1
|
Roeder BM, Riley MR, She X, Dakos AS, Robinson BS, Moore BJ, Couture DE, Laxton AW, Popli G, Munger Clary HM, Sam M, Heck C, Nune G, Lee B, Liu C, Shaw S, Gong H, Marmarelis VZ, Berger TW, Deadwyler SA, Song D, Hampson RE. Patterned Hippocampal Stimulation Facilitates Memory in Patients With a History of Head Impact and/or Brain Injury. Front Hum Neurosci 2022; 16:933401. [PMID: 35959242 PMCID: PMC9358788 DOI: 10.3389/fnhum.2022.933401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Rationale: Deep brain stimulation (DBS) of the hippocampus is proposed for enhancement of memory impaired by injury or disease. Many pre-clinical DBS paradigms can be addressed in epilepsy patients undergoing intracranial monitoring for seizure localization, since they already have electrodes implanted in brain areas of interest. Even though epilepsy is usually not a memory disorder targeted by DBS, the studies can nevertheless model other memory-impacting disorders, such as Traumatic Brain Injury (TBI). Methods: Human patients undergoing Phase II invasive monitoring for intractable epilepsy were implanted with depth electrodes capable of recording neurophysiological signals. Subjects performed a delayed-match-to-sample (DMS) memory task while hippocampal ensembles from CA1 and CA3 cell layers were recorded to estimate a multi-input, multi-output (MIMO) model of CA3-to-CA1 neural encoding and a memory decoding model (MDM) to decode memory information from CA3 and CA1 neuronal signals. After model estimation, subjects again performed the DMS task while either MIMO-based or MDM-based patterned stimulation was delivered to CA1 electrode sites during the encoding phase of the DMS trials. Each subject was sorted (post hoc) by prior experience of repeated and/or mild-to-moderate brain injury (RMBI), TBI, or no history (control) and scored for percentage successful delayed recognition (DR) recall on stimulated vs. non-stimulated DMS trials. The subject’s medical history was unknown to the experimenters until after individual subject memory retention results were scored. Results: When examined compared to control subjects, both TBI and RMBI subjects showed increased memory retention in response to both MIMO and MDM-based hippocampal stimulation. Furthermore, effects of stimulation were also greater in subjects who were evaluated as having pre-existing mild-to-moderate memory impairment. Conclusion: These results show that hippocampal stimulation for memory facilitation was more beneficial for subjects who had previously suffered a brain injury (other than epilepsy), compared to control (epilepsy) subjects who had not suffered a brain injury. This study demonstrates that the epilepsy/intracranial recording model can be extended to test the ability of DBS to restore memory function in subjects who previously suffered a brain injury other than epilepsy, and support further investigation into the beneficial effect of DBS in TBI patients.
Collapse
Affiliation(s)
- Brent M. Roeder
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mitchell R. Riley
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Xiwei She
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexander S. Dakos
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Brian S. Robinson
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Bryan J. Moore
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Gautam Popli
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Heidi M. Munger Clary
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Maria Sam
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| | - Christi Heck
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- Department of Neurosurgery, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Susan Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital, Los Angeles, CA, United States
| | - Vasilis Z. Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W. Berger
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Dong Song
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Neurology, Wake Forest School of Medicine/Atrium Health Wake Forest Baptist, Winston-Salem, NC, United States
| |
Collapse
|
2
|
Qian C, Sun X, Wang Y, Zheng X, Wang Y, Pan G. Binless Kernel Machine: Modeling Spike Train Transformation for Cognitive Neural Prostheses. Neural Comput 2020; 32:1863-1900. [PMID: 32795229 DOI: 10.1162/neco_a_01306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Modeling spike train transformation among brain regions helps in designing a cognitive neural prosthesis that restores lost cognitive functions. Various methods analyze the nonlinear dynamic spike train transformation between two cortical areas with low computational eficiency. The application of a real-time neural prosthesis requires computational eficiency, performance stability, and better interpretation of the neural firing patterns that modulate target spike generation. We propose the binless kernel machine in the point-process framework to describe nonlinear dynamic spike train transformations. Our approach embeds the binless kernel to eficiently capture the feedforward dynamics of spike trains and maps the input spike timings into reproducing kernel Hilbert space (RKHS). An inhomogeneous Bernoulli process is designed to combine with a kernel logistic regression that operates on the binless kernel to generate an output spike train as a point process. Weights of the proposed model are estimated by maximizing the log likelihood of output spike trains in RKHS, which allows a global-optimal solution. To reduce computational complexity, we design a streaming-based clustering algorithm to extract typical and important spike train features. The cluster centers and their weights enable the visualization of the important input spike train patterns that motivate or inhibit output neuron firing. We test the proposed model on both synthetic data and real spike train data recorded from the dorsal premotor cortex and the primary motor cortex of a monkey performing a center-out task. Performances are evaluated by discrete-time rescaling Kolmogorov-Smirnov tests. Our model outperforms the existing methods with higher stability regardless of weight initialization and demonstrates higher eficiency in analyzing neural patterns from spike timing with less historical input (50%). Meanwhile, the typical spike train patterns selected according to weights are validated to encode output spike from the spike train of single-input neuron and the interaction of two input neurons.
Collapse
Affiliation(s)
- Cunle Qian
- College of Computer Science, Zhejiang University, Hangzhou 310027, P.R.C., and Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 99077, P.R.C.
| | - Xuyun Sun
- College of Computer Science, Zhejiang University, Hangzhou 310027, P.R.C.
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, P.R.C.
| | - Xiaoxiang Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310027, P.R.C.
| | - Yiwen Wang
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 99077, P.R.C.
| | - Gang Pan
- College of Computer Science and State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, P.R.C.
| |
Collapse
|
3
|
Geng K, Shin DC, Song D, Hampson RE, Deadwyler SA, Berger TW, Marmarelis VZ. Multi-Input, Multi-Output Neuronal Mode Network Approach to Modeling the Encoding Dynamics and Functional Connectivity of Neural Systems. Neural Comput 2019; 31:1327-1355. [PMID: 31113305 DOI: 10.1162/neco_a_01204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter proposes a novel method, multi-input, multi-output neuronal mode network (MIMO-NMN), for modeling encoding dynamics and functional connectivity in neural ensembles such as the hippocampus. Compared with conventional approaches such as the Volterra-Wiener model, linear-nonlinear-cascade (LNC) model, and generalized linear model (GLM), the NMN has several advantages in terms of estimation accuracy, model interpretation, and functional connectivity analysis. We point out the limitations of current neural spike modeling methods, especially the estimation biases caused by the imbalanced class problem when the number of zeros is significantly larger than ones in the spike data. We use synthetic data to test the performance of NMN with a comparison of the traditional methods, and the results indicate the NMN approach could reduce the imbalanced class problem and achieve better predictions. Subsequently, we apply the MIMO-NMN method to analyze data from the human hippocampus. The results indicate that the MIMO-NMN method is a promising approach to modeling neural dynamics and analyzing functional connectivity of multi-neuronal data.
Collapse
Affiliation(s)
- Kunling Geng
- Department of Biomedical Engineering and Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dae C Shin
- Department of Biomedical Engineering and Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering and Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, U.S.A.
| | - Samuel A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering and Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering and Biomedical Simulations Resource Center, University of Southern California, Los Angeles, CA, 90089, U.S.A.
| |
Collapse
|
4
|
Qian C, Sun X, Zhang S, Xing D, Li H, Zheng X, Pan G, Wang Y. Nonlinear Modeling of Neural Interaction for Spike Prediction Using the Staged Point-Process Model. Neural Comput 2018; 30:3189-3226. [PMID: 30314427 DOI: 10.1162/neco_a_01137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurons communicate nonlinearly through spike activities. Generalized linear models (GLMs) describe spike activities with a cascade of a linear combination across inputs, a static nonlinear function, and an inhomogeneous Bernoulli or Poisson process, or Cox process if a self-history term is considered. This structure considers the output nonlinearity in spike generation but excludes the nonlinear interaction among input neurons. Recent studies extend GLMs by modeling the interaction among input neurons with a quadratic function, which considers the interaction between every pair of input spikes. However, quadratic effects may not fully capture the nonlinear nature of input interaction. We therefore propose a staged point-process model to describe the nonlinear interaction among inputs using a few hidden units, which follows the idea of artificial neural networks. The output firing probability conditioned on inputs is formed as a cascade of two linear-nonlinear (a linear combination plus a static nonlinear function) stages and an inhomogeneous Bernoulli process. Parameters of this model are estimated by maximizing the log likelihood on output spike trains. Unlike the iterative reweighted least squares algorithm used in GLMs, where the performance is guaranteed by the concave condition, we propose a modified Levenberg-Marquardt (L-M) algorithm, which directly calculates the Hessian matrix of the log likelihood, for the nonlinear optimization in our model. The proposed model is tested on both synthetic data and real spike train data recorded from the dorsal premotor cortex and primary motor cortex of a monkey performing a center-out task. Performances are evaluated by discrete-time rescaled Kolmogorov-Smirnov tests, where our model statistically outperforms a GLM and its quadratic extension, with a higher goodness-of-fit in the prediction results. In addition, the staged point-process model describes nonlinear interaction among input neurons with fewer parameters than quadratic models, and the modified L-M algorithm also demonstrates fast convergence.
Collapse
Affiliation(s)
- Cunle Qian
- College of Computer Science, Zhejiang University, Hangzhou, 310027, China
| | - Xuyun Sun
- College of Computer Science, Zhejiang University, Hangzhou, 310027, China
| | - Shaomin Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Dong Xing
- College of Computer Science, Zhejiang University, Hangzhou, 310027, China
| | - Hongbao Li
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoxiang Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Gang Pan
- State Key Lab of CAD&CG, and College of Computer Science, Zhejiang University, Hangzhou, 310027, China
| | - Yiwen Wang
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Geng K, Shin DC, Song D, Hampson RE, Deadwyler SA, Berger TW, Marmarelis VZ. Mechanism-Based and Input-Output Modeling of the Key Neuronal Connections and Signal Transformations in the CA3-CA1 Regions of the Hippocampus. Neural Comput 2017; 30:149-183. [PMID: 29064783 DOI: 10.1162/neco_a_01031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter examines the results of input-output (nonparametric) modeling based on the analysis of data generated by a mechanism-based (parametric) model of CA3-CA1 neuronal connections in the hippocampus. The motivation is to obtain biological insight into the interpretation of such input-output (Volterra-equivalent) models estimated from synthetic data. The insights obtained may be subsequently used to interpretat input-output models extracted from actual experimental data. Specifically, we found that a simplified parametric model may serve as a useful tool to study the signal transformations in the hippocampal CA3-CA1 regions. Input-output modeling of model-based synthetic data show that GABAergic interneurons are responsible for regulating neuronal excitation, controlling the precision of spike timing, and maintaining network oscillations, in a manner consistent with previous studies. The input-output model obtained from real data exhibits intriguing similarities with its synthetic-data counterpart, demonstrating the importance of a dynamic resonance in the system/model response around 2 Hz to 3 Hz. Using the input-output model from real data as a guide, we may be able to amend the parametric model by incorporating more mechanisms in order to yield better-matching input-output model. The approach we present can also be applied to the study of other neural systems and pathways.
Collapse
Affiliation(s)
- Kunling Geng
- Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dae C Shin
- Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Dong Song
- Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Robert E Hampson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, U.S.A.
| | - Samuel A Deadwyler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, U.S.A.
| | - Theodore W Berger
- Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.
| | - Vasilis Z Marmarelis
- Department of Biomedical Engineering and the Biomedical Simulations Resource Center at the University of Southern California, Los Angeles, CA, 90089, U.S.A.
| |
Collapse
|
6
|
Geng K, Marmarelis VZ. Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2196-2208. [PMID: 27352401 PMCID: PMC5596897 DOI: 10.1109/tnnls.2016.2581141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we have introduced a general modeling approach for dynamic nonlinear systems that utilizes a variant of the simulated annealing algorithm for training the Laguerre-Volterra network (LVN) to overcome the local minima and convergence problems and employs a pruning technique to achieve sparse LVN representations with l1 regularization. We tested this new approach with computer simulated systems and extended it to autoregressive sparse LVN (ASLVN) model structures that are suitable for input-output modeling of nonlinear systems that exhibit transitions in dynamic states, such as the Hodgkin-Huxley (H-H) equations of neuronal firing. Application of the proposed ASLVN to the H-H equations yields a more parsimonious input-output model with improved predictive capability that is amenable to more insightful physiological/biological interpretation.
Collapse
|
7
|
Sandler RA, Fetterhoff D, Hampson RE, Deadwyler SA, Marmarelis VZ. Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3. PLoS Comput Biol 2017; 13:e1005624. [PMID: 28686594 PMCID: PMC5521875 DOI: 10.1371/journal.pcbi.1005624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/21/2017] [Accepted: 06/13/2017] [Indexed: 01/02/2023] Open
Abstract
Much of the research on cannabinoids (CBs) has focused on their effects at the molecular and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains poorly understood. This study aims to disentangle the effects of CBs on the functional dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparametric modeling. Multi-unit activity was recorded from rats doing an working memory task in control sessions and under the influence of exogenously administered tetrahydrocannabinol (THC), the primary CB found in marijuana. It was found that THC left firing rate unaltered and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated from spontaneous spiking activity, were then used to describe the dynamical transformation from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by reducing feedforward excitation and theta information flow. The functional isolation was compensated by increased feedback excitation within CA1, thus leading to unaltered firing rates. Finally, both of these effects were shown to be correlated with memory impairments in the working memory task. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs. Research into cannabinoids (CBs) over the last several decades has found that they induce a large variety of oftentimes opposing effects on various neuronal receptors and processes. Due to this plethora of effects, disentangling how CBs influence neuronal circuits has proven challenging. This paper contributes to our understanding of the circuit level effects of CBs by using data driven modeling to examine how THC affects the input-output relationship in the Schaffer collateral synapse in the hippocampus. It was found that THC functionally isolated CA1 from CA3 by reducing feedforward excitation and theta information flow while simultaneously increasing feedback excitation within CA1. By elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge between the cellular and behavioral effects of CBs.
Collapse
Affiliation(s)
- Roman A. Sandler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| | - Dustin Fetterhoff
- Department of Physiology & Pharmacology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Robert E. Hampson
- Department of Physiology & Pharmacology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Sam A. Deadwyler
- Department of Physiology & Pharmacology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Vasilis Z. Marmarelis
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Sandler RA, Marmarelis VZ. Understanding spike-triggered covariance using Wiener theory for receptive field identification. J Vis 2015; 15:16. [PMID: 26230978 DOI: 10.1167/15.9.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Receptive field identification is a vital problem in sensory neurophysiology and vision. Much research has been done in identifying the receptive fields of nonlinear neurons whose firing rate is determined by the nonlinear interactions of a small number of linear filters. Despite more advanced methods that have been proposed, spike-triggered covariance (STC) continues to be the most widely used method in such situations due to its simplicity and intuitiveness. Although the connection between STC and Wiener/Volterra kernels has often been mentioned in the literature, this relationship has never been explicitly derived. Here we derive this relationship and show that the STC matrix is actually a modified version of the second-order Wiener kernel, which incorporates the input autocorrelation and mixes first- and second-order dynamics. It is then shown how, with little modification of the STC method, the Wiener kernels may be obtained and, from them, the principal dynamic modes, a set of compact and efficient linear filters that essentially combine the spike-triggered average and STC matrix and generalize to systems with both continuous and point-process outputs. Finally, using Wiener theory, we show how these obtained filters may be corrected when they were estimated using correlated inputs. Our correction technique is shown to be superior to those commonly used in the literature for both correlated Gaussian images and natural images.
Collapse
|
9
|
Sandler RA, Song D, Hampson RE, Deadwyler SA, Berger TW, Marmarelis VZ. Hippocampal closed-loop modeling and implications for seizure stimulation design. J Neural Eng 2015; 12:056017. [PMID: 26355815 DOI: 10.1088/1741-2560/12/5/056017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. APPROACH Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. MAIN RESULTS Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. SIGNIFICANCE Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Collapse
Affiliation(s)
- Roman A Sandler
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
10
|
Hanbury DB, Robbins ME, Bourland JD, Wheeler KT, Peiffer AM, Mitchell EL, Daunais JB, Deadwyler SA, Cline JM. Pathology of fractionated whole-brain irradiation in rhesus monkeys ( Macaca mulatta ). Radiat Res 2015; 183:367-74. [PMID: 25688996 PMCID: PMC4467778 DOI: 10.1667/rr13898.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fractionated whole-brain irradiation (fWBI), used to treat brain metastases, often leads to neurologic injury and cognitive impairment. The cognitive effects of irradiation in nonhuman primates (NHP) have been previously published; this report focuses on corresponding neuropathologic changes that could have served as the basis for those effects in the same study. Four rhesus monkeys were exposed to 40 Gy of fWBI [5 Gy × 8 fraction (fx), 2 fx/week for four weeks] and received anatomical MRI prior to, and 14 months after fWBI. Neurologic and histologic sequelae were studied posthumously. Three of the NHPs underwent cognitive assessments, and each exhibited radiation-induced impairment associated with various degrees of vascular and inflammatory neuropathology. Two NHPs had severe multifocal necrosis of the forebrain, midbrain and brainstem. Histologic and MRI findings were in agreement, and the severity of cognitive decrement previously reported corresponded to the degree of observed pathology in two of the animals. In response to fWBI, the NHPs showed pathology similar to humans exposed to radiation and show comparable cognitive decline. These results provide a basis for implementing NHPs to examine and treat adverse cognitive and neurophysiologic sequelae of radiation exposure in humans.
Collapse
Affiliation(s)
- David B. Hanbury
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mike E. Robbins
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Kenneth T. Wheeler
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ann M. Peiffer
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
- Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Erin L. Mitchell
- Animal Resources Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James B. Daunais
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Samuel A. Deadwyler
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
11
|
Sandler RA, Song D, Hampson RE, Deadwyler SA, Berger TW, Marmarelis VZ. Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus. J Comput Neurosci 2014; 38:89-103. [PMID: 25260381 DOI: 10.1007/s10827-014-0530-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/02/2023]
Abstract
Although an anatomical connection from CA1 to CA3 via the Entorhinal Cortex (EC) and through backprojecting interneurons has long been known it exist, it has never been examined quantitatively on the single neuron level, in the in-vivo nonpatholgical, nonperturbed brain. Here, single spike activity was recorded using a multi-electrode array from the CA3 and CA1 areas of the rodent hippocampus (N = 7) during a behavioral task. The predictive power from CA3→CA1 and CA1→CA3 was examined by constructing Multivariate Autoregressive (MVAR) models from recorded neurons in both directions. All nonsignificant inputs and models were identified and removed by means of Monte Carlo simulation methods. It was found that 121/166 (73 %) CA3→CA1 models and 96/145 (66 %) CA1→CA3 models had significant predictive power, thus confirming a predictive 'Granger' causal relationship from CA1 to CA3. This relationship is thought to be caused by a combination of truly causal connections such as the CA1→EC→CA3 pathway and common inputs such as those from the Septum. All MVAR models were then examined in the frequency domain and it was found that CA3 kernels had significantly more power in the theta and beta range than those of CA1, confirming CA3's role as an endogenous hippocampal pacemaker.
Collapse
Affiliation(s)
- Roman A Sandler
- Department of Biomedical Engineering, University of Southern California, DRB 367, 1042 Downey Way Los Angeles, Los Angeles, CA, 90089, USA,
| | | | | | | | | | | |
Collapse
|
12
|
Vidu R, Rahman M, Mahmoudi M, Enachescu M, Poteca TD, Opris I. Nanostructures: a platform for brain repair and augmentation. Front Syst Neurosci 2014; 8:91. [PMID: 24999319 PMCID: PMC4064704 DOI: 10.3389/fnsys.2014.00091] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/30/2014] [Indexed: 01/04/2023] Open
Abstract
Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions.
Collapse
Affiliation(s)
- Ruxandra Vidu
- Department of Chemical Engineering and Materials Science, University of California DavisDavis, CA, USA
| | - Masoud Rahman
- Department of Chemical Engineering and Materials Science, University of California DavisDavis, CA, USA
| | - Morteza Mahmoudi
- Department of Nanotechnology and Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical SciencesTehran, Iran
| | - Marius Enachescu
- Center for Surface Science and Nanotechnology, University “Politehnica” BucharestBucharest, Romania
- Academy of Romanian ScientistsBucharest, Romania
| | - Teodor D. Poteca
- Carol Davila University of Medicine and PharmacyBucharest, Romania
| | - Ioan Opris
- Wake Forest University Health SciencesWinston-Salem, NC, USA
| |
Collapse
|