1
|
Zuo Y, Wu X, Ge F, Yan H, Fei S, Liang J, Deng Z. Research progress on Drug-Target Interactions in the last five years. Anal Biochem 2025; 697:115691. [PMID: 39455038 DOI: 10.1016/j.ab.2024.115691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The identification of Drug-Target Interaction (DTI) is an important step in drug discovery and drug repositioning, and has high application value in multiple fields such as drug discovery, drug repositioning, and repurposing. However, the high cost of experimental validation limits its identification. In contrast, computation-based approaches are both economical and efficient. This review first synthesizes existing chemical genomic approaches, provides a comprehensive summary of prevalent databases for predicting DTIs, and categorizes the feature encodings from recent years. This is followed by an overview and brief description of the methods currently in use for predicting DTIs. The strengths and weaknesses of newly proposed prediction methods in the last five years (2020-2024), including those based on network representation learning and graph neural networks, are then discussed in detail, evaluating the performance of the different methods on a wide range of datasets. Finally, this review explores potential directions for future DTI research, emphasizing how to improve prediction accuracy and efficiency by combining big data and emerging computing technologies.
Collapse
Affiliation(s)
- Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China.
| | - Xubin Wu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Fei Ge
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Hongjin Yan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Sirui Fei
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Jingwen Liang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
2
|
Ye Q, Sun Y. Improving drug-target affinity prediction by adaptive self-supervised learning. PeerJ Comput Sci 2025; 11:e2622. [PMID: 39896027 PMCID: PMC11784864 DOI: 10.7717/peerj-cs.2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/02/2024] [Indexed: 02/04/2025]
Abstract
Computational drug-target affinity prediction is important for drug screening and discovery. Currently, self-supervised learning methods face two major challenges in drug-target affinity prediction. The first difficulty lies in the phenomenon of sample mismatch: self-supervised learning processes drug and target samples independently, while actual prediction requires the integration of drug-target pairs. Another challenge is the mismatch between the broadness of self-supervised learning objectives and the precision of biological mechanisms of drug-target affinity (i.e., the induced-fit principle). The former focuses on global feature extraction, while the latter emphasizes the importance of local precise matching. To address these issues, an adaptive self-supervised learning-based drug-target affinity prediction (ASSLDTA) was designed. ASSLDTA integrates a novel adaptive self-supervised learning (ASSL) module with a high-level feature learning network to extract the feature. The ASSL leverages a large amount of unlabeled training data to effectively capture low-level features of drugs and targets. Its goal is to maximize the retention of original feature information, thereby bridging the objective gap between self-supervised learning and drug-target affinity prediction and alleviating the sample mismatch problem. The high-level feature learning network, on the other hand, focuses on extracting effective high-level features for affinity prediction through a small amount of labeled data. Through this two-stage feature extraction design, each stage undertakes specific tasks, fully leveraging the advantages of each model while efficiently integrating information from different data sources, providing a more accurate and comprehensive solution for drug-target affinity prediction. In our experiments, ASSLDTA is much better than other deep methods, and the result of ASSLDTA is significantly increased by learning adaptive self-supervised learning-based features, which validates the effectiveness of our ASSLDTA.
Collapse
Affiliation(s)
- Qing Ye
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, China
| | - Yaxin Sun
- School of Computer Science and Technology (School of Artificial Intelligence), Zhejiang Normal University, Jinhua, China
- Department of Algorithm, Zhejiang Aerospace Hengjia Data Technology Co. Ltd., Jiaxing, China
| |
Collapse
|
3
|
Jia ZC, Yang X, Wu YK, Li M, Das D, Chen MX, Wu J. The Art of Finding the Right Drug Target: Emerging Methods and Strategies. Pharmacol Rev 2024; 76:896-914. [PMID: 38866560 PMCID: PMC11334170 DOI: 10.1124/pharmrev.123.001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
Drug targets are specific molecules in biological tissues and body fluids that interact with drugs. Drug target discovery is a key component of drug discovery and is essential for the development of new drugs in areas such as cancer therapy and precision medicine. Traditional in vitro or in vivo target discovery methods are time-consuming and labor-intensive, limiting the pace of drug discovery. With the development of modern discovery methods, the discovery and application of various emerging technologies have greatly improved the efficiency of drug discovery, shortened the cycle time, and reduced the cost. This review provides a comprehensive overview of various emerging drug target discovery strategies, including computer-assisted approaches, drug affinity response target stability, multiomics analysis, gene editing, and nonsense-mediated mRNA degradation, and discusses the effectiveness and limitations of the various approaches, as well as their application in real cases. Through the review of the aforementioned contents, a general overview of the development of novel drug targets and disease treatment strategies will be provided, and a theoretical basis will be provided for those who are engaged in pharmaceutical science research. SIGNIFICANCE STATEMENT: Target-based drug discovery has been the main approach to drug discovery in the pharmaceutical industry for the past three decades. Traditional drug target discovery methods based on in vivo or in vitro validation are time-consuming and costly, greatly limiting the development of new drugs. Therefore, the development and selection of new methods in the drug target discovery process is crucial.
Collapse
Affiliation(s)
- Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Yi-Kun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Min Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.)
| | - Debatosh Das
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| | - Jian Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China (Z.-C.J., X.Y., Y.-K.W., M.-X.C., J.W.); The Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee (D.D.); and State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China (M.L.) ;
| |
Collapse
|
4
|
Abubakar ML, Kapoor N, Sharma A, Gambhir L, Jasuja ND, Sharma G. Artificial Intelligence in Drug Identification and Validation: A Scoping Review. Drug Res (Stuttg) 2024; 74:208-219. [PMID: 38830370 DOI: 10.1055/a-2306-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.
Collapse
Affiliation(s)
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| |
Collapse
|
5
|
Dehghan A, Abbasi K, Razzaghi P, Banadkuki H, Gharaghani S. CCL-DTI: contributing the contrastive loss in drug-target interaction prediction. BMC Bioinformatics 2024; 25:48. [PMID: 38291364 PMCID: PMC11264960 DOI: 10.1186/s12859-024-05671-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module. RESULTS In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets. CONCLUSIONS Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.
Collapse
Affiliation(s)
- Alireza Dehghan
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran
| | - Karim Abbasi
- Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran.
| | - Hossein Banadkuki
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran.
| |
Collapse
|
6
|
Ye Q, Zhang X, Lin X. Drug-Target Interaction Prediction via Graph Auto-Encoder and Multi-Subspace Deep Neural Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2647-2658. [PMID: 36107905 DOI: 10.1109/tcbb.2022.3206907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Computational prediction of drug-target interaction (DTI) is important for the new drug discovery. Currently, the deep neural network (DNN) has been widely used in DTI prediction. However, parameters of the DNN could be insufficiently trained and features of the data could be insufficiently utilized, because the DTI data is limited and its dimension is very high. To deal with the above problems, in this paper, a graph auto-encoder and multi-subspace deep neural network (GAEMSDNN) is designed. GAEMSDNN enhances its learning ability with a graph auto-encoder, a subspace layer and an ensemble layer. The graph auto-encoder can preserve the reconstruction information. The subspace layer can obtain different strong feature subsets. The ensemble layer in the GAEMSDNN can comprehensively utilize these strong feature subsets in a unified optimization framework. As a result, more features can be extracted from the network input and the DNN network can be better trained. In experiments, the results of GAEMSDNN are significantly improved compared to the previous methods, which validates the effectiveness of our strategies.
Collapse
|