1
|
Abstract
Our vision depends upon shifting our high-resolution fovea to objects of interest in the visual field. Each saccade displaces the image on the retina, which should produce a chaotic scene with jerks occurring several times per second. It does not. This review examines how an internal signal in the primate brain (a corollary discharge) contributes to visual continuity across saccades. The article begins with a review of evidence for a corollary discharge in the monkey and evidence from inactivation experiments that it contributes to perception. The next section examines a specific neuronal mechanism for visual continuity, based on corollary discharge that is referred to as visual remapping. Both the basic characteristics of this anticipatory remapping and the factors that control it are enumerated. The last section considers hypotheses relating remapping to the perceived visual continuity across saccades, including remapping's contribution to perceived visual stability across saccades.
Collapse
Affiliation(s)
- Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-4435, USA;
| |
Collapse
|
2
|
Sadeh M, Sajad A, Wang H, Yan X, Crawford JD. The Influence of a Memory Delay on Spatial Coding in the Superior Colliculus: Is Visual Always Visual and Motor Always Motor? Front Neural Circuits 2018; 12:74. [PMID: 30405361 PMCID: PMC6204359 DOI: 10.3389/fncir.2018.00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
The memory-delay saccade task is often used to separate visual and motor responses in oculomotor structures such as the superior colliculus (SC), with the assumption that these same responses would sum with a short delay during immediate "reactive" saccades to visual stimuli. However, it is also possible that additional signals (suppression, delay) alter visual and/or motor response in the memory delay task. Here, we compared the spatiotemporal properties of visual and motor responses of the same SC neurons recorded during both the reactive and memory-delay tasks in two head-unrestrained monkeys. Comparing tasks, visual (aligned with target onset) and motor (aligned on saccade onset) responses were highly correlated across neurons, but the peak response of visual neurons and peak motor responses (of both visuomotor (VM) and motor neurons) were significantly higher in the reactive task. Receptive field organization was generally similar in both tasks. Spatial coding (along a Target-Gaze (TG) continuum) was also similar, with the exception that pure motor cells showed a stronger tendency to code future gaze location in the memory delay task, suggesting a more complete transformation. These results suggest that the introduction of a trained memory delay alters both the vigor and spatial coding of SC visual and motor responses, likely due to a combination of saccade suppression signals and greater signal noise accumulation during the delay in the memory delay task.
Collapse
Affiliation(s)
- Morteza Sadeh
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- York Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
- Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
- Departments of Psychology, Biology and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Amirsaman Sajad
- York Centre for Vision Research, York University, Toronto, ON, Canada
- York Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
- Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
- Departments of Psychology, Biology and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Hongying Wang
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| | - John Douglas Crawford
- York Centre for Vision Research, York University, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
- York Neuroscience Graduate Diploma Program, York University, Toronto, ON, Canada
- Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada
- Departments of Psychology, Biology and Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Rao HM, Mayo JP, Sommer MA. Circuits for presaccadic visual remapping. J Neurophysiol 2016; 116:2624-2636. [PMID: 27655962 PMCID: PMC5133303 DOI: 10.1152/jn.00182.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023] Open
Abstract
Saccadic eye movements rapidly displace the image of the world that is projected onto the retinas. In anticipation of each saccade, many neurons in the visual system shift their receptive fields. This presaccadic change in visual sensitivity, known as remapping, was first documented in the parietal cortex and has been studied in many other brain regions. Remapping requires information about upcoming saccades via corollary discharge. Analyses of neurons in a corollary discharge pathway that targets the frontal eye field (FEF) suggest that remapping may be assembled in the FEF's local microcircuitry. Complementary data from reversible inactivation, neural recording, and modeling studies provide evidence that remapping contributes to transsaccadic continuity of action and perception. Multiple forms of remapping have been reported in the FEF and other brain areas, however, and questions remain about the reasons for these differences. In this review of recent progress, we identify three hypotheses that may help to guide further investigations into the structure and function of circuits for remapping.
Collapse
Affiliation(s)
- Hrishikesh M Rao
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina;
| | - J Patrick Mayo
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham, North Carolina; and
| | - Marc A Sommer
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina
- Department of Neurobiology, Duke School of Medicine, Duke University, Durham, North Carolina; and
- Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Sadeh M, Sajad A, Wang H, Yan X, Crawford JD. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts. Eur J Neurosci 2016; 42:2934-51. [PMID: 26448341 DOI: 10.1111/ejn.13093] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 09/14/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022]
Abstract
We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure.
Collapse
Affiliation(s)
- Morteza Sadeh
- York Centre for Vision Research, Room 0009A LAS, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,York Neuroscience Graduate Diploma Program, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Amirsaman Sajad
- York Centre for Vision Research, Room 0009A LAS, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,York Neuroscience Graduate Diploma Program, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Hongying Wang
- York Centre for Vision Research, Room 0009A LAS, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Xiaogang Yan
- York Centre for Vision Research, Room 0009A LAS, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - John Douglas Crawford
- York Centre for Vision Research, Room 0009A LAS, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.,York Neuroscience Graduate Diploma Program, Toronto, ON, Canada.,Canadian Action and Perception Network (CAPnet), York University, Toronto, ON, Canada.,Departments of Psychology, Biology, and Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Rao HM, San Juan J, Shen FY, Villa JE, Rafie KS, Sommer MA. Neural Network Evidence for the Coupling of Presaccadic Visual Remapping to Predictive Eye Position Updating. Front Comput Neurosci 2016; 10:52. [PMID: 27313528 PMCID: PMC4889583 DOI: 10.3389/fncom.2016.00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/18/2016] [Indexed: 11/13/2022] Open
Abstract
As we look around a scene, we perceive it as continuous and stable even though each saccadic eye movement changes the visual input to the retinas. How the brain achieves this perceptual stabilization is unknown, but a major hypothesis is that it relies on presaccadic remapping, a process in which neurons shift their visual sensitivity to a new location in the scene just before each saccade. This hypothesis is difficult to test in vivo because complete, selective inactivation of remapping is currently intractable. We tested it in silico with a hierarchical, sheet-based neural network model of the visual and oculomotor system. The model generated saccadic commands to move a video camera abruptly. Visual input from the camera and internal copies of the saccadic movement commands, or corollary discharge, converged at a map-level simulation of the frontal eye field (FEF), a primate brain area known to receive such inputs. FEF output was combined with eye position signals to yield a suitable coordinate frame for guiding arm movements of a robot. Our operational definition of perceptual stability was "useful stability," quantified as continuously accurate pointing to a visual object despite camera saccades. During training, the emergence of useful stability was correlated tightly with the emergence of presaccadic remapping in the FEF. Remapping depended on corollary discharge but its timing was synchronized to the updating of eye position. When coupled to predictive eye position signals, remapping served to stabilize the target representation for continuously accurate pointing. Graded inactivations of pathways in the model replicated, and helped to interpret, previous in vivo experiments. The results support the hypothesis that visual stability requires presaccadic remapping, provide explanations for the function and timing of remapping, and offer testable hypotheses for in vivo studies. We conclude that remapping allows for seamless coordinate frame transformations and quick actions despite visual afferent lags. With visual remapping in place for behavior, it may be exploited for perceptual continuity.
Collapse
Affiliation(s)
- Hrishikesh M Rao
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Juan San Juan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Fred Y Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Jennifer E Villa
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Kimia S Rafie
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University Durham, NC, USA
| | - Marc A Sommer
- Department of Biomedical Engineering, Pratt School of Engineering, Duke UniversityDurham, NC, USA; Department of Neurobiology, Duke School of Medicine, Duke UniversityDurham, NC, USA; Center for Cognitive Neuroscience, Duke UniversityDurham, NC, USA
| |
Collapse
|
6
|
Mohsenzadeh Y, Dash S, Crawford JD. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements. Front Syst Neurosci 2016; 10:39. [PMID: 27242452 PMCID: PMC4867689 DOI: 10.3389/fnsys.2016.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 04/19/2016] [Indexed: 12/02/2022] Open
Abstract
In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks.
Collapse
Affiliation(s)
- Yalda Mohsenzadeh
- York Center for Vision Research, Canadian Action and Perception Network, York University Toronto, ON, Canada
| | - Suryadeep Dash
- York Center for Vision Research, Canadian Action and Perception Network, York UniversityToronto, ON, Canada; Department of Physiology and Pharmacology, Robarts Research Institute, Western UniversityLondon, ON, Canada
| | - J Douglas Crawford
- York Center for Vision Research, Canadian Action and Perception Network, York UniversityToronto, ON, Canada; Departments of Psychology, Biology, and Kinesiology and Health Sciences, York UniversityToronto, ON, Canada
| |
Collapse
|
7
|
Continuous updating of visuospatial memory in superior colliculus during slow eye movements. Curr Biol 2015; 25:267-274. [PMID: 25601549 DOI: 10.1016/j.cub.2014.11.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/15/2014] [Accepted: 11/25/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Primates can remember and spatially update the visual direction of previously viewed objects during various types of self-motion. It is known that the brain "remaps" visual memory traces relative to gaze just before and after, but not during, discrete gaze shifts called saccades. However, it is not known how visual memory is updated during slow, continuous motion of the eyes. RESULTS Here, we recorded the midbrain superior colliculus (SC) of two rhesus monkeys that were trained to spatially update the location of a saccade target across an intervening smooth pursuit (SP) eye movement. Saccade target location was varied across trials so that it passed through the neuron's receptive field at different points of the SP trajectory. Nearly all (99% of) visual responsive neurons, but no motor neurons, showed a transient memory response that continuously updated the saccade goal during SP. These responses were gaze centered (i.e., shifting across the SC's retinotopic map in opposition to gaze). Furthermore, this response was strongly enhanced by attention and/or saccade target selection. CONCLUSIONS This is the first demonstration of continuous updating of visual memory responses during eye motion. We expect that this would generalize to other visuomotor structures when gaze shifts in a continuous, unpredictable fashion.
Collapse
|
8
|
Ziesche A, Hamker FH. Brain circuits underlying visual stability across eye movements-converging evidence for a neuro-computational model of area LIP. Front Comput Neurosci 2014; 8:25. [PMID: 24653691 PMCID: PMC3949326 DOI: 10.3389/fncom.2014.00025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 02/14/2014] [Indexed: 11/13/2022] Open
Abstract
The understanding of the subjective experience of a visually stable world despite the occurrence of an observer's eye movements has been the focus of extensive research for over 20 years. These studies have revealed fundamental mechanisms such as anticipatory receptive field (RF) shifts and the saccadic suppression of stimulus displacements, yet there currently exists no single explanatory framework for these observations. We show that a previously presented neuro-computational model of peri-saccadic mislocalization accounts for the phenomenon of predictive remapping and for the observation of saccadic suppression of displacement (SSD). This converging evidence allows us to identify the potential ingredients of perceptual stability that generalize beyond different data sets in a formal physiology-based model. In particular we propose that predictive remapping stabilizes the visual world across saccades by introducing a feedback loop and, as an emergent result, small displacements of stimuli are not noticed by the visual system. The model provides a link from neural dynamics, to neural mechanism and finally to behavior, and thus offers a testable comprehensive framework of visual stability.
Collapse
Affiliation(s)
- Arnold Ziesche
- Artificial Intelligence, Computer Science, Chemnitz University of Technology Chemnitz, Germany ; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster Muenster, Germany
| | - Fred H Hamker
- Artificial Intelligence, Computer Science, Chemnitz University of Technology Chemnitz, Germany
| |
Collapse
|
9
|
A single functional model of drivers and modulators in cortex. J Comput Neurosci 2013; 36:97-118. [DOI: 10.1007/s10827-013-0471-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/10/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
|
10
|
Shin S, Sommer MA. Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields. J Neurophysiol 2012; 108:2144-59. [PMID: 22815407 DOI: 10.1152/jn.00204.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our percept of visual stability across saccadic eye movements may be mediated by presaccadic remapping. Just before a saccade, neurons that remap become visually responsive at a future field (FF), which anticipates the saccade vector. Hence, the neurons use corollary discharge of saccades. Many of the neurons also decrease their response at the receptive field (RF). Presaccadic remapping occurs in several brain areas including the frontal eye field (FEF), which receives corollary discharge of saccades in its layer IV from a collicular-thalamic pathway. We studied, at two levels, the microcircuitry of remapping in the FEF. At the laminar level, we compared remapping between layers IV and V. At the cellular level, we compared remapping between different neuron types of layer IV. In the FEF in four monkeys (Macaca mulatta), we identified 27 layer IV neurons with orthodromic stimulation and 57 layer V neurons with antidromic stimulation from the superior colliculus. With the use of established criteria, we classified the layer IV neurons as putative excitatory (n = 11), putative inhibitory (n = 12), or ambiguous (n = 4). We found that just before a saccade, putative excitatory neurons increased their visual response at the RF, putative inhibitory neurons showed no change, and ambiguous neurons increased their visual response at the FF. None of the neurons showed presaccadic visual changes at both RF and FF. In contrast, neurons in layer V showed full remapping (at both the RF and FF). Our data suggest that elemental signals for remapping are distributed across neuron types in early cortical processing and combined in later stages of cortical microcircuitry.
Collapse
Affiliation(s)
- Sooyoon Shin
- Department of Neuroscience, Center for the Neural Basis of Cognition, and Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
11
|
Casarotti M, Lisi M, Umiltà C, Zorzi M. Paying Attention through Eye Movements: A Computational Investigation of the Premotor Theory of Spatial Attention. J Cogn Neurosci 2012; 24:1519-31. [DOI: 10.1162/jocn_a_00231] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Growing evidence indicates that planning eye movements and orienting visuospatial attention share overlapping brain mechanisms. A tight link between endogenous attention and eye movements is maintained by the premotor theory, in contrast to other accounts that postulate the existence of specific attention mechanisms that modulate the activity of information processing systems. The strong assumption of equivalence between attention and eye movements, however, is challenged by demonstrations that human observers are able to keep attention on a specific location while moving the eyes elsewhere. Here we investigate whether a recurrent model of saccadic planning can account for attentional effects without requiring additional or specific mechanisms separate from the circuits that perform sensorimotor transformations for eye movements. The model builds on the basis function approach and includes a circuit that performs spatial remapping using an “internal forward model” of how visual inputs are modified as a result of saccadic movements. Simulations show that the latter circuit is crucial to account for dissociations between attention and eye movements that may be invoked to disprove the premotor theory. The model provides new insights into how spatial remapping may be implemented in parietal cortex and offers a computational framework for recent proposals that link visual stability with remapping of attention pointers.
Collapse
|
12
|
Crawford JD, Henriques DYP, Medendorp WP. Three-dimensional transformations for goal-directed action. Annu Rev Neurosci 2011; 34:309-31. [PMID: 21456958 DOI: 10.1146/annurev-neuro-061010-113749] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of the central nervous system is involved in visuomotor transformations for goal-directed gaze and reach movements. These transformations are often described in terms of stimulus location, gaze fixation, and reach endpoints, as viewed through the lens of translational geometry. Here, we argue that the intrinsic (primarily rotational) 3-D geometry of the eye-head-reach systems determines the spatial relationship between extrinsic goals and effector commands, and therefore the required transformations. This approach provides a common theoretical framework for understanding both gaze and reach control. Combined with an assessment of the behavioral, neurophysiological, imaging, and neuropsychological literature, this framework leads us to conclude that (a) the internal representation and updating of visual goals are dominated by gaze-centered mechanisms, but (b) these representations must then be transformed as a function of eye and head orientation signals into effector-specific 3-D movement commands.
Collapse
Affiliation(s)
- J Douglas Crawford
- York Centre for Vision Research, Canadian Action and Perception Network, and Departments of Psychology, Toronto, Ontario, Canada, M3J 1P3.
| | | | | |
Collapse
|
13
|
De Meyer K, Spratling MW. Multiplicative Gain Modulation Arises Through Unsupervised Learning in a Predictive Coding Model of Cortical Function. Neural Comput 2011; 23:1536-67. [DOI: 10.1162/neco_a_00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The combination of two or more population-coded signals in a neural model of predictive coding can give rise to multiplicative gain modulation in the response properties of individual neurons. Synaptic weights generating these multiplicative response properties can be learned using an unsupervised, Hebbian learning rule. The behavior of the model is compared to empirical data on gaze-dependent gain modulation of cortical cells and found to be in good agreement with a range of physiological observations. Furthermore, it is demonstrated that the model can learn to represent a set of basis functions. This letter thus connects an often-observed neurophysiological phenomenon and important neurocomputational principle (gain modulation) with an influential theory of brain operation (predictive coding).
Collapse
Affiliation(s)
- Kris De Meyer
- Department of Informatics and Division of Engineering, King's College London, WC2R 2LS, U.K
| | - Michael W. Spratling
- Department of Informatics and Division of Engineering, King's College London, WC2R 2LS, U.K
| |
Collapse
|
14
|
Medendorp WP. Spatial constancy mechanisms in motor control. Philos Trans R Soc Lond B Biol Sci 2011; 366:476-91. [PMID: 21242137 DOI: 10.1098/rstb.2010.0089] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye-head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals.
Collapse
Affiliation(s)
- W Pieter Medendorp
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, PO Box 9104, NL-6500 HE Nijmegen, The Netherlands.
| |
Collapse
|
15
|
|
16
|
Visual stability based on remapping of attention pointers. Trends Cogn Sci 2010; 14:147-53. [PMID: 20189870 DOI: 10.1016/j.tics.2010.01.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/14/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
When we move our eyes, we easily keep track of where relevant things are in the world. Recent proposals link this stability to the shifting of receptive fields of neurons in eye movement and attention control areas. Reports of 'spatiotopic' visual aftereffects have also been claimed to support this shifting connectivity even at an early level, but these results have been challenged. Here, the process of updating visual location is described as predictive shifts of location 'pointers' to attended targets, analogous to predictive activation seen cross-modally. We argue that these location pointers, the core operators of spatial attention, are linked to identity information and that such a link is necessary to establish a workable visual architecture and to explain frequently reported positive spatiotopic biases.
Collapse
|
17
|
Keith GP, Blohm G, Crawford JD. Influence of saccade efference copy on the spatiotemporal properties of remapping: a neural network study. J Neurophysiol 2009; 103:117-39. [PMID: 19846615 DOI: 10.1152/jn.91191.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Remapping of gaze-centered target-position signals across saccades has been observed in the superior colliculus and several cortical areas. It is generally assumed that this remapping is driven by saccade-related signals. What is not known is how the different potential forms of this signal (i.e., visual, visuomotor, or motor) might influence this remapping. We trained a three-layer recurrent neural network to update target position (represented as a "hill" of activity in a gaze-centered topographic map) across saccades, using discrete time steps and backpropagation-through-time algorithm. Updating was driven by an efference copy of one of three saccade-related signals: a transient visual response to the saccade-target in two-dimensional (2-D) topographic coordinates (Vtop), a temporally extended motor burst in 2-D topographic coordinates (Mtop), or a 3-D eye velocity signal in brain stem coordinates (EV). The Vtop model produced presaccadic remapping in the output layer, with a "jumping hill" of activity and intrasaccadic suppression. The Mtop model also produced presaccadic remapping with a dispersed moving hill of activity that closely reproduced the quantitative results of Sommer and Wurtz. The EV model produced a coherent moving hill of activity but failed to produce presaccadic remapping. When eye velocity and a topographic (Vtop or Mtop) updater signal were used together, the remapping relied primarily on the topographic signal. An analysis of the hidden layer activity revealed that the transient remapping was highly dispersed across hidden-layer units in both Vtop and Mtop models but tightly clustered in the EV model. These results show that the nature of the updater signal influences both the mechanism and final dynamics of remapping. Taken together with the currently known physiology, our simulations suggest that different brain areas might rely on different signals and mechanisms for updating that should be further distinguishable through currently available single- and multiunit recording paradigms.
Collapse
Affiliation(s)
- Gerald P Keith
- York Centre for Vision Research, and Canadian Institute of Health Research Group, York University, 4700 Keele St., Toronto, Ontario, Canada
| | | | | |
Collapse
|
18
|
Crapse TB, Sommer MA. Corollary discharge circuits in the primate brain. Curr Opin Neurobiol 2008; 18:552-7. [PMID: 18848626 DOI: 10.1016/j.conb.2008.09.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/25/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
Abstract
Movements are necessary to engage the world, but every movement results in sensorimotor ambiguity. Self-movements cause changes to sensory inflow as well as changes in the positions of objects relative to motor effectors (eyes and limbs). Hence the brain needs to monitor self-movements, and one way this is accomplished is by routing copies of movement commands to appropriate structures. These signals, known as corollary discharge (CD), enable compensation for sensory consequences of movement and preemptive updating of spatial representations. Such operations occur with a speed and accuracy that implies a reliance on prediction. Here we review recent CD studies and find that they arrive at a shared conclusion: CD contributes to prediction for the sake of sensorimotor harmony.
Collapse
Affiliation(s)
- Trinity B Crapse
- Department of Neuroscience, A210 Langley Hall, Center for the Neural Basis of Cognition, and Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
19
|
Klier EM, Angelaki DE. Spatial updating and the maintenance of visual constancy. Neuroscience 2008; 156:801-18. [PMID: 18786618 DOI: 10.1016/j.neuroscience.2008.07.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/16/2022]
Abstract
Spatial updating is the means by which we keep track of the locations of objects in space even as we move. Four decades of research have shown that humans and non-human primates can take the amplitude and direction of intervening movements into account, including saccades (both head-fixed and head-free), pursuit, whole-body rotations and translations. At the neuronal level, spatial updating is thought to be maintained by receptive field locations that shift with changes in gaze, and evidence for such shifts has been shown in several cortical areas. These regions receive information about the intervening movement from several sources including motor efference copies when a voluntary movement is made and vestibular/somatosensory signals when the body is in motion. Many of these updating signals arise from brainstem regions that monitor our ongoing movements and subsequently transmit this information to the cortex via pathways that likely include the thalamus. Several issues of debate include (1) the relative contribution of extra-retinal sensory and efference copy signals to spatial updating, (2) the source of an updating signal for real life, three-dimensional motion that cannot arise from brain areas encoding only two-dimensional commands, and (3) the reference frames used by the brain to integrate updating signals from various sources. This review highlights the relevant spatial updating studies and provides a summary of the field today. We find that spatial constancy is maintained by a highly evolved neural mechanism that keeps track of our movements, transmits this information to relevant brain regions, and then uses this information to change the way in which single neurons respond. In this way, we are able to keep track of relevant objects in the outside world and interact with them in meaningful ways.
Collapse
Affiliation(s)
- E M Klier
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
20
|
Cassanello CR, Nihalani AT, Ferrera VP. Neuronal responses to moving targets in monkey frontal eye fields. J Neurophysiol 2008; 100:1544-56. [PMID: 18632886 DOI: 10.1152/jn.01401.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Due to delays in visuomotor processing, eye movements directed toward moving targets must integrate both target position and velocity to be accurate. It is unknown where and how target velocity information is incorporated into the planning of rapid (saccadic) eye movements. We recorded the activity of neurons in frontal eye fields (FEFs) while monkeys made saccades to stationary and moving targets. A substantial fraction of FEF neurons was found to encode not only the initial position of a moving target, but the metrics (amplitude and direction) of the saccade needed to intercept the target. Many neurons also encoded target velocity in a nearly linear manner. The quasi-linear dependence of firing rate on target velocity means that the neuronal response can be directly read out to compute the future position of a target moving with constant velocity. This is demonstrated using a quantitative model in which saccade amplitude is encoded in the population response of neurons tuned to retinal target position and modulated by target velocity.
Collapse
Affiliation(s)
- Carlos R Cassanello
- Department of Neuroscience, Columbia University, and Keck-Mahoney Center for Mind and Brain, New York, New York, USA.
| | | | | |
Collapse
|