1
|
Zajac JWP, Muralikrishnan P, Tohidian I, Zeng X, Heldt CL, Perry SL, Sarupria S. Flipping out: role of arginine in hydrophobic interactions and biological formulation design. Chem Sci 2025; 16:6780-6792. [PMID: 40110519 PMCID: PMC11915020 DOI: 10.1039/d4sc08672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
Arginine has been a mainstay in biological formulation development for decades. To date, the way arginine modulates protein stability has been widely studied and debated. Here, we employed a hydrophobic polymer to decouple hydrophobic effects from other interactions relevant to protein folding. While existing hypotheses for the effects of arginine can generally be categorized as either direct or indirect, our results indicate that direct and indirect mechanisms of arginine co-exist and oppose each other. At low concentrations, arginine was observed to stabilize hydrophobic polymer folding via a sidechain-dominated direct mechanism, while at high concentrations, arginine stabilized polymer folding via a backbone-dominated indirect mechanism. Upon introducing partially charged polymer sites, arginine destabilized polymer folding. Further, we found arginine-induced destabilization of a model virus similar to direct-mechanism destabilization of the charged polymer and concentration-dependent stabilization of a model protein similar to the indirect mechanism of hydrophobic polymer stabilization. These findings highlight the modular nature of the widely used additive arginine, with relevance in the information-driven design of stable biological formulations.
Collapse
Affiliation(s)
- Jonathan W P Zajac
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Praveen Muralikrishnan
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Idris Tohidian
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Sapna Sarupria
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
2
|
Yamamoto Y, Taguchi M, Tanaka D, Uchida Y, Hayashi S. Self-Assembly of V-Shaped Polyaromatic Amphiphiles Studied by Molecular Dynamics Simulation. J Phys Chem B 2025; 129:1399-1414. [PMID: 39881612 DOI: 10.1021/acs.jpcb.4c06937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
V-shaped polyaromatic amphiphiles (VPAAs) form micelle-like nonbonded self-assemblies in aqueous solution and feature prominent properties of encapsulation and solubilization for various types of hydrophobic molecules. To understand microscopic molecular characteristics underlying the wide capability of solubilization, the atomic-level molecular structures of the self-assemblies of VPAAs were investigated by microsecond molecular dynamics (MD) simulations. The MD simulations showed that VPAAs spontaneously formed quasi-stable self-assemblies, in close agreement with experimental observations. To characterize the nanosized structures of the assemblies and their microscopic conformational changes, we developed a root-mean-square displacement (RMSD)-based structural similarity metric applicable to molecular assemblies. Through conformational classification by an unsupervised clustering, highly stable conformations depending on the number of constituent molecules in the assemblies were identified. The analysis revealed that the stable conformations of the VPAA assemblies flexibly reorganized depending on the number of constituent molecules, well explaining the wide capability of solubilization of hydrophobic molecules of various sizes and shapes.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiko Taguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daichi Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshihiro Uchida
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
4
|
Thornton GL, Phelps R, Orr-Ewing AJ. Transient absorption spectroscopy of the electron transfer step in the photochemically activated polymerizations of N-ethylcarbazole and 9-phenylcarbazole. Phys Chem Chem Phys 2021; 23:18378-18392. [PMID: 34612379 PMCID: PMC9391922 DOI: 10.1039/d1cp03137f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022]
Abstract
The polymerization of photoexcited N-ethylcarbazole (N-EC) in the presence of an electron acceptor begins with an electron transfer (ET) step to generate a radical cation of N-EC (N-EC˙+). Here, the production of N-EC˙+ is studied on picosecond to nanosecond timescales after N-EC photoexcitation at a wavelength λex = 345 nm using transient electronic and vibrational absorption spectroscopy. The kinetics and mechanisms of ET to diphenyliodonium hexafluorophosphate (Ph2I+PF6-) or para-alkylated variants are examined in dichloromethane (DCM) and acetonitrile (ACN) solutions. The generation of N-EC˙+ is well described by a diffusional kinetic model based on Smoluchowski theory: with Ph2I+PF6-, the derived bimolecular rate coefficient for ET is kET = (1.8 ± 0.5) × 1010 M-1 s-1 in DCM, which is consistent with diffusion-limited kinetics. This ET occurs from the first excited singlet (S1) state of N-EC, in competition with intersystem crossing to populate the triplet (T1) state, from which ET may also arise. A faster component of the ET reaction suggests pre-formation of a ground-state complex between N-EC and the electron acceptor. In ACN, the contribution from pre-reaction complexes is smaller, and the derived ET rate coefficient is kET = (1.0 ± 0.3) × 1010 M-1 s-1. Corresponding measurements for solutions of photoexcited 9-phenylcarbazole (9-PC) and Ph2I+PF6- give kET = (5 ± 1) × 109 M-1 s-1 in DCM. Structural modifications of the electron acceptor to increase its steric bulk reduce the magnitude of kET: methyl and t-butyl additions to the para positions of the phenyl rings (para Me2Ph2I+PF6- and t-butyl-Ph2I+PF6-) respectively give kET = (1.2 ± 0.3) × 1010 M-1 s-1 and kET = (5.4 ± 1.5) × 109 M-1 s-1 for reaction with photoexcited N-EC in DCM. These reductions in kET are attributed to slower rates of diffusion or to steric constraints in the ET reaction.
Collapse
Affiliation(s)
- Georgia L Thornton
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Ryan Phelps
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
5
|
Přerovská T, Pavlů A, Hancharyk D, Rodionova A, Vavříková A, Spiwok V. Structural Basis of the Function of Yariv Reagent-An Important Tool to Study Arabinogalactan Proteins. Front Mol Biosci 2021; 8:682858. [PMID: 34179088 PMCID: PMC8230119 DOI: 10.3389/fmolb.2021.682858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
Arabinogalactan proteins are very abundant, heavily glycosylated plant cell wall proteins. They are intensively studied because of their crucial role in plant development as well as their function in plant defence. Research of these biomacromolecules is complicated by the lack of tools for their analysis and characterisation due to their extreme heterogeneity. One of the few available tools for detection, isolation, characterisation, and functional studies of arabinogalactan proteins is Yariv reagents. Yariv reagent is a synthetic aromatic glycoconjugate originally prepared as an antigen for immunization. Later, it was found that this compound can precipitate arabinogalactan proteins, namely, their ß-D-(1→3)-galactan structures. Even though this compound has been intensively used for decades, the structural basis of arabinogalactan protein precipitation by Yariv is not known. Multiple biophysical studies have been published, but none of them attempted to elucidate the three-dimensional structure of the Yariv-galactan complex. Here we use a series of molecular dynamics simulations of systems containing one or multiple molecules of ß-D-galactosyl Yariv reagent with or without oligo ß-D-(1→3)-galactan to predict the structure of the complex. According to our model of Yariv-galactan complexes, Yariv reagent forms stacked oligomers stabilized by π-π and CH/π interactions. These oligomers may contain irregularities. Galactan structures crosslink these Yariv oligomers. The results were compared with studies in literature.
Collapse
Affiliation(s)
- Tereza Přerovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Anna Pavlů
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Dzianis Hancharyk
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Anna Rodionova
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Anna Vavříková
- Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
6
|
Relaxation phenomenon and swelling behavior of regenerated cellulose fibers affected by organic solvents. Carbohydr Polym 2021; 259:117656. [PMID: 33673982 DOI: 10.1016/j.carbpol.2021.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/20/2022]
Abstract
Regenerated cellulose fibers are extremely sensitive to water. In particular, their mechanical properties are greatly affected by water. Recently, it was clarified that the glass transition temperatures of regenerated cellulose over 500 K can be shifted to room temperature, and small-angle X-ray scattering (SAXS) showed the maxima and shoulders on the equator line in the wet state. In this study, glass transition caused by organic solvents was observed, although the peak heights of tangent δ (tan δ) were low, which suggested the regions affected by organic solvents were small. SAXS showed the maxima and shoulders, suggesting that organic solvents decreased the density of the amorphous region, i.e., widened space between cellulose molecules, creating sufficient space for the micro-Brownian motion of cellulose main chains. However, alkanes with molecular weight larger than n-nonane did not show tan δ peaks, which suggests that the solvent is hard to enter between microfibrils.
Collapse
|
7
|
Scherbinina SI, Toukach PV. Three-Dimensional Structures of Carbohydrates and Where to Find Them. Int J Mol Sci 2020; 21:E7702. [PMID: 33081008 PMCID: PMC7593929 DOI: 10.3390/ijms21207702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed.
Collapse
Affiliation(s)
- Sofya I. Scherbinina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
- Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia
| | - Philip V. Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia
| |
Collapse
|
8
|
Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations. Int J Biol Macromol 2020; 157:1-9. [DOI: 10.1016/j.ijbiomac.2020.03.251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 02/03/2023]
|
9
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Szala-Bilnik J, Falkowska M, Bowron DT, Hardacre C, Youngs TGA. The Structure of Ethylbenzene, Styrene and Phenylacetylene Determined by Total Neutron Scattering. Chemphyschem 2017; 18:2541-2548. [PMID: 28672104 PMCID: PMC5811833 DOI: 10.1002/cphc.201700393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/30/2017] [Indexed: 11/10/2022]
Abstract
Organic solvents such as phenylacetylene, styrene and ethylbenzene are widely used in industrial processes, especially in the production of rubber or thermoplastics. Despite their important applications detailed knowledge about their structure is limited. In this paper the structures of these three aromatic solvents were investigated using neutron diffraction. The results show that many of their structural characteristics are similar, although the structure of phenylacetylene is more ordered and has a smaller solvation sphere than either ethylbenzene or styrene. Two regions within the first coordination sphere, in which the surrounding molecules show different preferable orientations with respect to the central molecule, were found for each liquid. Additionally, the localisation of the aliphatic chains reveals that they tend to favour closer interactions with each other than to the aromatic rings of the adjacent molecules.
Collapse
Affiliation(s)
- Joanna Szala-Bilnik
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK.,STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
| | - Marta Falkowska
- STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK.,School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5AG, UK
| | - Daniel T Bowron
- STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
| | - Christopher Hardacre
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK
| | - Tristan G A Youngs
- STFC ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
| |
Collapse
|
11
|
Abstract
Many carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites. These residues interact with carbohydrates in a stacking geometry via CH/π interactions. These interactions can be found in carbohydrate-binding proteins, including lectins, enzymes and carbohydrate transporters. Besides this, many non-protein aromatic molecules (natural as well as artificial) can bind saccharides using these interactions. Recent computational and experimental studies have shown that carbohydrate–aromatic CH/π interactions are dispersion interactions, tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems.
Collapse
|
12
|
Wilson KA, Wetmore SD. Combining crystallographic and quantum chemical data to understand DNA-protein π-interactions in nature. Struct Chem 2017. [DOI: 10.1007/s11224-017-0954-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Murakami Y, Shibata T, Ueda K. Discrimination between naphthacene and triphenylene using cellulose tris(4-methylbenzoate) and cellulose tribenzoate: A computational study. Carbohydr Res 2017; 439:35-43. [DOI: 10.1016/j.carres.2017.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
14
|
Frenkel-Pinter M, Richman M, Belostozky A, Abu-Mokh A, Gazit E, Rahimipour S, Segal D. Selective Inhibition of Aggregation and Toxicity of a Tau-Derived Peptide using Its Glycosylated Analogues. Chemistry 2016; 22:5945-52. [DOI: 10.1002/chem.201504950] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Moran Frenkel-Pinter
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Michal Richman
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Anna Belostozky
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Amjaad Abu-Mokh
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Ehud Gazit
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Shai Rahimipour
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Daniel Segal
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
15
|
Fletcher TL, Davie SJ, Popelier PLA. Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning. J Chem Theory Comput 2015; 10:3708-19. [PMID: 26588516 DOI: 10.1021/ct500416k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Present computing power enables novel ways of modeling polarization. Here we show that the machine learning method kriging accurately captures the way the electron density of a topological atom responds to a change in the positions of the surrounding atoms. The success of this method is demonstrated on the four aromatic amino acids histidine, phenylalanine, tryptophan, and tyrosine. A new technique of varying training set sizes to vastly reduce training times while maintaining accuracy is described and applied to each amino acid. Each amino acid has its geometry distorted via normal modes of vibration over all local energy minima in the Ramachandran map. These geometries are then used to train the kriging models. Total electrostatic energies predicted by the kriging models for previously unseen geometries are compared to the true energies, yielding mean absolute errors of 2.9, 5.1, 4.2, and 2.8 kJ mol(-1) for histidine, phenylalanine, tryptophan, and tyrosine, respectively.
Collapse
Affiliation(s)
- Timothy L Fletcher
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street, Manchester, M1 7DN, Great Britain.,School of Chemistry, University of Manchester , Oxford Road, Manchester, M13 9PL, Great Britain
| | - Stuart J Davie
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street, Manchester, M1 7DN, Great Britain.,School of Chemistry, University of Manchester , Oxford Road, Manchester, M13 9PL, Great Britain
| | - Paul L A Popelier
- Manchester Institute of Biotechnology (MIB) , 131 Princess Street, Manchester, M1 7DN, Great Britain.,School of Chemistry, University of Manchester , Oxford Road, Manchester, M13 9PL, Great Britain
| |
Collapse
|
16
|
Abstract
The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses.
Collapse
Affiliation(s)
- Serge Pérez
- Department of Molecular Pharmacochemistry, CNRS, University Grenoble-Alpes, Grenoble, France.
| | - Igor Tvaroška
- Department of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic; Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University, Nitra, Slovak Republic.
| |
Collapse
|
17
|
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015; 16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This is a sequel to the previous Perspective "The CH-π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates", which featured in a PCCP themed issue on "Weak Hydrogen Bonds - Strong Effects?": Phys. Chem. Chem. Phys., 2011, 13, 13873-13900. Evidence that weak hydrogen bonds play an enormously important role in chemistry and biochemistry has now accumulated to an extent that the rigid classical concept of hydrogen bonds formulated by Pauling needs to be seriously revised and extended. The concept of a more generalized hydrogen bond definition is indispensable for understanding the folding mechanisms of proteins. The CH-π hydrogen bond, a weak molecular force occurring between a soft acid CH and a soft base π-electron system, among all is one of the most important and plays a functional role in defining the conformation and stability of 3D structures as well as in many molecular recognition events. This concept is also valuable in structure-based drug design efforts. Despite their frequent occurrence in organic molecules and bio-molecules, the importance of CH-π hydrogen bonds is still largely unknown to many chemists and biochemists. Here we present a review that deals with the evidence, nature, characteristics and consequences of the CH-π hydrogen bond in biological macromolecules (proteins, nucleic acids, lipids and polysaccharides). It is hoped that the present Perspective will show the importance of CH-π hydrogen bonds and stimulate interest in the interactions of biological macromolecules, one of the most fascinating fields in bioorganic chemistry. Implication of this concept is enormous and valuable in the scientific community.
Collapse
Affiliation(s)
- Motohiro Nishio
- The CHPI Institute, 705-6-338, Minamioya, Machida-shi, Tokyo 194-0031, Japan.
| | | | | | | | | |
Collapse
|
18
|
Molecular simulations of hevein/(GlcNAc)3 complex with weakened OH/O and CH/π hydrogen bonds: implications for their role in complex stabilization. Carbohydr Res 2015; 408:1-7. [PMID: 25816996 DOI: 10.1016/j.carres.2015.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 11/23/2022]
Abstract
Carbohydrate-protein complexes are often characterized by interactions via aromatic amino acid residues. Several mechanisms have been proposed to explain these stacking-like interactions between pyranose sugars and aromatic moieties. The physical basis of these interactions is being explained as either dispersion CH/π or hydrophobic. In order to elucidate the nature of these interactions, we performed a series of molecular dynamics simulation of hevein domain (HEV32) in complex with (β-D-GlcNAc)3. Selected OH/O and CH/π hydrogen bonds involved in carbohydrate recognition were artificially weakened in 100 ns molecular dynamics simulations. Separate weakening of either OH/O or CH/π hydrogen bonds was not sufficient to destabilize the complex. This indicates that other effects, not solely CH/π dispersion interactions, contribute significantly to the stability of the complex. Significant destabilization of complexes was reached only by simultaneous weakening of OH/O and CH/π hydrogen bonds. This also shows that classical hydrogen bonds and CH/π interactions are working in concert to stabilize this carbohydrate-protein test case.
Collapse
|
19
|
Wilson KA, Wells RA, Abendong MN, Anderson CB, Kung RW, Wetmore SD. Landscape of π-π and sugar-π contacts in DNA-protein interactions. J Biomol Struct Dyn 2015; 34:184-200. [PMID: 25723403 DOI: 10.1080/07391102.2015.1013157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There were 1765 contacts identified between DNA nucleobases or deoxyribose and cyclic (W, H, F, Y) or acyclic (R, E, D) amino acids in 672 X-ray structures of DNA-protein complexes. In this first study to compare π-interactions between the cyclic and acyclic amino acids, visual inspection was used to categorize amino acid interactions as nucleobase π-π (according to biological edge) or deoxyribose sugar-π (according to sugar edge). Overall, 54% of contacts are nucleobase π-π interactions, which involve all amino acids, but are more common for Y, F, and R, and involve all DNA nucleobases with similar frequencies. Among binding arrangements, cyclic amino acids prefer more planar (stacked) π-systems than the acyclic counterparts. Although sugar-π interactions were only previously identified with the cyclic amino acids and were found to be less common (38%) than nucleobase-cyclic amino acid contacts, sugar-π interactions are more common than nucleobase π-π contacts for the acyclic series (61% of contacts). Similar to DNA-protein π-π interactions, sugar-π contacts most frequently involve Y and R, although all amino acids adopt many binding orientations relative to deoxyribose. These DNA-protein π-interactions stabilize biological systems, by up to approximately -40 kJ mol(-1) for neutral nucleobase or sugar-amino acid interactions, but up to approximately -95 kJ mol(-1) for positively or negatively charged contacts. The high frequency and strength, despite variation in structure and composition, of these π-interactions point to an important function in biological systems.
Collapse
Affiliation(s)
- Katie A Wilson
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Rachael A Wells
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Minette N Abendong
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Colin B Anderson
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Ryan W Kung
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| | - Stacey D Wetmore
- a Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West, Lethbridge , AB T1K 3M4 , Canada
| |
Collapse
|
20
|
Force fields and scoring functions for carbohydrate simulation. Carbohydr Res 2015; 401:73-81. [DOI: 10.1016/j.carres.2014.10.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/31/2022]
|
21
|
Wilson KA, Wetmore SD. A Survey of DNA–Protein π–Interactions: A Comparison of Natural Occurrences and Structures, and Computationally Predicted Structures and Strengths. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Hussain HB, Wilson KA, Wetmore SD. Serine and Cysteine π-Interactions in Nature: A Comparison of the Frequency, Structure, and Stability of Contacts Involving Oxygen and Sulfur. Aust J Chem 2015. [DOI: 10.1071/ch14598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite many DNA–protein π-interactions in high-resolution crystal structures, only four X–H···π or X···π interactions were found between serine (Ser) or cysteine (Cys) and DNA nucleobase π-systems in over 100 DNA–protein complexes (where X = O for Ser and X = S for Cys). Nevertheless, 126 non-covalent contacts occur between Ser or Cys and the aromatic amino acids in many binding arrangements within proteins. Furthermore, Ser and Cys protein–protein π-interactions occur with similar frequencies and strengths. Most importantly, due to the great stability that can be provided to biological macromolecules (up to –20 kJ mol–1 for neutral π-systems or –40 kJ mol–1 for cationic π-systems), Ser and Cys π-interactions should be considered when analyzing protein stability and function.
Collapse
|
23
|
Wilson KA, Kellie JL, Wetmore SD. DNA-protein π-interactions in nature: abundance, structure, composition and strength of contacts between aromatic amino acids and DNA nucleobases or deoxyribose sugar. Nucleic Acids Res 2014; 42:6726-41. [PMID: 24744240 PMCID: PMC4041443 DOI: 10.1093/nar/gku269] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Four hundred twenty-eight high-resolution DNA-protein complexes were chosen for a bioinformatics study. Although 164 crystal structures (38% of those searched) contained no interactions, 574 discrete π-contacts between the aromatic amino acids and the DNA nucleobases or deoxyribose were identified using strict criteria, including visual inspection. The abundance and structure of the interactions were determined by unequivocally classifying the contacts as either π-π stacking, π-π T-shaped or sugar-π contacts. Three hundred forty-four nucleobase-amino acid π-π contacts (60% of all interactions identified) were identified in 175 of the crystal structures searched. Unprecedented in the literature, 230 DNA-protein sugar-π contacts (40% of all interactions identified) were identified in 137 crystal structures, which involve C-H···π and/or lone-pair···π interactions, contain any amino acid and can be classified according to sugar atoms involved. Both π-π and sugar-π interactions display a range of relative monomer orientations and therefore interaction energies (up to -50 (-70) kJ mol(-1) for neutral (charged) interactions as determined using quantum chemical calculations). In general, DNA-protein π-interactions are more prevalent than perhaps currently accepted and the role of such interactions in many biological processes may yet to be uncovered.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| | - Jennifer L Kellie
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
24
|
Identification of SPOR domain amino acids important for septal localization, peptidoglycan binding, and a disulfide bond in the cell division protein FtsN. J Bacteriol 2013; 195:5308-15. [PMID: 24056104 DOI: 10.1128/jb.00911-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SPOR domains are about 75 amino acids long and probably bind septal peptidoglycan during cell division. We mutagenized 33 amino acids with surface-exposed side chains in the SPOR domain from an Escherichia coli cell division protein named FtsN. The mutant SPOR domains were fused to Tat-targeted green fluorescent protein ((TT)GFP) and tested for septal localization in live E. coli cells. Lesions at the following 5 residues reduced septal localization by a factor of 3 or more: Q251, S254, W283, R285, and I313. All of these residues map to a β-sheet in the published solution structure of FtsN(SPOR). Three of the mutant proteins (Q251E, S254E, and R285A mutants) were purified and found to be defective in binding to peptidoglycan sacculi in a cosedimentation assay. These results match closely with results from a previous study of the SPOR domain from DamX, even though these two SPOR domains share <20% amino acid identity. Taken together, these findings support the proposal that SPOR domains localize by binding to septal peptidoglycan and imply that the binding site is associated with the β-sheet. We also show that FtsN(SPOR) contains a disulfide bond between β-sheet residues C252 and C312. The disulfide bond contributes to protein stability, cell division, and peptidoglycan binding.
Collapse
|
25
|
Asensio JL, Ardá A, Cañada FJ, Jiménez-Barbero J. Carbohydrate-aromatic interactions. Acc Chem Res 2013; 46:946-54. [PMID: 22704792 DOI: 10.1021/ar300024d] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recognition of saccharides by proteins has far reaching implications in biology, technology, and drug design. Within the past two decades, researchers have directed considerable effort toward a detailed understanding of these processes. Early crystallographic studies revealed, not surprisingly, that hydrogen-bonding interactions are usually involved in carbohydrate recognition. But less expectedly, researchers observed that despite the highly hydrophilic character of most sugars, aromatic rings of the receptor often play an important role in carbohydrate recognition. With further research, scientists now accept that noncovalent interactions mediated by aromatic rings are pivotal to sugar binding. For example, aromatic residues often stack against the faces of sugar pyranose rings in complexes between proteins and carbohydrates. Such contacts typically involve two or three CH groups of the pyranoses and the π electron density of the aromatic ring (called CH/π bonds), and these interactions can exhibit a variety of geometries, with either parallel or nonparallel arrangements of the aromatic and sugar units. In this Account, we provide an overview of the structural and thermodynamic features of protein-carbohydrate interactions, theoretical and experimental efforts to understand stacking in these complexes, and the implications of this understanding for chemical biology. The interaction energy between different aromatic rings and simple monosaccharides based on quantum mechanical calculations in the gas phase ranges from 3 to 6 kcal/mol range. Experimental values measured in water are somewhat smaller, approximately 1.5 kcal/mol for each interaction between a monosaccharide and an aromatic ring. This difference illustrates the dependence of these intermolecular interactions on their context and shows that this stacking can be modulated by entropic and solvent effects. Despite their relatively modest influence on the stability of carbohydrate/protein complexes, the aromatic platforms play a major role in determining the specificity of the molecular recognition process. The recognition of carbohydrate/aromatic interactions has prompted further analysis of the properties that influence them. Using a variety of experimental and theoretical methods, researchers have worked to quantify carbohydrate/aromatic stacking and identify the features that stabilize these complexes. Researchers have used site-directed mutagenesis, organic synthesis, or both to incorporate modifications in the receptor or ligand and then quantitatively analyzed the structural and thermodynamic features of these interactions. Researchers have also synthesized and characterized artificial receptors and simple model systems, employing a reductionistic chemistry-based strategy. Finally, using quantum mechanics calculations, researchers have examined the magnitude of each property's contribution to the interaction energy.
Collapse
Affiliation(s)
- Juan Luis Asensio
- Chemical & Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid
| | - Ana Ardá
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Jesús Jiménez-Barbero
- Instituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
26
|
López CA, de Vries AH, Marrink SJ. Amylose folding under the influence of lipids. Carbohydr Res 2012; 364:1-7. [DOI: 10.1016/j.carres.2012.10.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/04/2012] [Accepted: 10/06/2012] [Indexed: 11/25/2022]
|
27
|
Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc Natl Acad Sci U S A 2012; 109:14830-5. [PMID: 22927418 DOI: 10.1073/pnas.1213200109] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Components of modular cellulases, type-A cellulose-binding modules (CBMs) bind to crystalline cellulose and enhance enzyme effectiveness, but structural details of the interaction are uncertain. We analyzed cellulose binding by EXLX1, a bacterial expansin with ability to loosen plant cell walls and whose domain D2 has type-A CBM characteristics. EXLX1 strongly binds to crystalline cellulose via D2, whereas its affinity for soluble cellooligosaccharides is weak. Calorimetry indicated cellulose binding was largely entropically driven. We solved the crystal structures of EXLX1 complexed with cellulose-like oligosaccharides to find that EXLX1 binds the ligands through hydrophobic interactions of three linearly arranged aromatic residues in D2. The crystal structures revealed a unique form of ligand-mediated dimerization, with the oligosaccharide sandwiched between two D2 domains in opposite polarity. This report clarifies the molecular target of expansin and the specific molecular interactions of a type-A CBM with cellulose.
Collapse
|
28
|
Ellis CR, Maiti B, Noid WG. Specific and nonspecific effects of glycosylation. J Am Chem Soc 2012; 134:8184-93. [PMID: 22524526 DOI: 10.1021/ja301005f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosylation regulates vital cellular processes and dramatically influences protein folding and stability. In particular, experiments have demonstrated that asparagine (N)-linked disaccharides drive a "conformational switch" in a model peptide. The present work investigates this conformational switch via extensive atomically detailed replica exchange molecular dynamics simulations in explicit solvent. To distinguish the effects of specific and nonspecific interactions upon the peptide conformational ensemble, these simulations considered model peptides that were N-linked to a disaccharide and to a steric crowder of the same shape. The simulations are remarkably consistent with experiment and provide detailed insight into the peptide structure ensemble. They suggest that steric crowding by N-linked disaccharides excludes extended conformations, but does not significantly impact the tetrahedral structure of the surrounding solvent or otherwise alter the peptide free energy surface. However, the combination of steric crowding with specific hydrogen bonds and hydrophobic stacking interactions more dramatically impacts the peptide ensemble and stabilizes new structures.
Collapse
Affiliation(s)
- Christopher R Ellis
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | |
Collapse
|
29
|
Tsuzuki S, Uchimaru T, Mikami M. Magnitude of CH/O interactions between carbohydrate and water. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1192-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
|
31
|
Kumari M, Sunoj RB, Balaji PV. Conformational mapping and energetics of saccharide–aromatic residue interactions: implications for the discrimination of anomers and epimers and in protein engineering. Org Biomol Chem 2012; 10:4186-200. [DOI: 10.1039/c2ob25182e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Landström J, Bergström M, Hamark C, Ohlson S, Widmalm G. Combining weak affinity chromatography, NMR spectroscopy and molecular simulations in carbohydrate–lysozyme interaction studies. Org Biomol Chem 2012; 10:3019-32. [DOI: 10.1039/c2ob07066a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Tsuzuki S, Uchimaru T, Mikami M. Magnitude and nature of carbohydrate-aromatic interactions in fucose-phenol and fucose-indole complexes: CCSD(T) level interaction energy calculations. J Phys Chem A 2011; 115:11256-62. [PMID: 21812469 DOI: 10.1021/jp2045756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The CH/π contact structures of the fucose-phenol and fucose-indole complexes and the stabilization energies by formation of the complexes (E(form)) were studied by ab initio molecular orbital calculations. The three types of interactions (CH/π and OH/π interactions and OH/O hydrogen bonds) were compared and evaluated in a single molecular system and at the same level of theory. The E(form) calculated for the most stable CH/π contact structure of the fucose-phenol complex at the CCSD(T) level (-4.9 kcal/mol) is close to that for the most stable CH/π contact structure of the fucose-benzene complex (-4.5 kcal/mol). On the other hand the most stable CH/π contact structure of the fucose-indole complex has substantially larger E(form) (-6.5 kcal/mol). The dispersion interaction is the major source of the attraction in the CH/π contact structures of the fucose-phenol and fucose-indole complexes as in the case of the fucose-benzene complex. The electrostatic interactions in the CH/π contact structures are small (less than 1.5 kcal/mol). The nature of the interactions between the nonpolar surface of the carbohydrate and aromatic rings is completely different from that of the conventional hydrogen bonds where the electrostatic interaction is the major source of the attraction. The distributed multipole analysis and DFT-SATP analysis show that the dispersion interactions in the CH/π contact structure of fucose-indole complex are substantially larger than those in the CH/π contact structures of fucose-benzene and fucose-phenol complexes. The large dispersion interactions are responsible for the large E(form) for the fucose-indole complex.
Collapse
Affiliation(s)
- Seiji Tsuzuki
- CREST, JST, and Research Initiative of Computational Sciences (RICS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
34
|
Kozmon S, Matuška R, Spiwok V, Koča J. Dispersion interactions of carbohydrates with condensate aromatic moieties: theoretical study on the CH-π interaction additive properties. Phys Chem Chem Phys 2011; 13:14215-22. [PMID: 21755090 DOI: 10.1039/c1cp21071h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article we present the first systematic study of the additive properties (i.e. degree of additivity) of the carbohydrate-aromatic moiety CH-π dispersion interaction. The additive properties were studied on the β-D-glucopyranose, β-D-mannopyranose and α-L-fucopyranose complexes with the naphthalene molecule by comparing the monodentate (single CH-π) and bidentate (two CH-π) complexes. All model complexes were optimized using the DFT-D approach, at the BP/def2-TZVPP level of theory. The interaction energies were refined using single point calculations at highly correlated ab initio methods at the CCSD(T)/CBS level, calculated as E + (E(CCSD(T))-E(MP2))(Small Basis). Bidentate complexes show very strong interactions in the range from -10.79 up to -7.15 and -8.20 up to -6.14 kcal mol(-1) for the DFT-D and CCSD(T)/CBS level, respectively. These values were compared with the sum of interaction energies of the appropriate monodentate carbohydrate-naphthalene complexes. The comparison reveals that the bidentate complex interaction energy is higher (interaction is weaker) than the sum of monodentate complex interaction energies. Bidentate complex interaction energy corresponds to 2/3 of the sum of the appropriate monodentate complex interaction energies (averaging over all modeled carbohydrate complexes). The observed interaction energies were also compared with the sum of interaction energies of the corresponding previously published carbohydrate-benzene complexes. Also in this case the interaction energy of the bidentate complex was higher (i.e. weaker interaction) than the sum of interaction energies of the corresponding benzene complexes. However, the obtained difference is lower than before, while the bidentate complex interaction energy corresponds to 4/5 of the sum of interaction energy of the benzene complexes, averaged over all structures. The mentioned comparison might aid protein engineering efforts where amino acid residues phenylalanine or tyrosine are to be replaced by a tryptophan and can help to predict the changes in the interactions. The observed results also show that DFT-D correctly describes the CH-π interaction energy and their additive properties in comparison to CCSD(T)/CBS calculated interaction energies. Thus, the DFT-D approach might be used for calculation of larger complexes of biological interest, where dispersion interaction plays an important role.
Collapse
Affiliation(s)
- Stanislav Kozmon
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | | | | | | |
Collapse
|
35
|
Nishio M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys 2011; 13:13873-900. [PMID: 21611676 DOI: 10.1039/c1cp20404a] [Citation(s) in RCA: 651] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CH/π hydrogen bond is an attractive molecular force occurring between a soft acid and a soft base. Contribution from the dispersion energy is important in typical cases where aliphatic or aromatic CH groups are involved. Coulombic energy is of minor importance as compared to the other weak hydrogen bonds. The hydrogen bond nature of this force, however, has been confirmed by AIM analyses. The dual characteristic of the CH/π hydrogen bond is the basis for ubiquitous existence of this force in various fields of chemistry. A salient feature is that the CH/π hydrogen bond works cooperatively. Another significant point is that it works in nonpolar as well as polar, protic solvents such as water. The interaction energy depends on the nature of the molecular fragments, CH as well as π-groups: the stronger the proton donating ability of the CH group, the larger the stabilizing effect. This Perspective focuses on the consequence of this molecular force in the conformation of organic compounds and supramolecular chemistry. Implication of the CH/π hydrogen bond extends to the specificity of molecular recognition or selectivity in organic reactions, polymer science, surface phenomena and interactions involving proteins. Many problems, unsettled to date, will become clearer in the light of the CH/π paradigm.
Collapse
Affiliation(s)
- Motohiro Nishio
- The CHPI Institute, 705-6-338 Minamioya, Machida-shi, Tokyo, 194-0031, Japan.
| |
Collapse
|
36
|
Roldós V, Cañada FJ, Jiménez-Barbero J. Carbohydrate-Protein Interactions: A 3D View by NMR. Chembiochem 2011; 12:990-1005. [DOI: 10.1002/cbic.201000705] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 12/29/2022]
|
37
|
Elumalai P, Rajasekaran M, Liu HL, Chen C. Investigation of cation-π interactions in sugar-binding proteins. PROTOPLASMA 2010; 247:13-24. [PMID: 20379838 DOI: 10.1007/s00709-010-0132-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
Cation-π interaction is a non-covalent binding force that plays a significant role in protein stability and drug-receptor interactions. In this work, we have investigated the structural role of cation-π interactions in sugar-binding proteins (SBPs). We observed 212 cation-π interactions in 53 proteins out of 59 SBPs in dataset. There is an average one energetically significant cation-π interaction for every 66 residues in SBPs. In addition, Arg is highly preferred to form cation-π interactions, and the average energy of Arg-Trp is high among six pairs. Long-range interactions are predominant in the analyzed cation-π interactions. Comparatively, all interaction pairs favor to accommodate in strand conformations. The analysis of solvent accessible area indicates that most of the aromatic residues are found on buried or partially buried whereas cationic residues were found mostly on the exposed regions of protein. The cation-π interactions forming residues were found that around 43% of cation-π residues had highly conserved with the conservation score ≥6. Almost cationic and π-residues equally share in the stabilization center. Sugar-binding site analysis in available complexes showed that the frequency of Trp and Arg is high, suggesting the potential role of these two residues in the interactions between proteins and sugar molecules. Our observations in this study could help to further understand the structural stability of SBPs.
Collapse
Affiliation(s)
- Pavadai Elumalai
- Graduate Institute of Biotechnology, National Taipei University of Technology, 1 Sec. 3 ZhongXiao E. Rd., Taipei, Taiwan
| | | | | | | |
Collapse
|
38
|
An evaluation of the GLYCAM06 and MM3 force fields, and the PM3-D* molecular orbital method for modelling prototype carbohydrate–aromatic interactions. J Mol Graph Model 2010; 29:321-5. [DOI: 10.1016/j.jmgm.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/09/2010] [Indexed: 11/23/2022]
|
39
|
Mohamed MNA, Watts HD, Guo J, Catchmark JM, Kubicki JD. MP2, density functional theory, and molecular mechanical calculations of C–H···π and hydrogen bond interactions in a cellulose-binding module–cellulose model system. Carbohydr Res 2010; 345:1741-51. [DOI: 10.1016/j.carres.2010.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/10/2010] [Accepted: 05/22/2010] [Indexed: 10/19/2022]
|
40
|
Frank M, Schloissnig S. Bioinformatics and molecular modeling in glycobiology. Cell Mol Life Sci 2010; 67:2749-72. [PMID: 20364395 PMCID: PMC2912727 DOI: 10.1007/s00018-010-0352-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein-carbohydrate interaction are reviewed.
Collapse
Affiliation(s)
- Martin Frank
- Molecular Structure Analysis Core Facility-W160, Deutsches Krebsforschungszentrum (German Cancer Research Centre), 69120 Heidelberg, Germany.
| | | |
Collapse
|
41
|
Armen RS, Schiller SM, Brooks CL. Steric and thermodynamic limits of design for the incorporation of large unnatural amino acids in aminoacyl-tRNA synthetase enzymes. Proteins 2010; 78:1926-38. [PMID: 20310065 DOI: 10.1002/prot.22706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.
Collapse
Affiliation(s)
- Roger S Armen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
42
|
Fadda E, Woods RJ. Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 2010; 15:596-609. [PMID: 20594934 DOI: 10.1016/j.drudis.2010.06.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/20/2010] [Accepted: 06/01/2010] [Indexed: 11/16/2022]
Abstract
The characterization of the 3D structure of oligosaccharides, their conjugates and analogs is particularly challenging for traditional experimental methods. Molecular simulation methods provide a basis for interpreting sparse experimental data and for independently predicting conformational and dynamic properties of glycans. Here, we summarize and analyze the issues associated with modeling carbohydrates, with a detailed discussion of four of the most recently developed carbohydrate force fields, reviewed in terms of applicability to natural glycans, carbohydrate-protein complexes and the emerging area of glycomimetic drugs. In addition, we discuss prospectives and new applications of carbohydrate modeling in drug discovery.
Collapse
Affiliation(s)
- Elisa Fadda
- School of Chemistry, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
43
|
Ramírez-Gualito K, Alonso-Ríos R, Quiroz-García B, Rojas-Aguilar A, Díaz D, Jiménez-Barbero J, Cuevas G. Enthalpic nature of the CH/pi interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations. J Am Chem Soc 2010; 131:18129-38. [PMID: 19928848 DOI: 10.1021/ja903950t] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific interactions between molecules, including those produced by a given solute, and the surrounding solvent are essential to drive molecular recognition processes. A simple molecule such as benzene is capable of recognizing and differentiating among very similar entities, such as methyl 2,3,4,6-tetra-O-methyl-alpha-D-galactopyranoside (alpha-Me(5)Gal), methyl 2,3,4,6-tetra-O-methyl-beta-D-galactopyranoside (beta-Me(5)Gal), 1,2,3,4,6-penta-O-acetyl-beta-D-galactopyranose (beta-Ac(5)Gal), and methyl 2,3,4,6-tetra-O-methyl-alpha-D-mannopyranoside (alpha-Me(5)Man). In order to determine if these complexes are formed, the interaction energy between benzene and the different carbohydrates was determined, using Calvet microcalorimetry, as the enthalpy of solvation. These enthalpy values were -89.0 +/- 2.0, -88.7 +/- 5.5, -132.5 +/- 6.2, and -78.8 +/- 3.9 kJ mol(-1) for the four complexes, respectively. Characterization of the different complexes was completed by establishing the molecular region where the interaction takes place using NMR. It was determined that beta-Me(5)Gal is stabilized by the CH/pi interaction produced by the nonpolar region of the carbohydrate on the alpha face. In contrast, alpha-Me(5)Man is not specifically solvated by benzene and does not present any stacking interaction. Although alpha-Me(5)Gal has a geometry similar to that of its epimer, the obtained NMR data seem to indicate that the axial methoxy group at the anomeric position increases the distance of the benzene molecules from the pyranose ring. Substitution of the methoxy groups by acetate moieties, as in beta-Ac(5)Gal, precludes the approach of benzene to produce the CH/pi interaction. In fact, the elevated stabilization energy of beta-Ac(5)Gal is probably due to the interaction between benzene and the methyl groups of the acetyls. Therefore, methoxy and acetyl substituents have different effects on the protons of the pyranose ring.
Collapse
Affiliation(s)
- Karla Ramírez-Gualito
- Instituto de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70213, 04510 Coyoacán, Circuito Exterior, México D.F., México.
| | | | | | | | | | | | | |
Collapse
|
44
|
Voynov V, Chennamsetty N, Kayser V, Helk B, Forrer K, Zhang H, Fritsch C, Heine H, Trout BL. Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation. PLoS One 2009; 4:e8425. [PMID: 20037630 PMCID: PMC2791859 DOI: 10.1371/journal.pone.0008425] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022] Open
Abstract
Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation.
Collapse
Affiliation(s)
- Vladimir Voynov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Naresh Chennamsetty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Veysel Kayser
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | | | | | | | | | - Bernhardt L. Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
45
|
López CA, Rzepiela AJ, de Vries AH, Dijkhuizen L, Hünenberger PH, Marrink SJ. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J Chem Theory Comput 2009; 5:3195-210. [DOI: 10.1021/ct900313w] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cesar A. López
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Andrzej J. Rzepiela
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Alex H. de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Lubbert Dijkhuizen
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Philippe H. Hünenberger
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Centre for Carbohydrate Bioprocessing, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
46
|
Abstract
Supramolecular chemistry has expanded dramatically in recent years both in terms of potential applications and in its relevance to analogous biological systems. The formation and function of supramolecular complexes occur through a multiplicity of often difficult to differentiate noncovalent forces. The aim of this Review is to describe the crucial interaction mechanisms in context, and thus classify the entire subject. In most cases, organic host-guest complexes have been selected as examples, but biologically relevant problems are also considered. An understanding and quantification of intermolecular interactions is of importance both for the rational planning of new supramolecular systems, including intelligent materials, as well as for developing new biologically active agents.
Collapse
Affiliation(s)
- Hans-Jörg Schneider
- Organische Chemie, Universität des Saarlandes, 66041 Saarbrücken, Deutschland.
| |
Collapse
|
47
|
Tsuzuki S, Uchimaru T, Mikami M. Magnitude and nature of carbohydrate-aromatic interactions: ab initio calculations of fucose-benzene complex. J Phys Chem B 2009; 113:5617-21. [PMID: 19331351 DOI: 10.1021/jp8093726] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stable geometries of fucose-benzene complex and the stabilization energies by formation of the complex (E(form)) were studied by ab initio molecular orbital calculations. The benzene ring has close contact with an O-H or C-H bond of fucose in the optimized geometries (OH/pi hydrogen-bonded structures and CH/pi contact structures). The E(form) calculated for the most stable OH/pi hydrogen-bonded structure was -5.1 kcal/mol. The E(form) calculated for the most stable CH/pi contact structure was -4.5 kcal/mol, which shows that significant attraction exists between the nonpolar surface of fucose and a benzene. The E(form) is close to the interaction energies in typical hydrogen-bonded complexes. A few nearly isoenergetic CH/pi contact structures were found by the calculations, which suggests that the directionality of the carbohydrate-aromatic interaction is weak. The dispersion interaction is the major source of the attraction in the complex. The electrostatic contributions to the attraction are relatively small. Although the size of the interaction energy is not largely different from that of typical hydrogen bonds, the nature of the carbohydrate-aromatic interaction, which is sometimes denoted as a CH/pi hydrogen bond, is completely different from that of typical hydrogen bonds, which have strong directionality due to the strong electrostatic interactions.
Collapse
Affiliation(s)
- Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan.
| | | | | |
Collapse
|
48
|
|
49
|
Nishio M, Umezawa Y, Honda K, Tsuboyama S, Suezawa H. CH/π hydrogen bonds in organic and organometallic chemistry. CrystEngComm 2009. [DOI: 10.1039/b902318f] [Citation(s) in RCA: 481] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Vandenbussche S, Díaz D, Fernández-Alonso MC, Pan W, Vincent SP, Cuevas G, Cañada FJ, Jiménez-Barbero J, Bartik K. Aromatic-carbohydrate interactions: an NMR and computational study of model systems. Chemistry 2008; 14:7570-8. [PMID: 18481803 DOI: 10.1002/chem.200800247] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The interactions of simple carbohydrates with aromatic moieties have been investigated experimentally by NMR spectroscopy. The analysis of the changes in the chemical shifts of the sugar proton signals induced upon addition of aromatic entities has been interpreted in terms of interaction geometries. Phenol and aromatic amino acids (phenylalanine, tyrosine, tryptophan) have been used. The observed sugar-aromatic interactions depend on the chemical nature of the sugar, and thus on the stereochemistries of the different carbon atoms, and also on the solvent. A preliminary study of the solvation state of a model monosaccharide (methyl beta-galactopyranoside) in aqueous solution, both alone and in the presence of benzene and phenol, has also been carried out by monitoring of intermolecular homonuclear solvent-sugar and aromatic-sugar NOEs. These experimental results have been compared with those obtained by density functional theory methods and molecular mechanics calculations.
Collapse
Affiliation(s)
- Sophie Vandenbussche
- Molecular & Biomolecular Engineering, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|