1
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2025; 62:85-112. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
2
|
Kurowska P, Berthet L, Ramé C, Węgiel M, Maślanka A, Guérif F, Froment P, Rak A, Dupont J. Polycyclic aromatic hydrocarbons in human granulosa cells: first in vivo presence and positive correlation with body mass index and in vitro ovarian cell steroidogenesis regulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104611. [PMID: 39674531 DOI: 10.1016/j.etap.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS). Their highest concentration was in obese Gc, except for acenaphthene and acenaphthylene, and positively correlated with BMI. In FF, we noted only positive correlation between naphthalene and BMI, whereas in blood plasma positive correlation between naphthalene, acenaphthene, pyrene and BMI. Phenanthrene and naphthalene but not fluoranthene inhibited totally steroidogenesis (ELISA), CYP19A1 mRNA expression (real-time PCR) and increased oxidative stress index and catalase expression in Gc independently on BMI. While all studied PAHs decreased Gc proliferation (BrdU assay) and viability (Cell Count kit-8 assay). Thus, Gc PAHs concentrations are positively correlated with BMI and alter ovarian functions.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Lucille Berthet
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Christelle Ramé
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Małgorzata Węgiel
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Anna Maślanka
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, Kracow 31-155, Poland.
| | - Fabrice Guérif
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France.
| | - Pascal Froment
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, Krakow 30-387, Poland.
| | - Joelle Dupont
- INRAE UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly 37380, France.
| |
Collapse
|
3
|
Yan H, Wang L, Zhang G, Li N, Zhao Y, Liu J, Jiang M, Du X, Zeng Q, Xiong D, He L, Zhou Z, Luo M, Liu W. Oxidative stress and energy metabolism abnormalities in polycystic ovary syndrome: from mechanisms to therapeutic strategies. Reprod Biol Endocrinol 2024; 22:159. [PMID: 39722030 DOI: 10.1186/s12958-024-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Polycystic ovary syndrome (PCOS), as a common endocrine and metabolic disorder, is often regarded as a primary cause of anovulatory infertility in women. The pathogenesis of PCOS is complex and influenced by multiple factors. Emerging evidence highlights that energy metabolism dysfunction and oxidative stress in granulosa cells (GCs) are pivotal contributors to aberrant follicular development and impaired fertility in PCOS patients. Mitochondrial dysfunction, increased oxidative stress, and disrupted glucose metabolism are frequently observed in individuals with PCOS, collectively leading to compromised oocyte quality. This review delves into the mechanisms linking oxidative stress and energy metabolism abnormalities in PCOS, analyzing their adverse effects on reproductive function. Furthermore, potential therapeutic strategies to mitigate oxidative stress and metabolic disturbances are proposed, providing a theoretical basis for advancing clinical management of PCOS.
Collapse
Affiliation(s)
- Heqiu Yan
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Li Wang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Ningjing Li
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Yuhong Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China
| | - Jun Liu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Min Jiang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Xinrong Du
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Qin Zeng
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Dongsheng Xiong
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Libing He
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China
| | - Zhuoting Zhou
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 611137, China
| | - Mengjun Luo
- Department of Clinical Laboratory, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, No. 1617 Ri Yue Street, Chengdu, Sichuan, 611731, China.
| | - Weixin Liu
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Woman's and Children's Hospital, The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, 610045, China.
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610000, China.
| |
Collapse
|
4
|
Tan C, Huang S, Xu L, Zhang T, Yuan X, Li Z, Chen M, Chen C, Yan Q. Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome. Lipids Health Dis 2024; 23:248. [PMID: 39143634 PMCID: PMC11325768 DOI: 10.1186/s12944-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Collapse
Affiliation(s)
- Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Liying Xu
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Tongtong Zhang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
5
|
Vale-Fernandes E, Moreira MV, Rodrigues B, Pereira SS, Leal C, Barreiro M, Tomé A, Monteiro MP. Anti-Müllerian hormone a surrogate of follicular fluid oxidative stress in polycystic ovary syndrome? Front Cell Dev Biol 2024; 12:1408879. [PMID: 39011395 PMCID: PMC11246868 DOI: 10.3389/fcell.2024.1408879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women at childbearing age. Anti-Müllerian hormone (AMH) is a widely accepted sensitive marker of ovarian reserve, which has been suggested that could also act as biomarker of ovarian morphology for PCOS diagnosis. Oxidative stress (OS) is known to be associated and have a negative impact factor in several reproductive conditions, including PCOS. However, the relationship between circulating AMH and OS within the follicular fluid (FF), and its potential impact on in vitro fertilization (IVF) outcomes of women with PCOS, remains largely unexplored. A total of 84 women, with PCOS (n = 30) or ovulatory controls (n = 54), were enrolled in this study. Women underwent individualized controlled ovarian stimulation for oocyte retrieval. Blood and FF obtained from mature follicles were collected at the time of oocyte retrieval, for measuring total testosterone, ∆4-androstenedione, progesterone, sex hormone binding globulin (SHBG) and AMH. OS in the FF was assessed by measuring total antioxidant capacity (TAC) through the ferric reducing antioxidant power (FRAP) and lipid peroxidation (LPO) by quantification of malondialdehyde (MDA) levels. Our results demonstrated that women with PCOS had significantly higher plasma levels of AMH, ∆4-androstenedione, total testosterone and a free androgen index (FAI) than observed in non-PCOS controls. In women with PCOS, total testosterone and AMH levels in the FF were also higher, while TAC was lower compared to non-PCOS. Furthermore, circulating AMH levels were positively correlated with ∆4-androstenedione, albeit negatively correlated with TAC. In this study we demonstrated that the susceptibility to OS, as assessed by the total antioxidant capacity in the FF, is higher in women with PCOS and inversely related to AMH levels. This study results lead us to forge the reasonable hypothesis that the greater susceptibility to OS within the follicle microenvironment is potentially at the end of a roadway that starts with elevated ∆4-androstenedione and AMH within the FF, which in turn are mirrored by circulating AMH and androgen levels. Thus, suggesting that circulating AMH levels could act as a surrogate biomarker of follicular fluid oxidative stress in women with PCOS.
Collapse
Affiliation(s)
- Emídio Vale-Fernandes
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
| | - Mafalda V. Moreira
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bárbara Rodrigues
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGM), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
| | - Sofia S. Pereira
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Carla Leal
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Márcia Barreiro
- Centre for Medically Assisted Procreation/Public Gamete Bank, Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
| | - António Tomé
- Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Unidade Local de Saúde de Santo António (ULSSA), Porto, Portugal
| | - Mariana P. Monteiro
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
6
|
Zhang M, Wang Y, Di J, Zhang X, Liu Y, Zhang Y, Li B, Qi S, Cao X, Liu L, Liu S, Xu F. High coverage of targeted lipidomics revealed lipid changes in the follicular fluid of patients with insulin-resistant polycystic ovary syndrome and a positive correlation between plasmalogens and oocyte quality. Front Endocrinol (Lausanne) 2024; 15:1414289. [PMID: 38904043 PMCID: PMC11187234 DOI: 10.3389/fendo.2024.1414289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Background Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the most common endocrine and metabolic disease in women of reproductive age, and low fertility in PCOS patients may be associated with oocyte quality; however, the molecular mechanism through which PCOS-IR affects oocyte quality remains unknown. Methods A total of 22 women with PCOS-IR and 23 women without polycystic ovary syndrome (control) who underwent in vitro fertilization and embryo transfer were recruited, and clinical information pertaining to oocyte quality was analyzed. Lipid components of follicular fluid (FF) were detected using high-coverage targeted lipidomics, which identified 344 lipid species belonging to 19 lipid classes. The exact lipid species associated with oocyte quality were identified. Results The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of 2PN cleaved embryos, and the number of high-quality embryos were significantly lower in the PCOS-IR group. A total of 19 individual lipid classes and 344 lipid species were identified and quantified. The concentrations of the 19 lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the PCOS-IR group, among which plasmalogens were positively correlated with oocyte quality. Conclusions This study measured the levels of various lipids in follicular fluid, identified a significantly altered lipid profile in the FF of PCOS-IR patients, and established a correlation between poor oocyte quality and plasmalogens in PCOS-IR patients. These findings have contributed to the development of plasmalogen replacement therapy to enhance oocyte quality and have improved culture medium formulations for oocyte in vitro maturation (IVM).
Collapse
Affiliation(s)
- Meizi Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yuanyuan Wang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Jianyong Di
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xuanlin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yixin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Bowen Li
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaomin Cao
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Li Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Shouzeng Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
7
|
Dai M, Hong L, Yin T, Liu S. Disturbed Follicular Microenvironment in Polycystic Ovary Syndrome: Relationship to Oocyte Quality and Infertility. Endocrinology 2024; 165:bqae023. [PMID: 38375912 DOI: 10.1210/endocr/bqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with infertility and poor reproductive outcomes. The follicular fluid (FF) microenvironment plays a crucial role in oocyte development. This review summarizes evidence elucidating the alterations in FF composition in PCOS. Various studies demonstrated a pronounced proinflammatory milieu in PCOS FF, characterized by increased levels of cytokines, including but not limited to interleukin-6 (IL-6), tumor necrosis factor α, C-reactive protein, and IL-1β, concomitant with a reduction in anti-inflammatory IL-10. T lymphocytes and antigen-presenting cells are dysregulated in PCOS FF. PCOS FF exhibit heightened reactive oxygen species production and the accumulation of lipid peroxidation byproducts, and impaired antioxidant defenses. Multiple microRNAs are dysregulated in PCOS FF, disrupting signaling critical to granulosa cell function. Proteomic analysis reveals changes in pathways related to immune responses, metabolic perturbations, angiogenesis, and hormone regulation. Metabolomics identify disturbances in glucose metabolism, amino acids, lipid profiles, and steroid levels with PCOS FF. Collectively, these pathological alterations may adversely affect oocyte quality, embryo development, and fertility outcomes. Further research on larger cohorts is needed to validate these findings and to forge the development of prognostic biomarkers of oocyte developmental competence within FF. Characterizing the follicular environment in PCOS is key to elucidating the mechanisms underlying subfertility in this challenging disorder.
Collapse
Affiliation(s)
- Mengyang Dai
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430061, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518000, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518000, China
| |
Collapse
|
8
|
Huang J, Fan H, Li C, Yang K, Xiong C, Xiong S, Feng S, Chen S, Wang B, Su Y, Xu B, Yang H, Wang N, Zhu J. Dysregulation of ferroptosis-related genes in granulosa cells associates with impaired oocyte quality in polycystic ovary syndrome. Front Endocrinol (Lausanne) 2024; 15:1346842. [PMID: 38390208 PMCID: PMC10882713 DOI: 10.3389/fendo.2024.1346842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Background Poor oocyte quality remains one of the major challenges for polycystic ovary syndrome (PCOS) patients during in vitro fertilization (IVF) treatment. Granulosa cells (GCs) in PCOS display altered functions and could cause an unfavorable microenvironment for oocyte growth and maturation. Ferroptosis is a new form of programmed cell death, but its role in PCOS has been largely unclarified. Methods Ferroptosis-related differentially expressed genes (DEGs) of GCs in women with PCOS were identified by bioinformatic analyses of GSE155489 and GSE168404 datasets. Functional enrichment analyses were conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Core ferroptosis-related genes were further screened by random forest, and evaluated for diagnostic value by receiver operating characteristic curve analyses. Gene expression was validated by real-time quantitative polymerase chain reaction of collected GC samples, and analyzed for association with oocyte quality. In addition, gene regulatory network was constructed based on predicted RNA interactions and transcription factors, while potential therapeutic compounds were screened through molecular docking with crystallographic protein structures. Results A total of 14 ferroptosis-related DEGs were identified. These DEGs were mainly enriched in reactive oxygen species metabolic process, mitochondrial outer membrane, antioxidant activity as well as ferroptosis and adipocytokine signaling pathways. Eight core ferroptosis-related genes (ATF3, BNIP3, DDIT4, LPIN1, NOS2, NQO1, SLC2A1 and SLC2A6) were further selected in random forest model, which showed high diagnostic performance for PCOS. Seven of them were validated in GC samples, and five were found to be significantly and positively correlated with one or more oocyte quality parameters in PCOS patients, including oocyte retrieval rate, mature oocyte rate, normal fertilization rate, and good-quality embryo rate. Gene regulatory network revealed JUN and HMGA1 as two important transcription factors, while dicoumarol and flavin adenine dinucleotide were predicted as small molecules with therapeutic potential. Conclusions This is the first comprehensive report to study the differential expression of ferroptosis-related genes in GCs of PCOS and their clinical relevance with oocyte quality. Our findings could provide novel insights on the potential role of GC ferroptosis in PCOS pathogenesis, diagnosis, and targeted treatment.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Chenxi Li
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Shenghui Feng
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Shen Chen
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Bangqi Wang
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yufang Su
- Department of Oncology, Jiangxi Maternal and Child Health Hospital, National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Boyun Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyan Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ni Wang
- Department of Anesthesiology, Xi’an Children’s Hospital, Xi’an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Zhang G, Chu M, Wang S, Feng P, Shi J, Li H, Li X, Pan Z. Integration of multi-omics reveals the important role of the BBS10 gene in reproduction. J Anim Sci 2024; 102:skae273. [PMID: 39315571 PMCID: PMC11495222 DOI: 10.1093/jas/skae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Blood samples are easily obtained from sheep. Therefore, blood analysis can be a convenient method for evaluating reproductive traits in sheep by detecting genetic and metabolic changes in the ovary. By combining 167 RNA sequencing data and 60 untargeted metabolomics data, this study analyzed the relationship between genes and metabolites in the ovary and blood. The conjoint KEGG enrichment analysis enriched glutathione (GSH) metabolic pathways both in the ovary and blood. This finding provides an explanation for possible GSH metabolic processes in the ovary with metabolite exchange in the blood. The metabolite-gene-disease interaction network revealed a correlation between the expression of certain Bardet-Biedl syndrome (BBS) family genes in the ovary and blood. This indicates that BBS family genes, such as BBS10 in sheep blood, could be a potential biomarker for BBS. We investigated the relationship between BBS10 gene expression in the ovary and lambing numbers using whole-genome sequencing data from 450 ewes. Our findings suggest that g.112314188C>G may lead to decreased litter size in ewes carrying the FecB gene. These single nucleotide polymorphisms could be potential molecular markers for breeding sheep.
Collapse
Affiliation(s)
- Guoqing Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pingjie Feng
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Jianxin Shi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Hao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Xinyue Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Zhangyuan Pan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
10
|
Moreira MV, Vale-Fernandes E, Albergaria IC, Alves MG, Monteiro MP. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: A systematic review. Rev Endocr Metab Disord 2023; 24:1045-1073. [PMID: 37493841 PMCID: PMC10697886 DOI: 10.1007/s11154-023-09819-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
Polycystic ovary syndrome (PCOS) is recognized as one of the most prevalent endocrinopathy in women at reproductive age. As affected women tend to have poorer assisted reproductive technology (ART) outcomes, PCOS has been suggested to endanger oocyte quality and competence development. The aim of this systematic review was to summarize the available evidence on how the follicular fluid (FF) profile of women with PCOS undergoing in vitro fertilization (IVF) treatment differs from the FF of normo-ovulatory women. For that, an electronic search in PubMed and Web of Science databases was conducted (up to December 2021). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed, and the Newcastle-Ottawa Scale was used to assess the risk of bias in the included studies. Data retrieved from papers included (n=42), revealed that the FF composition of women with PCOS compared to those without PCOS predominantly diverged at the following molecular classes: oxidative stress, inflammatory biomarkers, growth factors and hormones. Among those biomarkers, some were proposed as being closely related to pathophysiological processes, strengthening the hypothesis that low-grade inflammation and oxidative stress play a critical role in the pathogenesis of PCOS. Notwithstanding, it should be noticed that the available data on PCOS FF fingerprints derives from a limited number of studies conducted in a relatively small number of subjects. Furthermore, phenotypic heterogeneity of PCOS hampers wider comparisons and weakens putative conclusions. Therefore, future studies should be focused at comparing well characterized patient subgroups according to phenotypes.
Collapse
Affiliation(s)
- Mafalda V Moreira
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Emídio Vale-Fernandes
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
- Centre for Medically Assisted Procreation / Public Gamete Bank, Gynaecology Department, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-001, Porto, Portugal
| | - Inês C Albergaria
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
| | - Marco G Alves
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal
| | - Mariana P Monteiro
- ICBAS - School of Medicine and Biomedical Sciences, UMIB - Unit for Multidisciplinary Research in Biomedicine, University of Porto, Rua Jorge Viterbo Ferreira, Porto, 228 4050-313, Portugal.
- ITR- Laboratory for Integrative, Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
11
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
12
|
Patil K, Naigaonkar A, Hinduja I, Mukherjee S. Transcriptomic profile of GLCs of PCOS women highlights metabolic dysregulation as a plausible contributor to PCOS pathophysiology. Reprod Biol 2023; 23:100787. [PMID: 37467532 DOI: 10.1016/j.repbio.2023.100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex heterogeneous disorder with reproductive and metabolic consequences whose aetiology is still elusive. To understand the cellular mechanisms that potentially govern follicular defect in women with PCOS, we performed transcriptomic profiles of granulosa-lutein cells (GLCs) by RNA-Seq analysis. We found differential expression of 876 genes in GLCs between PCOS and controls that belonged to various processes such as cell cycle, extracellular matrix organization, angiogenesis, oxidative stress, metabolism, etc. that support folliculogenesis, oocyte development, and maturation. The cross-talk between oocyte and GLCs is a fundamental cornerstone in determining oocyte quality and highly interlinked pathways of metabolism and redox homeostasis may influence this. We found several genes involved in the metabolism of carbohydrates, nucleotides, cholesterol, and lipids were dysregulated, which may impair the supply of metabolites to the growing oocyte, affecting oocyte development and competence. Additionally, high metabolic activity during folliculogenesis may augment oxidative damage to cells and macromolecules if not counter-balanced. We observed dysregulation of redox homeostasis and AGE-RAGE signalling in the follicular environment. Among the validated genes, prokineticin-1 and growth differentiation factor-15 were found to be negatively regulated, while, S100, calcium-binding protein A9 and angiomotin-like-2 were positively regulated in GLCs of women with PCOS. Comparing our data with previously published relevant transcriptomic studies showed metabolic, cytokine-cytokine receptor interaction, IL-17, and chemokine signalling pathways were most commonly affected in PCOS. Overall, this data can provide insights into mechanisms contributing to PCOS pathophysiology and can be explored as potential indicators for oocyte/embryo quality in IVF settings.
Collapse
Affiliation(s)
- Krutika Patil
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai 400012, India
| | - Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai 400012, India
| | - Indira Hinduja
- P. D. Hinduja National Hospital and Medical Research Centre, Mahim, Mumbai 400016, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, J.M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
13
|
Shen C, Jiang Y, Lin J, He Y, Liu Y, Fang D. Purinergic receptor P2X7 activates NOX2/JNK signaling to participate in granulosa cell inflammation and apoptosis in polycystic ovary syndrome. J Bioenerg Biomembr 2023; 55:313-322. [PMID: 37480429 DOI: 10.1007/s10863-023-09979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Increasing evidence shows that polycystic ovary syndrome (PCOS) is often accompanied by an inflammatory response, hence, appropriately managing granulosa cell inflammation is critical to regaining ovarian function in PCOS. In this study, the differential levels of purinergic receptor P2X7 between the control and PCOS samples in the dataset GSE34526 were assessed, then PCOS mouse models were established. Following evaluating the fluctuations in hormone levels, inflammatory cytokines, and P2X7, mice received treatment with the P2X7 antagonist A740003. Its effects on hormones, inflammation, apoptosis, and NOX2 signaling in mice were examined. Afterward, primary mouse granulosa cells were isolated, and the mediating role of NOX2 signaling in the P2X7 regulatory pathway was confirmed by transfection of NOX2 overexpression plasmids. The results demonstrated that P2X7 was significantly elevated in the PCOS samples in the dataset. Compared with the control group, PCOS mice had significant differences in the follicle-stimulating hormone, luteinizing hormone, testosterone, anti-Müllerian hormone, inflammatory factors, and P2X7. Treatment with A740003 partially restored these parameter levels, including NOX2 signaling. Based on in vitro experiments on primary mouse granulosa cells, the above findings were re-verified, and the overexpression of NOX2 could reverse the regulatory function of P2X7. The present study highlights that P2X7 level increases in PCOS, and inhibition of P2X7 can reduce disease symptoms. It is involved in inflammation and apoptosis in granulosa cells through NOX2/JNK signaling.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Sichuan University, Ministry of Education, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Sichuan University, Ministry of Education, No. 20, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China
| | - Yibei He
- Department of Laboratory Medicine, Chengdu Chenghua District Maternal and Child Health Hospital, No. 6, Xinhong Road, Cheng Hua Da Dao, Chengdu, Sichuan, 610056, P.R. China
| | - Yue Liu
- Department of Laboratory Medicine, Chengdu Chenghua District Maternal and Child Health Hospital, No. 6, Xinhong Road, Cheng Hua Da Dao, Chengdu, Sichuan, 610056, P.R. China
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
14
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
15
|
Xu C, Luo M, Liu X, Wei T, Zhou Z, Li C, He Z, Sui H. MicroRNA-1298-5p in granulosa cells facilitates cell autophagy in polycystic ovary syndrome by suppressing glutathione-disulfide reductase. Cell Tissue Res 2023:10.1007/s00441-023-03747-9. [PMID: 36781484 DOI: 10.1007/s00441-023-03747-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
The aim of this study was to investigate the effect and mechanism of action of miR-1298-5p in polycystic ovary syndrome (PCOS). Granulosa cells were isolated from follicular fluid of patients with PCOS and healthy women, and the expression of miR-1298-5p and glutathione-disulfide reductase (GSR) mRNA in these cells was evaluated using reverse transcription-quantitative polymerase chain reaction (qRT-PCR). Clinical data were obtained from all subjects, and reproductive hormones and endocrine indices were assayed to analyze the correlation between miR-1298-5p and clinicopathological characteristics of patients with PCOS. Following transfection with the miR-1298-5p mimic or inhibitor and/or pcDNA3.1-GSR, LC3 immunofluorescence and transmission electron microscopy were used to evaluate autophagy in the COV434 human granulosa cell line. Additionally, western blotting was performed to detect LC3-II, Beclin 1, and p62 protein levels in COV434 cells. The interaction between miR-1298-5p and GSR was also examined. A PCOS rat model was established and injected with the miR-1298-5p antagomir, followed by measurement of body and ovary weights, histological examination, and autophagosome observation. The protein expression levels of GSR, LC3-II, Beclin 1, and p62 were determined in rat ovaries. miR-1298-5p was expressed at a high level, and GSR was downregulated in granulosa cells from patients with PCOS. In COV434 cells, miR-1298-5p inversely mediated GSR expression, and miR-1298-5p mimic transfection promoted autophagy, whereas GSR overexpression blocked miR-1298-5p mimic-promoted autophagy. In PCOS rats, miR-1298-5p inhibition reduced autophagy and alleviated abnormalities in follicular development. Overall, miR-1298-5p enhances autophagy in granulosa cells by downregulating GSR, thereby affecting PCOS development.
Collapse
Affiliation(s)
- Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, No.13 Dancun Road, Nanning, Guangxi 530031, People's Republic of China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xiaodong Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Tao Wei
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zheng Zhou
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Changze Li
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Zilin He
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China
| | - Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699, Qingdao Road, Huaiyin District, Jinan, Shandong, 250000, People's Republic of China.
| |
Collapse
|
16
|
Poojary PS, Nayak G, Panchanan G, Rao A, Kundapur SD, Kalthur SG, Mutalik S, Adiga SK, Zhao Y, Bakkum-Gamez J, Chang AY, DeStephano C, Sherman M, Kannan N, Kalthur G. Distinctions in PCOS Induced by Letrozole Vs Dehydroepiandrosterone With High-fat Diet in Mouse Model. Endocrinology 2022; 163:6625847. [PMID: 35776497 DOI: 10.1210/endocr/bqac097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a complex health condition associated with metabolic disturbances and infertility. Recent data suggest that the prevalence of PCOS is increasing among women globally, although the etiology of these trends is undefined. Consequently, preclinical models that better reflect the biology of PCOS are urgently needed to facilitate research that can lead to the discovery of prevention strategies or improved management. The existing animal models have several limitations as they do not reflect all the PCOS features metabolically and/or phenotypically. Therefore, there is no clear consensus on the use of appropriate animal model and selection of the most appropriate PCOS-inducing agent. To that end, we have established a Swiss albino mouse model of PCOS based on 3 weeks of daily treatment with letrozole (50 μg/day; intraperitoneal) and dehydroepiandrosterone (DHEA, 6 mg/100 g body weight; subcutaneous) in 5-week-old female mice fed on normal or high-fat diet (HFD). Mice were regularly assessed for body weight, blood glucose, and estrous cycle. Three weeks after drug administration, mice were sacrificed and assessed for blood-based metabolic parameters as well as ovarian function. Our results indicate that DHEA combined with HFD produces changes mimicking those of clinical PCOS, including elevated serum testosterone and luteinizing hormone, dyslipidemia, poor ovarian microenvironment, and development of multiple ovarian cysts, recapitulating cardinal features of PCOS. In comparison, normal diet and/or letrozole produced fewer features of PCOS. The data from the experimental models presented here can improve our understanding of PCOS, a growing concern in women's health.
Collapse
Affiliation(s)
- Pooja Suresh Poojary
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Gangotri Panchanan
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Arpitha Rao
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sanjna Das Kundapur
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Yulian Zhao
- Department of Obstetrics and Gynecology and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jamie Bakkum-Gamez
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Alice Y Chang
- Division of Gynecologic Oncology Surgery, Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN 55902, USA
| | - Christopher DeStephano
- Division of Endocrinology, Diabetes, Metabolism, Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Mark Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Nagarajan Kannan
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
- Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55902, USA
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
17
|
Chen T, Yu Y, Jia F, Luan P, Liu X. The relationship between polycystic ovary syndrome and insulin resistance from 1983 to 2022: A bibliometric analysis. Front Public Health 2022; 10:960965. [PMID: 35968428 PMCID: PMC9366174 DOI: 10.3389/fpubh.2022.960965] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common clinical disease often associated with insulin resistance (IR). The interaction between PCOS and IR will promote the progress of PCOS and the risk of related complications, harm women's physical and mental health, and increase the social and economic burden. Materials and Methods PCOS IR-related works of literature were retrieved through the Web of Science Core Collection (WoSCC) Database and imported into VOSviewer and CiteSpace, respectively, in plain text format to conduct the literature visualization analysis of authors, countries, institutions, highly cited works of literature, and keywords, aiming to reveal the hot spots and trends of PCOS IR fields. Results A total of 7,244 articles were retrieved from 1900 to 2022. Among them, the United States has made the largest contribution. Diamanti-Kandarakis E was the author with the most publications, and the University of Athens was the institution with most publications. Keyword analysis showed that PCOS interacts with IR mainly through sex-hormone binding globulin, luteinizing hormone, insulin-like growth factor, oxidative stress, and other mechanisms. In addition, the complications of PCOS complicated with IR are also the focus of researchers' attention. Conclusions Through bibliometric analysis, this paper obtains the research hotspot and trend of PCOS IR fields, which can provide a reference for subsequent research.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Yu
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Jia
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijie Luan
- Department of Orthopedics, Linqu County Chinese Medicine Hospital, Shandong, China
| | - Xinmin Liu
- Department of Gynaecology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xinmin Liu
| |
Collapse
|
18
|
Zhang Q, Ren J, Wang F, Pan M, Cui L, Li M, Qu F. Mitochondrial and glucose metabolic dysfunctions in granulosa cells induce impaired oocytes of polycystic ovary syndrome through Sirtuin 3. Free Radic Biol Med 2022; 187:1-16. [PMID: 35594990 DOI: 10.1016/j.freeradbiomed.2022.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
Mitochondrial function and glucose metabolism play important roles in bidirectional signaling between granulosa cells (GCs) and oocytes. However, the factors associated with mitochondrial function and glucose metabolism of GCs in polycystic ovary syndrome (PCOS) are poorly understood, and their potential downstream effects on oocyte quality are still unknown. The aim of this study was to investigate whether there are alterations in mitochondrial-related functions and glucose metabolism in ovarian GCs of women with PCOS and the role of Sirtuin 3 (SIRT3) in this process. Here, we demonstrated that women with PCOS undergoing in vitro fertilization and embryo transfer had significantly lower rates of metaphase II oocytes, two-pronuclear fertilization, cleavage, and day 3 good-quality embryos. Germinal vesicle- and metaphase I-stage oocytes from women with PCOS exhibited increased mitochondrial reactive oxygen species (ROS), decreased mitochondrial membrane potential, and downregulation of glucose-6-phosphate dehydrogenase. GCs from women with PCOS presented significant alterations in mitochondrial morphology, amount, and localization, decreased membrane potential, reduced adenosine triphosphate (ATP) synthesis, increased mitochondrial ROS and oxidative stress, and insufficient oxidative phosphorylation (OXPHOS) together with decreased glycolysis. SIRT3 expression was significantly decreased in GCs of PCOS patients, and knockdown of SIRT3 in KGN cells could mimic the alterations in mitochondrial functions and glucose metabolism in PCOS GCs. SIRT3 knockdown changed the acetylation status of NDUFS1, which might induce altered mitochondrial OXPHOS, the generation of mitochondrial ROS, and eventually defects in the cellular insulin signaling pathway. These findings suggest that SIRT3 deficiency in GCs of PCOS patients may contribute to mitochondrial dysfunction, elevated oxidative stress, and defects in glucose metabolism, which potentially induce impaired oocytes in PCOS.
Collapse
Affiliation(s)
- Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jun Ren
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Manman Pan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Long Cui
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Mingqian Li
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
19
|
Gharaei R, Alyasin A, Mahdavinezhad F, Samadian E, Ashrafnezhad Z, Amidi F. Randomized controlled trial of astaxanthin impacts on antioxidant status and assisted reproductive technology outcomes in women with polycystic ovarian syndrome. J Assist Reprod Genet 2022; 39:995-1008. [PMID: 35237893 PMCID: PMC9050983 DOI: 10.1007/s10815-022-02432-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS), the most common endocrinopathy in women, is typically accompanied by a defective oxidative defense system. Here, we investigated the effect of astaxanthin (AST) as a powerful antioxidant on the oxidative stress (OS) response and assisted reproductive technology (ART) outcomes in PCOS patients. METHODS In this double-blind, randomized, placebo-controlled trial, PCOS patients were randomly assigned into two groups. The intervention group received 8 mg AST, and the control group received the placebo daily for 40 days. The primary outcomes were the serum and follicular fluid (FF) levels of the OS biomarkers and the expression levels of the specific genes and proteins in the oxidative stress response pathway. The secondary outcomes were considered ART outcomes. RESULTS According to our findings, a 40-day course of AST supplementation led to significantly higher levels of serum CAT and TAC in the AST group compared to the placebo group. However, there were no significant intergroup differences in the serum MDA and SOD levels, as well as the FF levels of OS markers. The expression of Nrf2, HO-1, and NQ-1 was significantly increased in the granulosa cells (GCs) of the AST group. Moreover, the MII oocyte and high-quality embryo rate were significantly increased in the AST group compared to the placebo group. We found no significant intergroup difference in the chemical and clinical pregnancy rates. CONCLUSION AST treatment has been shown to increase both serum TAC levels and activation of the Nrf2 axis in PCOS patients' GCs. TRIAL REGISTRATION ClincialTrials.gov Identifier: NCT03991286.
Collapse
Affiliation(s)
- Roghaye Gharaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Alyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Mahdavinezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Samadian
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zhaleh Ashrafnezhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|