1
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
2
|
Gharibi T, Babaloo Z, Hosseini A, Abdollahpour-alitappeh M, Hashemi V, Marofi F, Nejati K, Baradaran B. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol 2020; 878:173107. [DOI: 10.1016/j.ejphar.2020.173107] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
3
|
Targeting STAT3 in Cancer with Nucleotide Therapeutics. Cancers (Basel) 2019; 11:cancers11111681. [PMID: 31671769 PMCID: PMC6896109 DOI: 10.3390/cancers11111681] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in promoting the proliferation and survival of tumor cells. As a ubiquitously-expressed transcription factor, STAT3 has commonly been considered an "undruggable" target for therapy; thus, much research has focused on targeting upstream pathways to reduce the expression or phosphorylation/activation of STAT3 in tumor cells. Recently, however, novel approaches have been developed to directly inhibit STAT3 in human cancers, in the hope of reducing the survival and proliferation of tumor cells. Several of these agents are nucleic acid-based, including the antisense molecule AZD9150, CpG-coupled STAT3 siRNA, G-quartet oligodeoxynucleotides (GQ-ODNs), and STAT3 decoys. While the AZD9150 and CpG-STAT3 siRNA interfere with STAT3 expression, STAT3 decoys and GQ-ODNs target constitutively activated STAT3 and modulate its ability to bind to target genes. Both STAT3 decoy and AZD9150 have advanced to clinical testing in humans. Here we will review the current understanding of the structures, mechanisms, and potential clinical utilities of the nucleic acid-based STAT3 inhibitors.
Collapse
|
4
|
Son DJ, Kim DH, Nah SS, Park MH, Lee HP, Han SB, Venkatareddy U, Gann B, Rodriguez K, Burt SR, Ham YW, Jung YY, Hong JT. Novel synthetic (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol inhibits arthritis by targeting signal transducer and activator of transcription 3. Sci Rep 2016; 6:36852. [PMID: 27845373 PMCID: PMC5109275 DOI: 10.1038/srep36852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 10/21/2016] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is a severely debilitating chronic autoimmune disease that leads to long-term joint damage. Signal transducer and activator of transcription 3 (STAT3)-targeted small molecules have shown promise as therapeutic drugs for treating RA. We previously identified (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (BHPB), a tyrosine-fructose Maillard reaction product, as a small molecule with potent anti-inflammatory and anti-arthritic properties, mediated through the inhibition of STAT3 activation. The aim of this study was to develop a novel BHPH derivative with improved anti-arthritic properties and drug-likeness. We designed and synthesised (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol (MMPP), a novel synthetic BHPB analogue, and investigated its anti-inflammatory and anti-arthritic activities in experimentally-induced RA. We showed that MMPP strongly inhibited pro-inflammatory responses by inhibiting in vitro STAT3 activation and its downstream signalling in murine macrophages and human synoviocytes from patients with RA. Furthermore, we demonstrated that MMPP exhibited potent anti-arthritic activity in a collagen antibody-induced arthritis (CAIA) mouse model in vivo. Collectively, our results suggest that MMPP has great potential for use in the treatment of RA.
Collapse
Affiliation(s)
- Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Dae Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Asan, Chungnam 31538, Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| | - Udumula Venkatareddy
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Benjamin Gann
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Kevin Rodriguez
- Department of Chemistry, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA
| | - Scott R. Burt
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University, 800 W University Pkwy, Orem, UT 84058, USA
| | - Yu Yeon Jung
- Department of Dental Hygiene, Gwangyang Health Sciences University, Gwnagyang, Jeonnam 57764, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk 28160, Korea
| |
Collapse
|
5
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Yeh JE, Frank DA. STAT3-Interacting Proteins as Modulators of Transcription Factor Function: Implications to Targeted Cancer Therapy. ChemMedChem 2015; 11:795-801. [DOI: 10.1002/cmdc.201500482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/01/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Jennifer E. Yeh
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| | - David A. Frank
- Department of Medical Oncology; Dana-Farber Cancer Institute; 450 Brookline Avenue Boston MA 02215 USA
| |
Collapse
|
7
|
Ban JO, Kim DH, Lee HP, Hwang CJ, Shim JH, Kim DJ, Kim TM, Jeong HS, Nah SS, Chen H, Dong Z, Ham YW, Kim Y, Han SB, Hong JT. Anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal are mediated by inhibition of the STAT3 pathway. Br J Pharmacol 2014; 171:2900-12. [PMID: 24520814 DOI: 10.1111/bph.12619] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/16/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Products of Maillard reactions between aminoacids and reducing sugars are known to have anti-inflammatory properties. Here we have assessed the anti-arthritis effects of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal and its possible mechanisms of action. EXPERIMENTAL APPROACH We used cultures of LPS-activated macrophages (RAW264.7 cells) and human synoviocytes from patients with rheumatoid arthritis for in vitro assays and the collagen-induced arthritis model in mice. NO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities were measured in vitro and in joint tissues of arthritic mice, along with clinical scores and histopathological assessments. Binding of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal to STAT3 was evaluated by a pull-down assay and its binding site was predicted using molecular docking studies with Autodock VINA. KEY RESULTS (E)-2,4-bis(p-hydroxyphenyl)-2-butenal (2.5-10 μg·mL(-1) ) inhibited LPS-inducedNO generation, iNOS and COX2 expression, and NF-κB/IKK and STAT3 activities in macrophage and human synoviocytes. This compound also suppressedcollagen-induced arthritic responses in mice by inhibiting expression of iNOS and COX2, and NF-κB/IKK and STAT3 activities; it also reduced bone destruction and fibrosis in joint tissues. A pull-down assay showed that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal interfered with binding of ATP to STAT3. Docking studies suggested that (E)-2,4-bis(p-hydroxyphenyl)-2-butenal bound to the DNA-binding interface of STAT3 possibly inhibiting ATP binding to STAT3 in an allosteric manner. CONCLUSIONS AND IMPLICATIONS (E)-2,4-bis(p-hydroxyphenyl)-2-butenal exerted anti-inflammatory and anti-arthritic effects through inhibition of the NF-κB/STAT3 pathway by direct binding to STAT3. This compound could be a useful agent for the treatment of arthritic disease.
Collapse
Affiliation(s)
- Jung Ok Ban
- College of Pharmacy, Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tóthová P, Krafčíková P, Víglaský V. Formation of highly ordered multimers in G-quadruplexes. Biochemistry 2014; 53:7013-27. [PMID: 25347520 DOI: 10.1021/bi500773c] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
G-Rich DNA and RNA have a higher propensity to form G-quadruplex structures, but the presence of G-runs alone is not sufficient to prove that such sequences can form stable G-quadruplexes. While G-rich sequences are essential for G-quadruplex formation, not all G-rich sequences have the propensity to form G-quadruplex structures. In addition, monovalent metal ions, dehydrating agents, and loop sequences connecting the G-runs also play important roles in the topology of G-quadruplex folding. To date, no quantitative analysis of the CD spectra of G-quadruplexes in confrontation with the electrophoretic results has been performed. Therefore, in this study, we use information gained through the analysis of a series of well-known G-quadruplex-forming sequences to evaluate other less-studied sets of aptameric sequences. A simple and cost-effective methodology that can verify the formation of G-quadruplex motifs from oligomeric DNA sequences and a technique to determine the molecularity of these structures are also described. This methodology could be of great use in the prediction of G-quadruplex assembly, and the basic principles of our techniques can be extrapolated for any G-rich DNA sequences. This study also presents a model that can predict the multimerization of G-quadruplexes; the predictions offered by this model are shown to match the results obtained using circular dichroism.
Collapse
Affiliation(s)
- Petra Tóthová
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, P. J. Šafárik University , 04001 Košice, Slovakia
| | | | | |
Collapse
|
9
|
Fagard R, Metelev V, Souissi I, Baran-Marszak F. STAT3 inhibitors for cancer therapy: Have all roads been explored? JAKSTAT 2014; 2:e22882. [PMID: 24058788 PMCID: PMC3670264 DOI: 10.4161/jkst.22882] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 01/07/2023] Open
Abstract
The signal transducer and activator of transcription STAT3 is a transcription factor which plays a key role in normal cell growth and is constitutively activated in about 70% of solid and hematological cancers. Activated STAT3 is phosphorylated on tyrosine and forms a dimer through phosphotyrosine/src homology 2 (SH2) domain interaction. The dimer enters the nucleus via interaction with importins and binds target genes. Inhibition of STAT3 results in the death of tumor cells, this indicates that it is a valuable target for anticancer strategies; a view that is corroborated by recent findings of activating mutations within the gene. Yet, there is still only a small number of STAT3 direct inhibitors; in addition, the high similarity of STAT3 with STAT1, another STAT family member mostly oriented toward apoptosis, cell death and defense against pathogens, requires that STAT3-inhibitors have no effect on STAT1. Specific STAT3 direct inhibitors consist of SH2 ligands, including G quartet oligodeoxynucleotides (ODN) and small molecules, they induce cell death in tumor cells in which STAT3 is activated. STAT3 can also be inhibited by decoy ODNs (dODN), which bind STAT3 and induce cell death. A specific STAT3 dODN which does not interfere with STAT1-mediated interferon-induced cell death has been designed pointing to the STAT3 DBD as a target for specific inhibition. Comprehensive analysis of this region is in progress in the laboratory to design DBD-targeting STAT3 inhibitors with STAT3/STAT1 discriminating ability.
Collapse
Affiliation(s)
- Remi Fagard
- INSERM Unité 978; Bobigny, France ; University Paris 13; UFR SMBH; Sorbonne Paris Cité; Bobigny, France ; Biochimie Biologie Moléculaire; AP-HP; Hôpital Avicenne; Bobigny, France
| | | | | | | |
Collapse
|
10
|
Xiong A, Yang Z, Shen Y, Zhou J, Shen Q. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers (Basel) 2014; 6:926-57. [PMID: 24743778 PMCID: PMC4074810 DOI: 10.3390/cancers6020926] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents.
Collapse
Affiliation(s)
- Ailian Xiong
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhengduo Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yicheng Shen
- College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Chen H, Guan Y, Yuan G, Zhang Q, Jing N. A perylene derivative regulates HIF-1α and Stat3 signaling pathways. Bioorg Med Chem 2013; 22:1496-505. [PMID: 24485121 DOI: 10.1016/j.bmc.2013.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/07/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly evident that improving the cure rate of many cancers will require treatment regimens hit more than one validated tumor targets. Developing an anti-cancer agent that targets two oncoproteins simultaneously is a promising strategy for accomplishing this goal. It would be expected to promote drug efficacy, reduce therapy-resistant without introducing additional toxic side effects. HIF-1α is a key regulator of the cellular response to hypoxia and is involved in tumor angiogenesis and cancer cell survival, glucose metabolism, and invasion. Stat3 has several oncogenic functions, including suppression of anti-tumor immune responses and promotion of inflammation. Recently, we have identified the perylene derivative, TEL03, as a dual inhibitor that targets both HIF-1α and Stat3. TEL03 blocks the expression of both HIF-1α and Stat3, regulated oncogenes (e.g., Bcl-2, VEGF, Glut1, and others) in cancer cells, and induces cancer cell apoptosis. The results demonstrated that: (i) TEL03 blocks Stat3 phosphorylation, and inhibits Stat3 transcriptional activity; and (ii) interferes the binding of HIF-1α to p300/CBP inducing its degradation by proteasomes under hypoxic conditions. Our in vivo tests showed that as a dual inhibitor, TEL03 dramatically inhibited tumor growth, and provided the evidence that targeting both HIF-1α and Stat3 simultaneously could be a promising strategy for breast and pancreatic cancer therapies.
Collapse
Affiliation(s)
- Han Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yongli Guan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Naijie Jing
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Zhou Z, Gushiken FC, Bolgiano D, Salsbery BJ, Aghakasiri N, Jing N, Wu X, Vijayan KV, Rumbaut RE, Adachi R, Lopez JA, Dong JF. Signal transducer and activator of transcription 3 (STAT3) regulates collagen-induced platelet aggregation independently of its transcription factor activity. Circulation 2012; 127:476-485. [PMID: 23266857 DOI: 10.1161/circulationaha.112.132126] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Platelet hyperactivity induced by inflammation is a known risk factor for atherosclerosis and thrombosis, but its underlying mechanisms remain poorly understood. METHODS AND RESULTS The signal transducer and activator of transcription 3 (STAT3) was activated in collagen-stimulated platelets. Activated STAT3 served as a protein scaffold to facilitate the catalytic interaction between the kinase Syk (spleen tyrosine kinase) and the substrate PLCγ2 to enhance collagen-induced calcium mobilization and platelet activation. The same interaction of STAT3 with Syk and PLCγ2 was detected in HEK293 cells transfected with cDNAs for Syk and PLCγ2 and stimulated with interleukin-6. Pharmacological inhibition of STAT3 blocked ≈50% of collagen- and a collagen-related peptide-induced but not thrombin receptor-activating peptide- or ADP-induced aggregation and ≈80% of thrombus formation of human platelets on a collagen matrix. This in vitro phenotype was reproduced in mice infused with STAT3 inhibitors and mice with platelet-specific STAT3 deficiency. By forming a complex with its soluble receptor, the proinflammatory cytokine interleukin-6 enhanced the collagen-induced STAT3 activation in human platelets. CONCLUSIONS These data demonstrate a nontranscriptional activity of STAT3 that facilitates a crosstalk between proinflammatory cytokine and hemostasis/thrombosis signals in platelets. This crosstalk may be responsible for the platelet hyperactivity found in conditions of inflammation.
Collapse
Affiliation(s)
- Zhou Zhou
- Puget Sound Blood Research Institute, Seattle, WA
| | - Francisca C Gushiken
- Department of Leukemia, the University of Texas M. D. Anderson Cancer Center, Houston, TX
| | | | | | | | - Naijie Jing
- Section of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Xiaoping Wu
- Puget Sound Blood Research Institute, Seattle, WA
| | - K Vinod Vijayan
- Section of Cardiovascular Sciences, Baylor College of Medicine, Houston, TX
| | - Rolando E Rumbaut
- Section of Critical Care and Pulmonary Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX.,Michael E. DeBakey VA Medical Center, Houston, TX
| | - Roberto Adachi
- Pulmonary Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Jose A Lopez
- Puget Sound Blood Research Institute, Seattle, WA.,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA
| | - Jing-Fei Dong
- Puget Sound Blood Research Institute, Seattle, WA.,General Hospital, Tianjin Medical University, Tianjin, China.,Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
13
|
Reddy KR, Guan Y, Qin G, Zhou Z, Jing N. Combined treatment targeting HIF-1α and Stat3 is a potent strategy for prostate cancer therapy. Prostate 2011; 71:1796-809. [PMID: 21480310 DOI: 10.1002/pros.21397] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/16/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND The Stat3 pathway and the hypoxia-sensing pathway are both up-regulated in prostate cancer. Stat3 is a specific regulator of pro-carcinogenic inflammation and represents a promising therapeutic target. Hypoxia-inducible factor-1 (HIF-1)α, which mediates the cellular response to hypoxia, has been demonstrated to be over-expressed in many human cancers and is associated with poor prognosis and treatment failure in clinic. To develop a potent strategy to increase therapeutic efficacy and reduce drug resistance in prostate cancer therapy, we combined two anti-cancer agents: T40214 (a p-Stat3 inhibitor) and JG244 (a HIF-1α inhibitor) together to treat nude mice bearing human prostate tumor (DU145) and immunocompetent mice (C57BL/6) bearing murine prostate tumor (TRAMP-C2). METHODS We employed in vitro and in vivo assays, including Western blots, cell cycle analysis, immunohistochemistry, TUNEL and xenograft models to determine the drug efficacy and mechanism of combination treatment of T40214 and JG244. RESULTS We found that compared to treatment by T40214 or JG244 alone, the combination treatment using T40214 and JG244 together significantly suppressed growth of human or murine prostate tumors. Also, compared with apoptotic cells induced by T40214 or JG244 alone, the combined treatment greatly increased apoptosis in DU145 (P < 0.006) and TRAMP-C2 tumors (P < 0.008). CONCLUSIONS Our results suggested that combination treatment including a HIF-1α/2α inhibitor not only has therapeutic efficacy in targeting HIF-1α/2α, but also could reduce the hypoxia-induced drug resistance to other therapies (e.g., T40214) and enhance drug efficacy. This approach could make prostate cancer treatments more effective.
Collapse
|
14
|
Lai SY, Johnson FM. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updat 2010; 13:67-78. [PMID: 20471303 DOI: 10.1016/j.drup.2010.04.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/06/2010] [Indexed: 12/17/2022]
Abstract
Although the role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway has been most extensively studied in hematopoietic cells and hematologic malignancies, it is also activated in epithelial tumors, including those originating in the lungs and head and neck. The canonical pathway involves the activation of JAK following ligand binding to cytokine receptors. The activated JAKs then phosphorylate STAT proteins, leading to their dimerization and translocation into the nucleus. In the nucleus, STATs act as transcription factors with pleiotropic downstream effects. STATs can be activated independently of JAKs, most notably by c-Src kinases. In cancer cells, STAT3 and STAT5 activation leads to the increased expression of downstream target genes, leading to increased cell proliferation, cell survival, angiogenesis, and immune system evasion. STAT3 and STAT5 are expressed and activated in head and neck squamous cell carcinoma (HNSCC) where they contribute to cell survival and proliferation. In HNSCC, STATs can be activated by a number of signal transduction pathways, including the epidermal growth factor receptor (EGFR), alpha7 nicotinic receptor, interleukin (IL) receptor, and erythropoietin receptor pathways. Activated STATs are also expressed in lung cancer, but the biological effects of JAK/STAT inhibition in this cancer are variable. In lung cancer, STAT3 can be activated by multiple pathways, including EGFR. Several approaches have been used to inhibit STAT3 in the hopes of developing an antitumor agent. Although several STAT3-specific agents are promising, none are in clinical development, mostly because of drug delivery and stability issues. In contrast, several JAK inhibitors are in clinical development. These orally available, ATP-competitive, small-molecule kinase inhibitors are being tested in myeloproliferative disorders. Future studies will determine whether JAK inhibitors are useful in the treatment of HNSCC or lung cancer.
Collapse
Affiliation(s)
- Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas M.D. Anderson Cancer Center at Houston, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Xu X, Kasembeli MM, Jiang X, Tweardy BJ, Tweardy DJ. Chemical probes that competitively and selectively inhibit Stat3 activation. PLoS One 2009; 4:e4783. [PMID: 19274102 PMCID: PMC2653189 DOI: 10.1371/journal.pone.0004783] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 01/12/2009] [Indexed: 01/27/2023] Open
Abstract
Signal transducer and activator of transcription (Stat) 3 is an oncogene constitutively activated in many cancer systems where it contributes to carcinogenesis. To develop chemical probes that selectively target Stat3, we virtually screened 920,000 small drug-like compounds by docking each into the peptide-binding pocket of the Stat3 SH2 domain, which consists of three sites—the pY-residue binding site, the +3 residue-binding site and a hydrophobic binding site, which served as a selectivity filter. Three compounds satisfied criteria of interaction analysis, competitively inhibited recombinant Stat3 binding to its immobilized pY-peptide ligand and inhibited IL-6-mediated tyrosine phosphorylation of Stat3. These compounds were used in a similarity screen of 2.47 million compounds, which identified 3 more compounds with similar activities. Examination of the 6 active compounds for the ability to inhibit IFN-γ-mediated Stat1 phosphorylation revealed that 5 of 6 were selective for Stat3. Molecular modeling of the SH2 domains of Stat3 and Stat1 bound to compound revealed that compound interaction with the hydrophobic binding site was the basis for selectivity. All 5 selective compounds inhibited nuclear-to-cytoplasmic translocation of Stat3, while 3 of 5 compounds induced apoptosis preferentially of breast cancer cell lines with constitutive Stat3 activation. Thus, virtual ligand screening of compound libraries that targeted the Stat3 pY-peptide binding pocket identified for the first time 3 lead compounds that competitively inhibited Stat3 binding to its pY-peptide ligand; these compounds were selective for Stat3 vs. Stat1 and induced apoptosis preferentially of breast cancer cells lines with constitutively activated Stat3.
Collapse
Affiliation(s)
- Xuejun Xu
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Moses M. Kasembeli
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xueqing Jiang
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Benjamin J. Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David J. Tweardy
- Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
BACKGROUND Aberrant activation of the signal transducer and activator of transcription (STAT)3 occurs in many human tumors. Moreover, studies utilizing genetic and pharmacological approaches to modulate constitutive STAT3 activity have provided compelling evidence for the critical role of aberrant STAT3 activity in malignant transformation and tumor progression, and thereby validated STAT3 as a novel cancer drug target. OBJECTIVE This review is intended to be a full coverage of the efforts to develop direct STAT3 inhibitors and will provide a discussion on the inhibitory modalities developed to date. METHODS Review of the literature focused on the modalities and mechanisms that directly target and inhibit the STAT protein or its functions. RESULTS/CONCLUSION While a variety of STAT3 inhibitors have been identified that induce antitumor cell effects in vitro and in vivo, the landscape remains murky. With a few exceptions, most of the STAT3 inhibitors reported to date have not undergone an in vivo efficacy, pharmacology or toxicity testing. Also, there is no evidence, per the published literature of an impending clinical development for the few agents that were reported to exhibit in vivo efficacy. Overall, there is the need for a reassessment of the ongoing strategies to target STAT3 intended not only for refinement, but also for incorporating some new technologies to strengthen our efforts and ensure the success - sooner, rather than later - of identifying suitable anti-STAT3 agents for development into clinically useful anticancer therapeutics.
Collapse
Affiliation(s)
- Peibin Yue
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Biomolecular Science Center and Department of Molecular Biology and Microbiology, 12722 Research Parkway, Orlando, Florida 32826, USA
| | - James Turkson
- University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Biomolecular Science Center and Department of Molecular Biology and Microbiology, 12722 Research Parkway, Orlando, Florida 32826, USA
| |
Collapse
|
17
|
Weerasinghe P, Li Y, Guan Y, Zhang R, Tweardy DJ, Jing N. T40214/PEI complex: a potent therapeutics for prostate cancer that targets STAT3 signaling. Prostate 2008; 68:1430-42. [PMID: 18615483 PMCID: PMC2574665 DOI: 10.1002/pros.20807] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Prostate cancer (PC) is the most common cancer among men in American and the second leading cause of cancer death. The treatment options employed for patients with advanced and metastatic PC are limited. As a critical mediator of oncogenic signaling, STAT3 is active in 82% of patients with PC. STAT3 has become a very important molecular target for PC therapy since it upregulates the oncogenes encoding apoptosis inhibitors, cell cycle regulators, and inducers of angiogenesis. However, no anti-tumor drug whose primary mode of action is to target STAT3 has yet reached the clinic. To this end, we have laid the initial groundwork to develop the STAT3-inhibiting G-quartet oligodeoxynucleotide (GQ-ODN), T40214, for treatment of PCs. METHODS We employed in vitro and in vivo assays, including Western blots, EMSA, cell cycle analysis, TUNEL and xenograft models, to determine the drug efficacy and mechanism of T40214/PEI complex. RESULTS The results demonstrated that (i) T40214 significantly inhibited STAT3 activation and induced apoptosis in both androgen-dependent and androgen-independent PC cells; (ii) T40214 delivered by ployethylenimine (PEI) significantly suppressed prostate tumor growth in tumor-bearing nude mice due to that T40214 inhibited STAT3 activation and then greatly promoted apoptosis, reduced angiogenesis and cell proliferation in prostate tumors. CONCLUSION Our studies suggested that STAT3 is a critical oncogenic signal, which strongly influences the progression of PCs and that T40214/PEI complex is a promising candidate for treatment of patients with prostate tumors and represents a novel strategy for PC therapy.
Collapse
Affiliation(s)
- Priya Weerasinghe
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yifei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yongli Guan
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, AL
| | - David J. Tweardy
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Naijie Jing
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|