1
|
Ahamad S, Saquib M, Hussain MK, Bhat SA. Targeting Wnt signaling pathway with small-molecule therapeutics for treating osteoporosis. Bioorg Chem 2025; 156:108195. [PMID: 39864370 DOI: 10.1016/j.bioorg.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge. Despite advancements in computer-aided drug design, it is rarely employed for designing Wnt signaling activators to treat osteoporosis, and high-throughput screen (HTS) remains the primary method for discovering initial hits. Acknowledging the promising therapeutic potential of these compounds in addressing bone diseases, this review underscores the need for further mechanistic elucidation to enhance our understanding of their applications. Additionally, caution must be exercised in the design of small molecule-based Wnt activators due to their association with oncological risks.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, UP, India
| | | | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
An Z, Wang J, Li C, Tang C. Signal integrator function of CXXC5 in Cancer. Cell Commun Signal 2025; 23:25. [PMID: 39806388 PMCID: PMC11730785 DOI: 10.1186/s12964-024-02005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
CXXC type zinc finger protein 5 (CXXC5) is a member of the ZF-CXXC family and plays a pivotal role in signal integration and information transfer within cell signaling network. CXXC5 acts as a regulator in various physiological processes, and abnormalities in its protein structure or function have been linked to multiple pathological processes. In this article, we correspondingly describe the composition of the ZF-CXXC family, emphatically introducing the features of the CXXC5 gene and protein, review the role of CXXC5 in cellular signaling networks, the physiological and pathological processes associated with CXXC5 dysregulation, and particularly focus on the correlation between CXXC5 and cancers. Finally, we summarize the current therapies targeting CXXC5 and their potential applications, and discuss the intriguing findings from current studies, and the opportunities and challenges in future.
Collapse
Affiliation(s)
- Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jiepu Wang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chengzuo Li
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Abhishek Shah A, Chand D, Ahamad S, Porwal K, Chourasia MK, Mohanan K, Srivastava KR, Chattopadhyay N. Therapeutic targeting of Wnt antagonists by small molecules for treatment of osteoporosis. Biochem Pharmacol 2024; 230:116587. [PMID: 39447984 DOI: 10.1016/j.bcp.2024.116587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Wnt signaling is one of the key regulators of bone development and homeostasis. Wnt signaling regulates key biological events, including stem cell fate and osteoblast and osteoclast activity, leading to the maintenance of bone mass and strength. Wnt ligands are secreted glycoproteins that bind to Frizzled (FZD) receptors and their coreceptors, lipoprotein receptor-related proteins-5/6 (LRP5/6). Binding of Wnts to FZD triggers canonical (β-catenin-dependent) and noncanonical (β-catenin-independent) pathways. In canonical Wnt signaling, stabilized β-catenin translocates to the nucleus, where it promotes osteoblast differentiation by activating target genes, including Runx2 and Osterix. The negative regulators of Wnt or so-called Wnt antagonists, including CXXC5, sFRP, sclerostin, DKK1, and Notum, compete for Fzd binding, attenuating Wnt signaling. The critical roles of Wnt signaling in bone homeostasis have been established by various bone diseases caused by mutations in Wnt signaling pathways. Loss-of-function mutations in the LRP5 gene cause osteoporosis-pseudoglioma syndrome, whereas gain-of-function mutations are linked to osteopetrosis characterized by high bone density. Sclerosteosis and Van Buchem disease are caused by mutations affecting the SOST gene, which encodes sclerostin, a natural inhibitor of Wnt signalling. Loss-of-function mutations in SOST result in excessive bone growth, markedly increased bone density, and other skeletal abnormalities due to uncontrolled Wnt activity. Considering the clinical relevance of Wnt signaling, targeting Wnt inhibitors is being intensely pursued using small molecules that act by inhibiting endogenous Wnt agonists. We used a computational biology approach to review current data on pharmacophores of Wnt antagonists, assessing their potential as therapeutic candidates for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Aarti Abhishek Shah
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Diwan Chand
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakir Ahamad
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Konica Porwal
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets for Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kishor Mohanan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kinshuk R Srivastava
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research on Anabolic Skeletal Targets for Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
5
|
High throughput virtual screening (HTVS) of peptide library: Technological advancement in ligand discovery. Eur J Med Chem 2022; 243:114766. [PMID: 36122548 DOI: 10.1016/j.ejmech.2022.114766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
High-throughput virtual screening (HTVS) is a leading biopharmaceutical technology that employs computational algorithms to uncover biologically active compounds from large-scale collections of chemical compound libraries. In addition, this method often leverages the precedence of screening focused libraries for assessing their binding affinities and improving physicochemical properties. Usually, developing a drug sometimes takes ages, and lessons are learnt from FDA-approved drugs. This screening strategy saves resources and time compared to laboratory testing in certain stages of drug discovery. Yet in-silico investigations remain challenging in some cases of drug discovery. For the last few decades, peptide-based drug discoveries have received remarkable momentum for several advantages over small molecules. Therefore, developing a high-fidelity HTVS platform for chemically versatile peptide libraries is highly desired. This review summarises the modern and frequently appreciated HTVS strategies for peptide libraries from 2011 to 2021. In addition, we focus on the software used for preparing peptide libraries, their screening techniques and shortcomings. An index of various HTVS methods reported here should assist researchers in identifying tools that could be beneficial for their peptide library screening projects.
Collapse
|
6
|
Stevens AO, Luo S, He Y. Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain. Cells 2022; 11:cells11152451. [PMID: 35954295 PMCID: PMC9368557 DOI: 10.3390/cells11152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The PDZ family has drawn attention as possible drug targets because of the domains’ wide ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2 subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124 has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1 PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor may be necessary to ensure sufficient interactions that permit stable binding between a drug and the PICK1 PDZ domain.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Samuel Luo
- Albuquerque Academy, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
7
|
Indirubin-3’-alkoxime derivatives for upregulation of Wnt signaling through dual inhibition of GSK-3β and the CXXC5-Dvl interaction. Bioorg Chem 2022; 121:105664. [DOI: 10.1016/j.bioorg.2022.105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 11/18/2022]
|
8
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
9
|
Cheng J, Tsuda M, Okolotowicz K, Dwyer M, Bushway PJ, Colas AR, Lancman JJ, Schade D, Perea-Gil I, Bruyneel AAN, Lee J, Vadgama N, Quach J, McKeithan WL, Biechele TL, Wu JC, Moon RT, Si Dong PD, Karakikes I, Cashman JR, Mercola M. Small-molecule probe reveals a kinase cascade that links stress signaling to TCF/LEF and Wnt responsiveness. Cell Chem Biol 2021; 28:625-635.e5. [PMID: 33503403 PMCID: PMC8140986 DOI: 10.1016/j.chembiol.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/02/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Wnt signaling plays a central role in tissue maintenance and cancer. Wnt activates downstream genes through β-catenin, which interacts with TCF/LEF transcription factors. A major question is how this signaling is coordinated relative to tissue organization and renewal. We used a recently described class of small molecules that binds tubulin to reveal a molecular cascade linking stress signaling through ATM, HIPK2, and p53 to the regulation of TCF/LEF transcriptional activity. These data suggest a mechanism by which mitotic and genotoxic stress can indirectly modulate Wnt responsiveness to exert coherent control over cell shape and renewal. These findings have implications for understanding tissue morphogenesis and small-molecule anticancer therapeutics.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Masanao Tsuda
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karl Okolotowicz
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Mary Dwyer
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Paul J Bushway
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; University of California, San Diego, San Diego, CA 92093, USA
| | - Alexandre R Colas
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph J Lancman
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dennis Schade
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA; Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, Kiel, Germany
| | - Isaac Perea-Gil
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Arne A N Bruyneel
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Jaechol Lee
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Nirmal Vadgama
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Justine Quach
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | - Wesley L McKeithan
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Travis L Biechele
- Department of Pharmacology, University of Washington, Seattle, WA 98105, USA
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Randall T Moon
- Department of Pharmacology, University of Washington, Seattle, WA 98105, USA
| | - P Duc Si Dong
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ioannis Karakikes
- Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA; Department of Cardiothoracic Surgery, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA
| | - John R Cashman
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark Mercola
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; University of California, San Diego, San Diego, CA 92093, USA; Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, 240 Pasteur Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
10
|
Hoffer L, Roche P, Morelli X. Rational Design of PDZ Domain Inhibitors: Discovery of Small Organic Compounds Targeting PDZ Domains. Methods Mol Biol 2021; 2256:277-289. [PMID: 34014528 DOI: 10.1007/978-1-0716-1166-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
PDZ domains, which belong to protein-protein interaction networks, are critical for regulating important biological processes such as scaffolding, trafficking, and signaling cascades. Interfering with PDZ-mediated interactions could affect these numerous biological processes. Thus, PDZ domains have emerged as promising targets to decipher biological phenomena and potentially treat cancer and neurological diseases. In this minireview, we focus on the discovery and design of small molecule inhibitors to modulate PDZ domains. These compounds interfere with endogenous protein partners from the PDZ domain by binding at the protein-protein interface. While peptides or peptidomimetic ligands were described to modulate PDZ domains, the focus of this review is on small organic compounds.
Collapse
Affiliation(s)
- Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS and Institut Paoli-Calmettes, Marseille, France.
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS and Institut Paoli-Calmettes, Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm, CNRS and Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
11
|
Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60:101063. [PMID: 32272170 DOI: 10.1016/j.arr.2020.101063] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/25/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the final hallmark of pathological remodeling, which is a major contributor to the pathogenesis of various chronic diseases and aging-related organ failure to fully control chronic wound-healing and restoring tissue function. The process of fibrosis is involved in the pathogenesis of the kidney, lung, liver, heart and other tissue disorders. Wnt is a highly conserved signaling in the aberrant wound repair and fibrogenesis, and sustained Wnt activation is correlated with the pathogenesis of fibrosis. In particular, mounting evidence has revealed that Wnt signaling played important roles in cell fate determination, proliferation and cell polarity establishment. The expression and distribution of Wnt signaling in different tissues vary with age, and these changes have key effects on maintaining tissue homeostasis. In this review, we first describe the major constituents of the Wnt signaling and their regulation functions. Subsequently, we summarize the dysregulation of Wnt signaling in aging-related fibrotic tissues such as kidney, liver, lung and cardiac fibrosis, followed by a detailed discussion of its involvement in organ fibrosis. In addition, the crosstalk between Wnt signaling and other pathways has the potential to profoundly add to the complexity of organ fibrosis. Increasing studies have demonstrated that a number of Wnt inhibitors had the potential role against tissue fibrosis, specifically in kidney fibrosis and the implications of Wnt signaling in aging-related diseases. Therefore, targeting Wnt signaling might be a novel and promising therapeutic strategy against aging-related tissue fibrosis.
Collapse
Affiliation(s)
- He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, California, 92897, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
12
|
Liu K, Min J. Structural Basis for the Recognition of Non-methylated DNA by the CXXC Domain. J Mol Biol 2020:S0022-2836(19)30591-1. [DOI: 10.1016/j.jmb.2019.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
|
13
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
14
|
Tang H, Xu Y, Zhang Z, Zeng S, Dong W, Jiao W, Hu X. SDF‑1/CXCR4 induces epithelial‑mesenchymal transition through activation of the Wnt/β‑catenin signaling pathway in rat chronic allograft nephropathy. Mol Med Rep 2019; 19:3696-3706. [PMID: 30896799 PMCID: PMC6470988 DOI: 10.3892/mmr.2019.10045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/06/2019] [Indexed: 12/03/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been demonstrated to serve a crucial role in the progression of interstitial fibrosis, which is one of the principal pathological features of chronic allograft nephropathy (CAN). However, to the best of our knowledge, the mechanisms of EMT in CAN have not been investigated. In the present study, the effect of stromal cell-derived factor 1 (SDF-1) and the Wnt signaling pathway on the progression of EMT following kidney transplantation was investigated. The CAN model was established using Fisher 344 and Lewis rats, treated with low-dose cyclosporine with or without AMD3100. CAN was confirmed by the pathological alterations and chronic allograft damage index scoring, and EMT was confirmed by western blotting and reverse transcription-quantitative polymerase chain reaction. In the AMD3100 group, there were lower expression levels of α-SMA and higher expression levels of E-cadherin, which indicated that CAN and EMT were ameliorated by AMD3100. The kidney tissue was analyzed using an mRNA + long noncoding (lnc)RNA microarray. A total of 506 mRNAs and 404 lncRNAs were demonstrated to be significantly differentially expressed between the two groups, which revealed the involvement of SDF-1/CXC chemokine receptor 4 (CXCR4) and the Wnt pathway. SDF-1 was demonstrated to induce EMT in vitro through the upregulation of α-SMA, downregulation of E-cadherin and the wound healing assay, and in the rat renal tubular epithelial cells via the nuclear accumulation of β-catenin, which were all inhibited by either AMD3100 or DKK-1. CXXC finger protein 5 (CXXC5), a negative regulator of the Wnt pathway, was downregulated following treatment with SDF-1, which was inhibited by AMD3100 but not by DKK-1. Thus, CXXC5 may be a regulator downstream of SDF-1/CXCR4 in EMT. In conclusion, SDF-1/CXCR4 induces EMT of renal tubular epithelial cells with the involvement of the Wnt pathway, which may be a novel mechanism and therapeutic target in kidney allograft fibrosis of rats.
Collapse
Affiliation(s)
- Hao Tang
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Yue Xu
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Zijian Zhang
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Song Zeng
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Wenbo Dong
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Wenjiao Jiao
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| | - Xiaopeng Hu
- Urology Institute of Capital Medical University, Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing 100020, P.R. China
| |
Collapse
|
15
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|