic Mechanisms of ART-Related Imprinting Disorders: Lessons From iPSC and Mouse Models. Genes (Basel) 2021; 12:genes12111704. [PMID: 34828310 PMCID: PMC8620286 DOI: 10.3390/genes12111704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022] Open
Abstract
The rising frequency of ART-conceived births is accompanied by the need for an improved understanding of the implications of ART on gametes and embryos. Increasing evidence from mouse models and human epidemiological data suggests that ART procedures may play a role in the pathophysiology of certain imprinting disorders (IDs), including Beckwith-Wiedemann syndrome, Silver-Russell syndrome, Prader-Willi syndrome, and Angelman syndrome. The underlying molecular basis of this association, however, requires further elucidation. In this review, we discuss the epigenetic and imprinting alterations of in vivo mouse models and human iPSC models of ART. Mouse models have demonstrated aberrant regulation of imprinted genes involved with ART-related IDs. In the past decade, iPSC technology has provided a platform for patient-specific cellular models of culture-associated perturbed imprinting. However, despite ongoing efforts, a deeper understanding of the susceptibility of iPSCs to epigenetic perturbation is required if they are to be reliably used for modelling ART-associated IDs. Comparing the patterns of susceptibility of imprinted genes in mouse models and IPSCs in culture improves the current understanding of the underlying mechanisms of ART-linked IDs with implications for our understanding of the influence of environmental factors such as culture and hormone treatments on epigenetically important regions of the genome such as imprints.
Collapse
Affiliation(s)
- Alex Horánszky
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| | - Jessica L. Becker
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - Melinda Zana
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
| | - Anne C. Ferguson-Smith
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; (J.L.B.); (A.C.F.-S.)
| | - András Dinnyés
- BioTalentum Ltd., H-2100 Gödöllő, Hungary; (A.H.); (M.Z.)
- Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
- HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, H-6723 Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-20-510-9632; Fax: +36-28-526-151
| |
Collapse
|
7
|
Park KS, Rahat B, Lee HC, Yu ZX, Noeker J, Mitra A, Kean CM, Knutsen RH, Springer D, Gebert CM, Kozel BA, Pfeifer K. Cardiac pathologies in mouse loss of imprinting models are due to misexpression of H19 long noncoding RNA. eLife 2021; 10:e67250. [PMID: 34402430 PMCID: PMC8425947 DOI: 10.7554/elife.67250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Maternal loss of imprinting (LOI) at the H19/IGF2 locus results in biallelic IGF2 and reduced H19 expression and is associated with Beckwith--Wiedemann syndrome (BWS). We use mouse models for LOI to understand the relative importance of Igf2 and H19 mis-expression in BWS phenotypes. Here we focus on cardiovascular phenotypes and show that neonatal cardiomegaly is exclusively dependent on increased Igf2. Circulating IGF2 binds cardiomyocyte receptors to hyperactivate mTOR signaling, resulting in cellular hyperplasia and hypertrophy. These Igf2-dependent phenotypes are transient: cardiac size returns to normal once Igf2 expression is suppressed postnatally. However, reduced H19 expression is sufficient to cause progressive heart pathologies including fibrosis and reduced ventricular function. In the heart, H19 expression is primarily in endothelial cells (ECs) and regulates EC differentiation both in vivo and in vitro. Finally, we establish novel mouse models to show that cardiac phenotypes depend on H19 lncRNA interactions with Mirlet7 microRNAs.
Collapse
Affiliation(s)
- Ki-Sun Park
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Beenish Rahat
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Hyung Chul Lee
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Zu-Xi Yu
- Pathology Core, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Jacob Noeker
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Apratim Mitra
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Connor M Kean
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Danielle Springer
- Murine Phenotyping Core, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Claudia M Gebert
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Karl Pfeifer
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
8
|
Abbasi N, Moore A, Chiu P, Ryan G, Weksberg R, Shuman C, Steele L, Chitayat D. Prenatally diagnosed omphaloceles: Report of 92 cases and association with Beckwith-Wiedemann syndrome. Prenat Diagn 2021; 41:798-816. [PMID: 33687072 DOI: 10.1002/pd.5930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Describe the prevalence, perinatal and long-term outcomes of Beckwith-Wiedemann syndrome (BWS) among prenatally detected omphaloceles. METHODS All prenatally diagnosed omphaloceles from 2010 to 2015 within a single tertiary care centre were identified. An echocardiogram and detailed fetal ultrasound were performed, and amniocentesis was offered with karyotype/microarray analysis and BWS molecular testing. Perinatal, neonatal, and long-term outcomes were retrieved for BWS cases. RESULTS Among 92 omphaloceles, 62 had additional anomalies. Abnormal karyotypes were identified in 23/62 (37%) non-isolated and 2/30 (7%) isolated cases. One BWS case (5%) was identified among non-isolated omphaloceles and six BWS cases (37.5%) were identified among isolated omphaloceles after exclusion of aneuploidy. Among 19 BWS cases, 21% were conceived by ART. All omphaloceles underwent primary closure. Prenatally, macrosomia and polyhydramnios were seen in 42%. Macroglossia and nephromegaly were more commonly detected postnatally. Preterm birth occurred in 10/19 (53%) cases and cesarean deliveries were performed in 7/19 (40%) cases. Overall mortality was 20% (4/19). Embryonal tumors were diagnosed in 2/16 (12.5%) children, and neurodevelopmental outcomes were normal in 9/12 (75%) survivors. CONCLUSIONS After excluding aneuploidy, BWS was identified in 37.5% and 5% of isolated and non-isolated omphaloceles, respectively. Omphaloceles were small-moderate size with good long-term surgical and neurodevelopmental outcomes when isolated.
Collapse
Affiliation(s)
- Nimrah Abbasi
- Department of Obstetrics and Gynecology, The Ontario Fetal Center, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Aideen Moore
- Department of Pediatrics, Division of Neonatology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Priscilla Chiu
- Division of General and Thoracic Surgery, Department of Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Greg Ryan
- Department of Obstetrics and Gynecology, The Ontario Fetal Center, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cheryl Shuman
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Department of Genetic Counselling, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leslie Steele
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Genome Diagnostics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Prenatal Diagnosis and Medical Genetics, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Chang S, Bartolomei MS. Modeling human epigenetic disorders in mice: Beckwith-Wiedemann syndrome and Silver-Russell syndrome. Dis Model Mech 2020; 13:dmm044123. [PMID: 32424032 PMCID: PMC7272347 DOI: 10.1242/dmm.044123] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genomic imprinting, a phenomenon in which the two parental alleles are regulated differently, is observed in mammals, marsupials and a few other species, including seed-bearing plants. Dysregulation of genomic imprinting can cause developmental disorders such as Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS). In this Review, we discuss (1) how various (epi)genetic lesions lead to the dysregulation of clinically relevant imprinted loci, and (2) how such perturbations may contribute to the developmental defects in BWS and SRS. Given that the regulatory mechanisms of most imprinted clusters are well conserved between mice and humans, numerous mouse models of BWS and SRS have been generated. These mouse models are key to understanding how mutations at imprinted loci result in pathological phenotypes in humans, although there are some limitations. This Review focuses on how the biological findings obtained from innovative mouse models explain the clinical features of BWS and SRS.
Collapse
Affiliation(s)
- Suhee Chang
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Henningsen AA, Gissler M, Rasmussen S, Opdahl S, Wennerholm UB, Spangmose AL, Tiitinen A, Bergh C, Romundstad LB, Laivuori H, Forman JL, Pinborg A, Lidegaard Ø. Imprinting disorders in children born after ART: a Nordic study from the CoNARTaS group. Hum Reprod 2020; 35:1178-1184. [DOI: 10.1093/humrep/deaa039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
Abstract
STUDY QUESTION:
Is the risk of imprinting disorders increased in children conceived after
SUMMARY ANSWER:
We found an adjusted odds ratio (AOR) of 2.84 [95% CI: 1.34–6.01] for Beckwith–Wiedemann syndrome in ART children, while the risk of Prader–Willi syndrome, Silver–Russell syndrome or Angelman syndrome was not increased in children conceived after ART.
WHAT IS KNOWN ALREADY:
Earlier studies, most of them small, have suggested an association between ART and imprinting disorders.
STUDY DESIGN, SIZE, DURATION:
This was a binational register-based cohort study. All children conceived by ART in Denmark (n = 45 393, born between 1994 and 2014) and in Finland (n = 29 244, born between 1990 and 2014) were identified. The full background populations born during the same time periods in the two countries were included as controls. Odds ratios of imprinting disorders in ART children compared with naturally conceived (NC) children were calculated. The median follow-up time was 8 years and 9 months for ART children and 11 years and 9 months for NC children.
PARTICIPANTS/MATERIALS, SETTING, METHODS:
From the national health registries in Denmark and Finland, we identified all children diagnosed with Prader–Willi syndrome (n = 143), Silver–Russell syndrome (n = 69), Beckwith–Wiedemann syndrome (n = 105) and Angelman syndrome (n = 72) born between 1994/1990 and 2014, respectively.
MAIN RESULTS AND THE ROLE OF CHANCE:
We identified a total of 388 children diagnosed with imprinting disorders; 16 of these were conceived after ART. The overall AOR for the four imprinting disorders in ART children compared with NC children was 1.35 [95% CI: 0.80–2.29], but since eight ART children were diagnosed with Beckwith–Wiedemann syndrome, the AOR for this specific imprinting disorder was 2.84 [95% CI: 1.34–6.01]. The absolute risk of Beckwith–Wiedemann syndrome in children conceived after ART was still low: 10.7 out of 100 000 newborns. The risks of Prader–Willi syndrome, Silver–Russell syndrome and Angelman syndrome were not increased in children conceived after ART.
LIMITATIONS, REASONS FOR CAUTION:
Imprinting disorders are rare events and our results are based on few ART children with imprinting disorders. The aetiology is complex and only partly clarified, and the clinical diagnoses are challenged by a broad phenotypic spectrum.
WIDER IMPLICATIONS OF THE FINDINGS:
In the existing studies, results on the risk of imprinting disorders in children conceived after ART are ambiguous. This study adds that the risk of imprinting disorders in ART children is very small and perhaps restricted to Beckwith–Wiedemann syndrome.
STUDY FUNDING/COMPETING INTEREST(S):
This work was supported by the Nordic Trial Alliance: a pilot project jointly funded by the Nordic Council of Ministers and NordForsk (grant number: 71450), the Nordic Federation of Obstetrics and Gynecology (grant numbers: NF13041, NF15058, NF16026 and NF17043) and the Interreg Öresund-Kattegat-Skagerak European Regional Development Fund (ReproUnion project). The authors have no conflicts of interest related to this work.
TRIAL REGISTRATION NUMBER:
N/A
Collapse
Affiliation(s)
- A A Henningsen
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - M Gissler
- Information Services Department, THL Finnish Institute for Health and Welfare, 00270 Helsinki, Finland
- Department of Neurobiology, Care Sciences and Society, Division of Family Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - S Rasmussen
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - S Opdahl
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - U B Wennerholm
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - A L Spangmose
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - A Tiitinen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
| | - C Bergh
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - L B Romundstad
- Department of Public Health and Nursing, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Spiren Fertility Clinic, 7491 Trondheim, Norway
| | - H Laivuori
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, 00290 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Obstetrics and Gynecology, Tampere University Hospital and University of Tampere, Faculty of Medicine and Health Technology, 33520 Tampere, Finland
| | - J L Forman
- Department of Biostatistics, University of Copenhagen, 1014 Copenhagen, Denmark
| | - A Pinborg
- Fertility Clinic, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Ø Lidegaard
- Gynecological Clinic, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
12
|
Chen L, Ni X, Xu Z, Fang J, Zhang N, Li D. Effect of frozen and fresh embryo transfers on the birthweight of live-born twins. Eur J Obstet Gynecol Reprod Biol 2020; 246:50-54. [PMID: 31954368 DOI: 10.1016/j.ejogrb.2020.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To explore the influence of frozen embryo transfer (FET) and fresh embryo transfer (Fresh) on the birthweight of live-born twins. STUDY DESIGN A total of 8482 live-born twins were studied. The proportions of small for gestational age (SGA) and large for gestational age (LGA), the mean birthweight and the z score of live-born twins in the two groups were compared. Multiple linear regression analysis was used to evaluate the relationship between confounding factors and the birthweight of live-born twins. RESULTS The proportion of SGA infants significantly decreased as BMI increased (BMI < 20, 6.1 %; 20 ≤ BMI≤25, 4.1 %; BMI > 25, 3.6 %; P<0.05). The proportion of LGA infants significantly increased as BMI increased (BMI < 20, 20.5 %; 20 ≤ BMI≤25, 25.2 %; BMI > 25, 30.7 %; P<0.0001). The proportion of SGA infants was significantly lower in the FET group than in the Fresh group, whereas the proportion of LGA infants was significantly higher in the former than in the latter. The absolute mean birthweight of live-born twins was significantly higher in the FET group compared with the Fresh group (2579 ± 458 vs. 2534 ± 465, P < 0.0001). The mean z score of the FET group was also significantly higher than that of the Fresh group (0.420 vs. 0.240, P < 0.0001). Multiple linear regression analysis indicated that FET was a more significant factor than fresh embryo transfer in influencing the birthweight of live-born twins. CONCLUSION FET significantly increased the birthweight of live-born twins compared with fresh embryo transfer.
Collapse
Affiliation(s)
- Linjun Chen
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing 210008, People's Republic of China.
| | - Xiaobei Ni
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing 210008, People's Republic of China.
| | - Zhipeng Xu
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing 210008, People's Republic of China.
| | - Junshun Fang
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing 210008, People's Republic of China.
| | - Ningyuan Zhang
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing 210008, People's Republic of China.
| | - Dong Li
- Reproductive Medical Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321#, Nanjing 210008, People's Republic of China.
| |
Collapse
|
13
|
Manor J, Lalani SR. Overgrowth Syndromes-Evaluation, Diagnosis, and Management. Front Pediatr 2020; 8:574857. [PMID: 33194904 PMCID: PMC7661798 DOI: 10.3389/fped.2020.574857] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormally excessive growth results from perturbation of a complex interplay of genetic, epigenetic, and hormonal factors that orchestrate human growth. Overgrowth syndromes generally present with inherent health concerns and, in some instances, an increased risk of tumor predisposition that necessitate prompt diagnosis and appropriate referral. In this review, we introduce some of the more common overgrowth syndromes, along with their molecular mechanisms, diagnostics, and medical complications for improved recognition and management of patients affected with these disorders.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Seema R Lalani
- Department of Molecular Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Affiliation(s)
| | - Joann Norma Bodurtha
- Department of Genetic Medicine.,Departments of Pediatrics and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Duffy KA, Cielo CM, Cohen JL, Gonzalez-Gandolfi CX, Griff JR, Hathaway ER, Kupa J, Taylor JA, Wang KH, Ganguly A, Deardorff MA, Kalish JM. Characterization of the Beckwith-Wiedemann spectrum: Diagnosis and management. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:693-708. [PMID: 31469230 DOI: 10.1002/ajmg.c.31740] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/20/2023]
Abstract
Beckwith-Wiedemann syndrome (BWS) is the most common epigenetic overgrowth and cancer predisposition disorder. Due to both varying molecular defects involving chromosome 11p15 and tissue mosaicism, patients can present with a variety of clinical features, leading to the newly defined Beckwith-Wiedemann spectrum (BWSp). The BWSp can be further divided into three subsets of patients: those presenting with classic features, those presenting with isolated lateralized overgrowth (ILO) and those not fitting into the previous two categories, termed atypical BWSp. Previous reports of patients with BWS have focused on those with the more recognizable, classic features, and limited information is available on those who fit into the atypical and ILO categories. Here, we present the first cohort of patients recruited across the entire BWSp, describe clinical features and molecular diagnostic characteristics, and provide insight into practical diagnosis and management recommendations that we have gained from this cohort.
Collapse
Affiliation(s)
- Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christopher M Cielo
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer L Cohen
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jessica R Griff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Evan R Hathaway
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jonida Kupa
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jesse A Taylor
- Division of Plastic and Reconstructive Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen H Wang
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Imatinib treatments have long-term impact on placentation and embryo survival. Sci Rep 2019; 9:2535. [PMID: 30796277 PMCID: PMC6385245 DOI: 10.1038/s41598-019-39134-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023] Open
Abstract
Imatinib is an oral chemotherapeutic used primarily to treat chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). The potential effects of cancer treatments on a patient’s future fertility are a major concern affecting the quality of life for cancer survivors. The effects of imatinib on future fertility are unknown. It is teratogenic. Therefore, patients are advised to stop treatment before pregnancy. Unfortunately, CML and GIST have high rates of recurrence in the absence of the drug, therefore halting imatinib during pregnancy endangers the mother. Possible long-term (post-treatment) effects of imatinib on reproduction have not been studied. We have used a mouse model to examine the effects of imatinib on the placenta and implantation after long-term imatinib exposure. We found significant changes in epigenetic markers of key imprinted genes in the placenta. There was a significant decrease in the labyrinth zone and vasculature of the placenta, which could impact fetal growth later in pregnancy. These effects on placental growth occurred even when imatinib was stopped prior to pregnancy. These results indicate potential long-term effects of imatinib on pregnancy and implantation. A prolonged wash-out period prior to pregnancy or extra monitoring for possible placental insufficiency may be advisable.
Collapse
|
17
|
Mussa A, Carli D, Cardaropoli S, Molinatto C, Ferrero GB. Assisted reproduction techniques and prenatal diagnosis of Beckwith-Wiedemann spectrum presenting with omphalocele. J Assist Reprod Genet 2018; 35:1925-1926. [PMID: 30090960 DOI: 10.1007/s10815-018-1288-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022] Open
Affiliation(s)
- Alessandro Mussa
- Neonatology and Neonatal Intensive Care Unit, Department of Gynecology and Obstetrics, Città della Salute e della Scienza di Torino, S.Anna Hospital, Piazza Polonia 94, 10126, Turin, Italy. .,Department of Pediatric and Public Health Sciences, University of Torino, Piazza Polonia 94, 10126, Turin, Italy.
| | - Diana Carli
- Department of Pediatric and Public Health Sciences, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Simona Cardaropoli
- Department of Pediatric and Public Health Sciences, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Cristina Molinatto
- Department of Pediatric and Public Health Sciences, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Giovanni Battista Ferrero
- Department of Pediatric and Public Health Sciences, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| |
Collapse
|