1
|
Zhu S, Li J, Wang X, Jin Y, Wang H, An H, Sun H, Han L, Shen B, Wang Q. The chromatin accessibility landscape of mouse oocytes during configuration transition. Cell Prolif 2025; 58:e13733. [PMID: 39245646 PMCID: PMC11693577 DOI: 10.1111/cpr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
The transition of chromatin configuration in mammalian oocytes from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) is critical for acquiring the developmental competence. However, the genomic and epigenomic features underlying this process remain poorly understood. In the present study, we first establish the chromatin accessibility landscape of mouse oocytes from NSN to SN stage. Through the integrative analysis of multi-omics, we find that the establishment of DNA methylation in oocytes is independent of the dynamics of chromatin accessibility. In contrast, histone H3K4me3 status is closely associated with the dynamics of accessible regions during configuration transition. Furthermore, by focusing on the actively transcribed genes in NSN and SN oocytes, we discover that chromatin accessibility coupled with histone methylation (H3K4me3 and H3K27me3) participates in the transcriptional control during phase transition. In sum, our data provide a comprehensive resource for probing configuration transition in oocytes, and offer insights into the mechanisms determining chromatin dynamics and oocyte quality.
Collapse
Affiliation(s)
- Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Xiuwan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Yifei Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Hengjie Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Hongzheng Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical CenterNanjing Medical UniversityNanjingChina
- Center for Global Health, School of Public HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
2
|
Torkashvand H, Shabani R, Artimani T, Amiri I, Pilehvari S, Torkashvand L, Mehdizadeh R, Mehdizadeh M. Oocyte competence develops: nuclear maturation synchronously with cytoplasm maturation. ZYGOTE 2024; 32:421-428. [PMID: 39552507 DOI: 10.1017/s0967199424000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human oocyte maturation is a lengthy process that takes place over the course of which oocytes gain the inherent ability to support the next developmental stages in a progressive manner. This process includes intricate and distinct events related to nuclear and cytoplasmic maturation. Nuclear maturation includes mostly chromosome segregation, whereas rearrangement of organelles, storage of mRNAs and transcription factors occur during cytoplasmic maturation.Human oocyte maturation, both in vivo and in vitro, occurs through a process that is not yet fully understood. However, it is believed that the second messenger, cyclic adenosine monophosphate (cAMP), plays a pivotal role in the upkeep of the meiotic blocking of the human oocyte. Relatively high levels of cAMP in the human oocyte are required to maintain meiosis blocked, whereas lower levels of cAMP in the oocyte enable meiosis to resume. Oocyte cAMP concentration is controlled by a balance between adenylate cyclase and phosphodiesterases, the enzymes responsible for cAMP generation and breakdown.In addition to nuclear maturation, the female gamete requires a number of complicated structural and biochemical modifications in the cytoplasmic compartment to be able to fertilize normally. According to ultrastructural studies, during the transition from the germinal vesicle stage to metaphase II (MII), several organelles reorganize their positions. The cytoskeletal microfilaments and microtubules found in the cytoplasm facilitate these movements and regulate chromosomal segregation.The aim of this review is to focus on the nuclear and cytoplasmic maturation by investigating the changes that take place in the process of oocytes being competent for development.
Collapse
Affiliation(s)
- Hossein Torkashvand
- Department of Anatomical Science, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebe Artimani
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Amiri
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shamim Pilehvari
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Clinical Research Development Unit of Fatemieh Hospital, Department of Gynecology, Medicine School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Torkashvand
- Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Mehdizadeh
- School of Dentistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhu F, Yang M, Wang D, Jiang Y, Jia C, Fu Y, Yu A, Liu H, Wang M, Wang T, Liu H, Li J. Spatial distribution of maternal factors in pig mature oocytes. Anim Biotechnol 2024; 35:2394692. [PMID: 39185998 DOI: 10.1080/10495398.2024.2394692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
It is known that asymmetrical maternal transcripts play an important role in the cell fate of the early embryo, but few studies are available in mammal oocytes especially in pig. To investigate the spatial factors in pig oocytes, the oriented bisection was established for collecting karyoplasts (NSOs) and cytoplasts (SSOs) with more than 95% efficiency. Subsequently, RNA-Seq and LC-MS/MS analysis were performed on NSOs and SSOs. Although no differentially expressed genes (DEGs) could be detected between NSOs and SSOs, 89 of the differentially expressed proteins (DEPs) were detected, that 58 proteins higher expressed but 31 proteins lower expressed in NSOs compared with SSOs. These DEPs mainly participated in the 'cell cycle' and 'ribosome' pathway, while the up-regulated DEPs were mainly GO in 'spindle' and 'positive regulation of translation', and the down-regulated DEPs were in 'cytosolic small ribosomal subunit' and 'mRNA binding'. The up-regulated DEP SIRT5 which are related to the regulation of gene expression, epigenetic were further detected and revealed. A spatial asymmetry of maternal factors at the protein level was firstly detected in pig mature oocytes.
Collapse
Affiliation(s)
- Fuquan Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Meng Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dayu Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Fu
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Aochen Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, Zhejiang Province, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Santos T, Pires-Luís AS, Calado AM, Oliveira E, Cunha M, Silva J, Viana P, Teixeira-da-Silva J, Oliveira C, Barros A, Sá R, Sousa M. Stereological study of organelle distribution in human mature oocytes. Sci Rep 2024; 14:25816. [PMID: 39468218 PMCID: PMC11519492 DOI: 10.1038/s41598-024-76893-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology. Statistical tests compared the means of the relative volumes occupied by organelles among oocyte regions. The most abundant organelles were elements of the smooth endoplasmic reticulum (SER), such as SER small vesicles, SER medium vesicles, SER large vesicles and SER isolated tubules, along with mitochondria, followed by SER tubular aggregates, cortical vesicles and lysosomes. Significant differences between oocyte regions were found for lysosomes, cortical vesicles and SER large vesicles. Comparisons of MII oocytes to previous findings in GV and MI oocytes evidenced specific patterns of organelle distribution and relative volumes. This final evaluation thus enables to track organelle spatial reorganization across oocyte stages, which, in addition to gathered knowledge, may be useful to assist in improvements of stimulation protocols, in-vitro maturation media and cryopreservation techniques.
Collapse
Affiliation(s)
- Tânia Santos
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana S Pires-Luís
- Department of Pathology, Unidade Local de Saúde de Vila Nova de Gaia/Espinho, Unidade 1, Rua Conceição Fernandes 1079, 4434-502, Vila Nova de Gaia, Portugal
| | - Ana Margarida Calado
- Department of Veterinarian Science, School of Veterinary and Agricultural Sciences (ECAV), Associated Laboratory for Animal and Veterinary Science (AL4AnimalS), CECAV-Interdisciplinary Research Center in Animal Health, Universidade de Trás-Os-Montes E Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Elsa Oliveira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mariana Cunha
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Joaquina Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - José Teixeira-da-Silva
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Cristiano Oliveira
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
| | - Alberto Barros
- Centre for Reproductive Genetics Alberto Barros, Av. Do Bessa, 240, 1º Dto. Frente, 4100-012, Porto, Portugal
- Service of Genetics, Department of Pathology, Faculty of Medicine, University of Porto, RISE Health Research Network, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- UMIB-Unit for Multidisciplinary Research in Biomedicine/ITR-Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
| |
Collapse
|
5
|
Han Z, Wang R, Chi P, Zhang Z, Min L, Jiao H, Ou G, Zhou D, Qin D, Xu C, Gao Z, Qi Q, Li J, Lu Y, Wang X, Chen J, Yu X, Hu H, Li L, Deng D. The subcortical maternal complex modulates the cell cycle during early mammalian embryogenesis via 14-3-3. Nat Commun 2024; 15:8887. [PMID: 39406751 PMCID: PMC11480350 DOI: 10.1038/s41467-024-53277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The subcortical maternal complex (SCMC) is essential for safeguarding female fertility in mammals. Assembled in oocytes, the SCMC maintains the cleavage of early embryos, but the underlying mechanism remains unclear. Here, we report that 14-3-3, a multifunctional protein, is a component of the SCMC. By resolving the structure of the 14-3-3-containing SCMC, we discover that phosphorylation of TLE6 contributes to the recruitment of 14-3-3. Mechanistically, during maternal-to-embryo transition, the SCMC stabilizes 14-3-3 protein and contributes to the proper control of CDC25B, thus ensuring the activation of the maturation-promoting factor and mitotic entry in mouse zygotes. Notably, the SCMC establishes a conserved molecular link with 14-3-3 and CDC25B in human oocytes/embryos. This study discloses the molecular mechanism through which the SCMC regulates the cell cycle in early embryos and elucidates the function of the SCMC in mammalian early embryogenesis.
Collapse
Affiliation(s)
- Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Department of Reproductive Medicine, the First People's Hospital of Yunnan Province, Kunming, China
| | - Pengliang Chi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zihan Zhang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Min
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Guojin Ou
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qianqian Qi
- Clinical laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jialu Li
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuechao Lu
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jing Chen
- Laboratory of Pediatric Surgery, Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, UCAS/IOZ/CAS, Beijing, China.
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China.
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
- NHC key Laboratory of Chronobiology, Sichuan University, Chengdu, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Nadri P, Zahmatkesh A, Bakhtari A. The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals. Biol Reprod 2024; 111:529-542. [PMID: 38753882 DOI: 10.1093/biolre/ioae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024] Open
Abstract
Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccines Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azizollah Bakhtari
- Department of Animal Science, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
7
|
Vendrell X, de Castro P, Escrich L, Grau N, Gonzalez-Martin R, Quiñonero A, Escribá MJ, Domínguez F. Longitudinal profiling of human androgenotes through single-cell analysis unveils paternal gene expression dynamics in early embryo development. Hum Reprod 2024; 39:1186-1196. [PMID: 38622061 PMCID: PMC11145015 DOI: 10.1093/humrep/deae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
STUDY QUESTION How do transcriptomics vary in haploid human androgenote embryos at single cell level in the first four cell cycles of embryo development? SUMMARY ANSWER Gene expression peaks at the fourth cell cycle, however some androcytes exhibit unique transcriptional behaviors. WHAT IS KNOWN ALREADY The developmental potential of an embryo is determined by the competence of the oocyte and the sperm. However, studies of the contribution of the paternal genome using pure haploid androgenotes are very scarce. STUDY DESIGN, SIZE, DURATION This study was performed analyzing the single-cell transcriptomic sequencing of 38 androcytes obtained from 10 androgenote bioconstructs previously produced in vitro (de Castro et al., 2023). These results were analyzed through different bioinformatics software such as g: Profiler, GSEA, Cytoscape, and Reactome. PARTICIPANTS/MATERIALS, SETTING, METHODS Single cell sequencing was used to obtain the transcriptomic profiles of the different androcytes. The results obtained were compared between the different cycles studied using the DESeq2 program and functional enrichment pathways using g: Profiler, Cytoscape, and Reactome. MAIN RESULTS AND THE ROLE OF CHANCE A wave of paternally driven transcriptomic activation was found during the third-cell cycle, with 1128 upregulated and 225 downregulated genes and the fourth-cell cycle, with 1373 upregulated and 286 downregulated genes, compared to first-cell cycle androcytes. Differentially expressed routes related to cell differentiation, DNA-binding transcription, RNA biosynthesis and RNA polymerase II transcription regulatory complex, and cell death were found in the third and fourth with respect to the first-cell cycle. Conversely, in the fourth cell cycle, 153 downregulated and 332 upregulated genes were found compared with third cell cycle, associated with differentially expressed processes related to E-box binding and zinc finger protein 652 (ZNF652) transcription factor. Further, significant overexpression of LEUTX, PRAMEF1, DUXA, RFPL4A, TRIM43, and ZNF675 found in androgenotes, compared to biparental embryos, highlights the paternal contributions to zygote genome activation. LARGE SCALE DATA All raw sequencing data are available through the Gene Expression Omnibus (GEO) under accessions number: GSE216501. LIMITATIONS, REASONS FOR CAUTION Extrapolation of biological events from uniparental constructs to biparental embryos should be done with caution. Maternal and paternal genomes do not act independently of each other in a natural condition. The absence of one genome may affect gene transcription of the other. In this sense, the haploid condition of the bioconstructs could mask the transcriptomic patterns of the single cells. WIDER IMPLICATIONS OF THE FINDINGS The results obtained demonstrated the level of involvement of the human paternal haploid genome in the early stages of embryo development as well as its evolution at the transcriptomic level, laying the groundwork for the use of these bioconstructs as reliable models to dispel doubts about the genetic role played by the paternal genome in the early cycles of embryo development. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by Instituto de Salud Carlos III (ISCIII) through the project 'PI22/00924', co-funded by European Regional Development Fund (ERDF); 'A way to make Europe'. F.D. was supported by the Spanish Ministry of Economy and Competitiveness through the Miguel Servet program (CPII018/00002). M.J.E. was supported by Instituto de Salud Carlos III (PI19/00577 [M.J.E.]) and FI20/00086. P.dC. was supported by a predoctoral grant for training in research into health (PFIS PI19/00577) from the Instituto de Salud Carlos III. All authors declare having no conflict of interest with regard to this trial.
Collapse
Affiliation(s)
- X Vendrell
- Reproductive Genetics Department, Sistemas Genómicos-Synlab, Valencia, Spain
| | - P de Castro
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - L Escrich
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - N Grau
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - R Gonzalez-Martin
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - A Quiñonero
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| | - M J Escribá
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
- Embryology Department, IVIRMA Valencia, Valencia, Spain
| | - F Domínguez
- Research Department, IVIRMA Global Research Alliance, IVI Foundation—Reproductive Biology and Bioengineering in Human Reproduction, IIS La Fe Health Research, Valencia, Spain
| |
Collapse
|
8
|
Fiorentino G, Merico V, Zanoni M, Comincini S, Sproviero D, Garofalo M, Gagliardi S, Cereda C, Lin CJ, Innocenti F, Taggi M, Vaiarelli A, Ubaldi FM, Rienzi L, Cimadomo D, Garagna S, Zuccotti M. Extracellular vesicles secreted by cumulus cells contain microRNAs that are potential regulatory factors of mouse oocyte developmental competence. Mol Hum Reprod 2024; 30:gaae019. [PMID: 38745364 PMCID: PMC12054941 DOI: 10.1093/molehr/gaae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
The role of cumulus cells (CCs) in the acquisition of oocyte developmental competence is not yet fully understood. In a previous study, we matured cumulus-denuded fully-grown mouse oocytes to metaphase II (MII) on a feeder layer of CCs (FL-CCs) isolated from developmentally competent (FL-SN-CCs) or incompetent (FL-NSN-CCs) SN (surrounded nucleolus) or NSN (not surrounding nucleolus) oocytes, respectively. We observed that oocytes cultured on the former could develop into blastocysts, while those matured on the latter arrested at the 2-cell stage. To investigate the CC factors contributing to oocyte developmental competence, here we focused on the CCs' release into the medium of extracellular vesicles (EVs) and on their miRNA content. We found that, during the 15-h transition to MII, both FL-SN-CCs and FL-NSN-CCs release EVs that can be detected, by confocal microscopy, inside the zona pellucida (ZP) or the ooplasm. The majority of EVs are <200 nm in size, which is compatible with their ability to cross the ZP. Next-generation sequencing of the miRNome of FL-SN-CC versus FL-NSN-CC EVs highlighted 74 differentially expressed miRNAs, with 43 up- and 31 down-regulated. Although most of these miRNAs do not have known roles in the ovary, in silico functional analysis showed that seven of these miRNAs regulate 71 target genes with specific roles in meiosis resumption (N = 24), follicle growth (N = 23), fertilization (N = 1), and the acquisition of oocyte developmental competence (N = 23). Overall, our results indicate CC EVs as emerging candidates of the CC-to-oocyte communication axis and uncover a group of miRNAs as potential regulatory factors.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Valeria Merico
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Mario Zanoni
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Sergio Comincini
- Functional Genomics Laboratory, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Daisy Sproviero
- IFOM, IFOM—The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare Diseases, Buzzi Children’s Hospital, Milan, Italy
| | - Chih-Jen Lin
- Centre for Reproductive Health, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | | | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology ‘Lazzaro Spallanzani’, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
曹 亚, 李 一, 潘 萍, 杜 涛, 杨 冬, 赵 晓. [Analysis of Risk Factors for Recurrent Pregnancy Loss in Patients Undergoing in vitro Fertilization-Embryo Transfer]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:724-730. [PMID: 38948280 PMCID: PMC11211775 DOI: 10.12182/20240560102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 07/02/2024]
Abstract
Objective Recurrent pregnancy loss (RPL) presents a formidable challenge for individuals undergoing in vitro fertilization-embryo transfer (IVF-ET), forming both a clinical dilemma and a focal point for scientific inquiry. This study endeavors to investigate the intricate interplay between clinical features, such as age, body mass index (BMI), and waist-to-hip ratio (WHR), and routine laboratory parameters, including sex hormones, blood composition, liver and thyroid functions, thyroid antibodies, and coagulation indicators, in RPL patients undergoing IVF-ET. By meticulously analyzing these variables, we aim to uncover the latent risk factors predisposing individuals to RPL. Identifying potential factors such as advanced maternal age, obesity, and insulin resistance will provide clinicians with vital insights and empirical evidence to strengthen preventive strategies aimed at reducing miscarriage recurrence. Methods This retrospective case-controlled study included RPL patients who underwent IVF-ET treatment at Sun Yat-sen Memorial Hospital, Sun Yat-sen University, between January 2012 and March 2021 as the case cohort, compared with women receiving assisted reproductive treatment due to male infertility as the control cohort. The fasting peripheral blood was collected 5 days before the first menstrual cycle at least 12 weeks after the last abortion. The clinical characteristics and relevant laboratory indexes of the two groups were compared. Employing both univariate and multivariate logistic regression analyses, we sought to unearth potential high-risk factors underlying RPL. Additionally, a linear trend analysis was conducted to assess the linear relationship between total testosterone (TT) levels and the number of miscarriages. Results In contrast to the control cohort, the RPL cohort exhibited significant increases in age, BMI, and WHR (P<0.05). Notably, TT levels were markedly lower in the RPL cohort (P=0.022), while no significant differences were observed between the two groups concerning basal follicle-stimulating hormone, luteinizing hormone, estradiol, progesterone, prolactin levels, and anti-Müllerian hormone levels (P>0.05). Moreover, fasting insulin (FINS) levels and HOMA-IR index were notably elevated in the RPL cohort relative to the control cohort (P<0.001), although no significant differences were observed in fasting blood glucose levels (P>0.05). Furthermore, the neutrophil (NEU) count and NEU-to-lymphocyte ratio were notably higher in the RPL cohort (P<0.01). Univariate logistic regression analysis identified several factors, including age≥35 years old, BMI≥25 kg/m2, WHR>0.8, FINS>10 mU/L, HOMA-IR>2.14, NEU count>6.3×109 L-1, and an elevated NEU/lymphocyte ratio (NLR), as significantly increasing the risk of RPL (P<0.05). Although TT levels were within the normal range for both cohorts, higher TT levels were associated with a diminished RPL risk (odds ratio [OR]=0.67, 95% confidence interval [CI]: 0.510-0.890, P=0.005). After adjustments for confounding factors, age≥35 years old (OR=1.91, 95% CI: 1.06-3.43), WHR>0.8 (OR=2.30, 95% CI: 1.26-4.19), and FINS>10 mU/L (OR=4.50, 95% CI: 1.30-15.56) emerged as potent risk factors for RPL (P<0.05). Conversely, higher TT levels were associated with a reduced RPL risk (OR=0.59, 95% CI: 0.38-0.93, P=0.023). Furthermore, the linear trend analysis unveiled a discernible linear association between TT levels and the number of miscarriages (P trend=0.003), indicating a declining trend in TT levels with escalating miscarriage occurrences. Conclusion In patients undergoing IVF-ET, advanced maternal age, lower TT levels, increased WHR, and elevated FINS levels emerged as potent risk factors for RPL. These findings provide clinicians with valuable insights and facilitate the identification of patients who are at high risks and the formulation of preventive strategies to reduce the recurrence of miscarriages.
Collapse
Affiliation(s)
- 亚聪 曹
- 中山大学孙逸仙纪念医院 生殖中心 (广州 510000)Reproductive Center, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
- 东莞市妇幼保健院 生殖免疫科 (东莞 523000)Department of Reproductive Immunology, Dongguan Maternal and Child Health Hospital, Dongguan 523000, China
| | - 一鸣 李
- 中山大学孙逸仙纪念医院 生殖中心 (广州 510000)Reproductive Center, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - 萍 潘
- 中山大学孙逸仙纪念医院 生殖中心 (广州 510000)Reproductive Center, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - 涛 杜
- 中山大学孙逸仙纪念医院 生殖中心 (广州 510000)Reproductive Center, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - 冬梓 杨
- 中山大学孙逸仙纪念医院 生殖中心 (广州 510000)Reproductive Center, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| | - 晓苗 赵
- 中山大学孙逸仙纪念医院 生殖中心 (广州 510000)Reproductive Center, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510000, China
| |
Collapse
|
10
|
Hu K, Li W, Ma S, Fang D, Xu J. The identification and classification of candidate genes during the zygotic genome activation in the mammals. ZYGOTE 2024; 32:119-129. [PMID: 38248909 DOI: 10.1017/s0967199423000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Zygotic genome activation (ZGA) is a critical event in early embryonic development, and thousands of genes are involved in this delicate and sophisticated biological process. To date, however, only a handful of these genes have revealed their core functions in this special process, and therefore the roles of other genes still remain unclear. In the present study, we used previously published transcriptome profiling to identify potential key genes (candidate genes) in minor ZGA and major ZGA in both human and mouse specimens, and further identified the conserved genes across species. Our results showed that 887 and 760 genes, respectively, were thought to be specific to human and mouse in major ZGA, and the other 135 genes were considered to be orthologous genes. Moreover, the conserved genes were most enriched in rRNA processing in the nucleus and cytosol, ribonucleoprotein complex biogenesis, ribonucleoprotein complex assembly and ribosome large subunit biogenesis. The findings of this first comprehensive identification and characterization of candidate genes in minor and major ZGA provide relevant insights for future studies on ZGA.
Collapse
Affiliation(s)
- Kaiyue Hu
- Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100China
| | - Wenbo Li
- The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, 450052China
| | - Shuxia Ma
- Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100China
| | - Dong Fang
- Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100China
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, 450052China
| |
Collapse
|
11
|
Li Y, Zhou LQ, Yin Y. Surfeit locus protein 4 modulates endoplasmic reticulum function and maintains oocyte quality. Cell Cycle 2024; 23:703-712. [PMID: 38819114 PMCID: PMC11229756 DOI: 10.1080/15384101.2024.2360287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/08/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Surfeit locus protein 4 is a cargo receptor mediating cargo transport from the endoplasmic reticulum lumen to the Golgi apparatus. Loss of Surf4 gene led to embryonic lethality in mice. However, the role of Surf4 during oocyte development remains unknown. In this study, we generated the mouse model with oocyte-specific knockout of Surf4 gene. We found that adult mice with deletion of Surf4 showed normal folliculogenesis, ovulation and fertility. However, loss of Surf4 slightly impaired oocyte quality, thus led to partial oocyte meiotic arrest and reduced ratio of blastocyst formation. Consistent with this, the distribution of endoplasmic reticulum was disturbed in Surf4-deficient oocytes in mice. These results demonstrated that although Surf4 is dispensable for female mouse fertility, Surf4 modulates endoplasmic reticulum arrangement and participates in regulation of developmental competence of oocytes.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Lee K, Cho K, Morey R, Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 2024; 43:113710. [PMID: 38306272 PMCID: PMC11034814 DOI: 10.1016/j.celrep.2024.113710] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Without new transcription, gene expression across the oocyte-to-embryo transition (OET) relies instead on regulation of mRNA poly(A) tails to control translation. However, how tail dynamics shape translation across the OET in mammals remains unclear. We perform long-read RNA sequencing to uncover poly(A) tail lengths across the mouse OET and, incorporating published ribosome profiling data, provide an integrated, transcriptome-wide analysis of poly(A) tails and translation across the entire transition. We uncover an extended wave of global deadenylation during fertilization in which short-tailed, oocyte-deposited mRNAs are translationally activated without polyadenylation through resistance to deadenylation. Subsequently, in the embryo, mRNAs are readenylated and translated in a surge of global polyadenylation. We further identify regulation of poly(A) tail length at the isoform level and stage-specific enrichment of mRNA sequence motifs among regulated transcripts. These data provide insight into the stage-specific mechanisms of poly(A) tail regulation that orchestrate gene expression from oocyte to embryo in mammals.
Collapse
Affiliation(s)
- Katherine Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Song Y, Zhang N, Zhang Y, Wang J, Lv Q, Zhang J. Single-Cell Transcriptome Analysis Reveals Development-Specific Networks at Distinct Synchronized Antral Follicle Sizes in Sheep Oocytes. Int J Mol Sci 2024; 25:910. [PMID: 38255985 PMCID: PMC10815039 DOI: 10.3390/ijms25020910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The development of the ovarian antral follicle is a complex, highly regulated process. Oocytes orchestrate and coordinate the development of mammalian ovarian follicles, and the rate of follicular development is governed by a developmental program intrinsic to the oocyte. Characterizing oocyte signatures during this dynamic process is critical for understanding oocyte maturation and follicular development. Although the transcriptional signature of sheep oocytes matured in vitro and preovulatory oocytes have been previously described, the transcriptional changes of oocytes in antral follicles have not. Here, we used single-cell transcriptomics (SmartSeq2) to characterize sheep oocytes from small, medium, and large antral follicles. We characterized the transcriptomic landscape of sheep oocytes during antral follicle development, identifying unique features in the transcriptional atlas, stage-specific molecular signatures, oocyte-secreted factors, and transcription factor networks. Notably, we identified the specific expression of 222 genes in the LO, 8 and 6 genes that were stage-specific in the MO and SO, respectively. We also elucidated signaling pathways in each antral follicle size that may reflect oocyte quality and in vitro maturation competency. Additionally, we discovered key biological processes that drive the transition from small to large antral follicles, revealing hub genes involved in follicle recruitment and selection. Thus, our work provides a comprehensive characterization of the single-oocyte transcriptome, filling a gap in the mapping of the molecular landscape of sheep oogenesis. We also provide key insights into the transcriptional regulation of the critical sizes of antral follicular development, which is essential for understanding how the oocyte orchestrates follicular development.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.S.)
| |
Collapse
|
14
|
Cimadomo D, Cobo A, Galliano D, Fiorentino G, Marconetto A, Zuccotti M, Rienzi L. Oocyte vitrification for fertility preservation is an evolving practice requiring a new mindset: societal, technical, clinical, and basic science-driven evolutions. Fertil Steril 2024:S0015-0282(24)00004-9. [PMID: 38185200 DOI: 10.1016/j.fertnstert.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Infertility is a condition with profound social implications. Indeed, it is not surprising that evolutions in both medicine and society affect the way in vitro fertilization is practiced. The keywords in modern medicine are the four principles, which implicitly involve a constant update of our knowledge and our technologies to fulfill the "prediction" and "personalization" tasks, and a continuous reshaping of our mindset in view of all relevant societal changes to fulfill the "prevention" and "participation" tasks. A worldwide aging population whose life priorities are changing requires that we invest in fertility education, spreading actionable information to allow women and men to make meaningful reproductive choices. Fertility preservation for both medical and nonmedical reasons is still very much overlooked in many countries worldwide, demanding a comprehensive update of our approach, starting from academia and in vitro fertilization laboratories, passing through medical offices, and reaching out to social media. Reproduction medicine should evolve from being a clinical practice to treat a condition to being a holistic approach to guarantee patients' reproductive health and well-being. Oocyte vitrification for fertility preservation is the perfect use case for this transition. This tool is acquiring a new identity to comply with novel indications and social needs, persisting technical challenges, brand-new clinical technologies, and novel revolutions coming from academia. This "views and reviews" piece aims at outlining the advancement of oocyte vitrification from all these tightly connected perspectives.
Collapse
Affiliation(s)
- Danilo Cimadomo
- Clinica Valle Giulia, IVIRMA Global Research Alliance, Genera, Rome, Italy
| | - Ana Cobo
- IVI, IVIRMA Global Research Alliance, Valencia, Spain
| | | | - Giulia Fiorentino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Anabella Marconetto
- University Institute of Reproductive Medicine, National University of Córdoba, Córdoba, Argentina
| | - Maurizio Zuccotti
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Laura Rienzi
- Clinica Valle Giulia, IVIRMA Global Research Alliance, Genera, Rome, Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy.
| |
Collapse
|
15
|
Ermisch AF, Wood JR. Regulation of Oocyte mRNA Metabolism: A Key Determinant of Oocyte Developmental Competence. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:23-46. [PMID: 39030353 DOI: 10.1007/978-3-031-55163-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.
Collapse
Affiliation(s)
- Alison F Ermisch
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
16
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
17
|
Israel S, Seyfarth J, Nolte T, Drexler HCA, Fuellen G, Boiani M. Intracellular fraction of zona pellucida protein 3 is required for the oocyte-to-embryo transition in mice. Mol Hum Reprod 2023; 29:gaad038. [PMID: 37930049 PMCID: PMC10640839 DOI: 10.1093/molehr/gaad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
In oocyte biology, the zona pellucida has long been known to operate three extracellular functions downstream of the secretory pathway, namely, encasing the oocytes in ovarian follicles, mediating sperm-oocyte interaction, and preventing premature embryo contact with oviductal epithelium. The present study uncovers a fourth function that is fundamentally distinct from the other three, being critical for embryonic cell survival in mice. Intriguingly, the three proteins of the mouse zona pellucida (ZP1, ZP2, ZP3) were found abundantly present also inside the embryo 4 days after fertilization, as shown by mass spectrometry, immunoblotting, and immunofluorescence. Contrary to current understanding of the roles of ZP proteins, ZP3 was associated more with the cytoskeleton than with secretory vesicles in the subcortical region of metaphase II oocytes and zygotes, and was excluded from regions of cell-cell contact in cleavage-stage embryos. Trim-away-mediated knockdown of ZP3 in fertilized oocytes hampered the first zygotic cleavage, while ZP3 overexpression supported blastocyst formation. Transcriptome analysis of ZP3-knockdown embryos pointed at defects of cytoplasmic translation in the context of embryonic genome activation. This conclusion was supported by reduced protein synthesis in the ZP3-knockdown and by the lack of cleavage arrest when Trim-away was postponed from the one-cell to the late two-cell stage. These data place constraints on the notion that zona proteins only operate in the extracellular space, revealing also a role during the oocyte-to-embryo transition. Ultimately, these data recruit ZP3 into the family of maternal factors that contribute to developmental competence of mouse oocytes.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Department of Cell & Tissue Dynamics, Muenster, Germany
| | - Julia Seyfarth
- Max Planck Institute for Molecular Biomedicine, Department of Cell & Tissue Dynamics, Muenster, Germany
| | - Thomas Nolte
- Max Planck Institute for Molecular Biomedicine, Department of Cell & Tissue Dynamics, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Department of Cell & Tissue Dynamics, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Department of Cell & Tissue Dynamics, Muenster, Germany
| |
Collapse
|
18
|
Sharif M, Detti L, Van den Veyver IB. Take your mother's ferry: preimplantation embryo development requires maternal karyopherins for nuclear transport. J Clin Invest 2023; 133:e166279. [PMID: 36647833 PMCID: PMC9843045 DOI: 10.1172/jci166279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genetic basis of preimplantation embryo arrest is slowly being unraveled. Recent discoveries point to maternally expressed proteins required for cellular functions before the embryonic genome is activated. In this issue of the JCI, Wang, Miyamoto, et al. suggest a critical role for karyopherin-mediated protein cargo transport between oocyte cytoplasm and nucleus. Defective maternal oocyte-expressed human karyopherin subunit α7 (KPNA7) and mouse KPNA2 fail to bind a critical substrate, ribosomal L1 domain-containing protein 1 (RSL1D1), affecting its transport to the nucleus. As shown in embryos of Kpna2-null females, the consequences are disrupted zygotic genome activation and arrest of development. These findings have important implications for diagnosis and treatment of female infertility.
Collapse
Affiliation(s)
| | - Laura Detti
- Department of Obstetrics and Gynecology
- Division of Reproductive Endocrinology and Infertility
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology
- Divisions of Maternal Fetal Medicine and Prenatal and Reproductive Genetics, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
de Castro P, Vendrell X, Escrich L, Grau N, Gonzalez-Martin R, Quiñonero A, Dominguez F, Escribá MJ. Comparative single-cell transcriptomic profiles of human androgenotes and parthenogenotes during early development. Fertil Steril 2022; 119:675-687. [PMID: 36563838 DOI: 10.1016/j.fertnstert.2022.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To unravel the differential transcriptomic behavior of human androgenotes (AGs) and parthenogenotes (PGs) throughout the first cell cycles, analyze the differential expression of genes related to key biologic processes, and determine the time frame for embryonic genome activation (EGA) in AGs and PGs. DESIGN Laboratory study. SETTING Private fertility clinic. PATIENT(S) Mature oocytes were retrieved from healthy donors and subjected to artificial oocyte activation using calcium ionophore and puromycin to generate PGs (n = 6) or enucleated and subjected to intracytoplasmic sperm injection to generate AGs (n = 10). INTERVENTION(S) Uniparental constructs at different early stages of development were disaggregated into constituent single cells (we suggest the terms parthenocytes and androcytes) to characterize the single-cell transcriptional landscape using next-generation sequencing. MAIN OUTCOMES MEASURE(S) Transcriptomic profiles comparison between different stages of early development in AGs and PGs. RESULT(S) The uniparental transcriptomic profiles at the first cell cycle showed 68 down-regulated and 26 up-regulated differentially expressed genes (DEGs) in PGs compared with AGs. During the third cell cycle, we found 60 up-regulated and 504 down-regulated DEGs in PGs compared with AGs. In the fourth cell cycle, 1,771 up-regulated and 1,171 down-regulated DEGs were found in PGs compared with AGs. The AGs and PGs had reduced EGA profiles during the first 3 cell cycles, and a spike of EGA at the fourth cell cycle was observed in PGs. CONCLUSION(S) Transcriptomic analysis of AGs and PGs revealed their complementary behavior until the fourth cell cycle. Androgenotes undergo a low wave of transcription during the first cell cycle, which reflects the paternal contribution to cell cycle coordination, mechanics of cell division, and novel transcription regulation. Maternal transcripts are most prominent in the third and fourth cell cycles, with amplification of transcription related to morphogenic progression and embryonic developmental competence acquisition. Regarding EGA, in PGs, a primitive EGA begins at the 1-cell stage and gradually progresses until the 4-cell stage, when crucial epigenetic reprogramming (through methylation) is up-regulated. In addition, our longitudinal single-cell transcriptomic analysis challenges that the zygote and early cleavage stages are the only totipotent entities, by revealing potential totipotency in cleavage-stage AGs and implications of paternal transcripts.
Collapse
Affiliation(s)
- Pedro de Castro
- Grupo de Investigación en Medicina Reproductiva, Fundación FIVI, Instituto de Investigación Sanitaria La Fe (IIS LA FE), Valencia, Spain
| | | | | | | | - Roberto Gonzalez-Martin
- Grupo de Investigación en Medicina Reproductiva, Fundación FIVI, Instituto de Investigación Sanitaria La Fe (IIS LA FE), Valencia, Spain
| | - Alicia Quiñonero
- Grupo de Investigación en Medicina Reproductiva, Fundación FIVI, Instituto de Investigación Sanitaria La Fe (IIS LA FE), Valencia, Spain
| | - Francisco Dominguez
- Grupo de Investigación en Medicina Reproductiva, Fundación FIVI, Instituto de Investigación Sanitaria La Fe (IIS LA FE), Valencia, Spain.
| | - María José Escribá
- Grupo de Investigación en Medicina Reproductiva, Fundación FIVI, Instituto de Investigación Sanitaria La Fe (IIS LA FE), Valencia, Spain; IVI Valencia, Valencia, Spain
| |
Collapse
|
20
|
Spradling AC, Niu W, Yin Q, Pathak M, Maurya B. Conservation of oocyte development in germline cysts from Drosophila to mouse. eLife 2022; 11:83230. [PMID: 36445738 PMCID: PMC9708067 DOI: 10.7554/elife.83230] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Wanbao Niu
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Qi Yin
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Madhulika Pathak
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Bhawana Maurya
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| |
Collapse
|