1
|
He F, Yang Y. Nonlinear System Identification of Neural Systems from Neurophysiological Signals. Neuroscience 2021; 458:213-228. [PMID: 33309967 PMCID: PMC7925423 DOI: 10.1016/j.neuroscience.2020.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
The human nervous system is one of the most complicated systems in nature. Complex nonlinear behaviours have been shown from the single neuron level to the system level. For decades, linear connectivity analysis methods, such as correlation, coherence and Granger causality, have been extensively used to assess the neural connectivities and input-output interconnections in neural systems. Recent studies indicate that these linear methods can only capture a certain amount of neural activities and functional relationships, and therefore cannot describe neural behaviours in a precise or complete way. In this review, we highlight recent advances in nonlinear system identification of neural systems, corresponding time and frequency domain analysis, and novel neural connectivity measures based on nonlinear system identification techniques. We argue that nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in neural systems quantitatively. These approaches can hopefully provide new insights to advance our understanding of neurophysiological mechanisms underlying neural functions. These nonlinear approaches also have the potential to produce sensitive biomarkers to facilitate the development of precision diagnostic tools for evaluating neurological disorders and the effects of targeted intervention.
Collapse
Affiliation(s)
- Fei He
- Centre for Data Science, Coventry University, Coventry CV1 2JH, UK
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK 74135, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| |
Collapse
|
2
|
Ujfalussy BB, Makara JK, Lengyel M, Branco T. Global and Multiplexed Dendritic Computations under In Vivo-like Conditions. Neuron 2019; 100:579-592.e5. [PMID: 30408443 PMCID: PMC6226578 DOI: 10.1016/j.neuron.2018.08.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/07/2018] [Accepted: 08/21/2018] [Indexed: 10/27/2022]
Abstract
Dendrites integrate inputs nonlinearly, but it is unclear how these nonlinearities contribute to the overall input-output transformation of single neurons. We developed statistically principled methods using a hierarchical cascade of linear-nonlinear subunits (hLN) to model the dynamically evolving somatic response of neurons receiving complex, in vivo-like spatiotemporal synaptic input patterns. We used the hLN to predict the somatic membrane potential of an in vivo-validated detailed biophysical model of a L2/3 pyramidal cell. Linear input integration with a single global dendritic nonlinearity achieved above 90% prediction accuracy. A novel hLN motif, input multiplexing into parallel processing channels, could improve predictions as much as conventionally used additional layers of local nonlinearities. We obtained similar results in two other cell types. This approach provides a data-driven characterization of a key component of cortical circuit computations: the input-output transformation of neurons during in vivo-like conditions.
Collapse
Affiliation(s)
- Balázs B Ujfalussy
- MRC Laboratory of Molecular Biology, Cambridge, UK; Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary; Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; MTA Wigner Research Center for Physics, Budapest, Hungary.
| | - Judit K Makara
- Laboratory of Neuronal Signaling, Institute of Experimental Medicine, Budapest, Hungary
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Department of Cognitive Science, Central European University, Budapest, Hungary
| | - Tiago Branco
- MRC Laboratory of Molecular Biology, Cambridge, UK; Sainsbury Wellcome Centre, University College London, London, UK
| |
Collapse
|
3
|
Florescu D, Coca D. Learning with Precise Spike Times: A New Decoding Algorithm for Liquid State Machines. Neural Comput 2019; 31:1825-1852. [PMID: 31335291 DOI: 10.1162/neco_a_01218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is extensive evidence that biological neural networks encode information in the precise timing of the spikes generated and transmitted by neurons, which offers several advantages over rate-based codes. Here we adopt a vector space formulation of spike train sequences and introduce a new liquid state machine (LSM) network architecture and a new forward orthogonal regression algorithm to learn an input-output signal mapping or to decode the brain activity. The proposed algorithm uses precise spike timing to select the presynaptic neurons relevant to each learning task. We show that using precise spike timing to train the LSM and selecting the readout presynaptic neurons leads to a significant increase in performance on binary classification tasks, in decoding neural activity from multielectrode array recordings, as well as in a speech recognition task, compared with what is achieved using the standard architecture and training methods.
Collapse
Affiliation(s)
- Dorian Florescu
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
| | - Daniel Coca
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
| |
Collapse
|
4
|
Lazar AA, Ukani NH, Zhou Y. Sparse Functional Identification of Complex Cells from Spike Times and the Decoding of Visual Stimuli. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2018; 8:2. [PMID: 29349664 PMCID: PMC5773573 DOI: 10.1186/s13408-017-0057-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/29/2017] [Indexed: 05/21/2023]
Abstract
We investigate the sparse functional identification of complex cells and the decoding of spatio-temporal visual stimuli encoded by an ensemble of complex cells. The reconstruction algorithm is formulated as a rank minimization problem that significantly reduces the number of sampling measurements (spikes) required for decoding. We also establish the duality between sparse decoding and functional identification and provide algorithms for identification of low-rank dendritic stimulus processors. The duality enables us to efficiently evaluate our functional identification algorithms by reconstructing novel stimuli in the input space. Finally, we demonstrate that our identification algorithms substantially outperform the generalized quadratic model, the nonlinear input model, and the widely used spike-triggered covariance algorithm.
Collapse
Affiliation(s)
- Aurel A. Lazar
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, Mudd 1300, New York, NY 10027 USA
| | - Nikul H. Ukani
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, Mudd 1300, New York, NY 10027 USA
| | - Yiyin Zhou
- Department of Electrical Engineering, Columbia University, 500 W 120th Street, Mudd 1300, New York, NY 10027 USA
| |
Collapse
|
5
|
Florescu D, Coca D. Identification of Linear and Nonlinear Sensory Processing Circuits from Spiking Neuron Data. Neural Comput 2018; 30:670-707. [PMID: 29342394 DOI: 10.1162/neco_a_01051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Inferring mathematical models of sensory processing systems directly from input-output observations, while making the fewest assumptions about the model equations and the types of measurements available, is still a major issue in computational neuroscience. This letter introduces two new approaches for identifying sensory circuit models consisting of linear and nonlinear filters in series with spiking neuron models, based only on the sampled analog input to the filter and the recorded spike train output of the spiking neuron. For an ideal integrate-and-fire neuron model, the first algorithm can identify the spiking neuron parameters as well as the structure and parameters of an arbitrary nonlinear filter connected to it. The second algorithm can identify the parameters of the more general leaky integrate-and-fire spiking neuron model, as well as the parameters of an arbitrary linear filter connected to it. Numerical studies involving simulated and real experimental recordings are used to demonstrate the applicability and evaluate the performance of the proposed algorithms.
Collapse
Affiliation(s)
- Dorian Florescu
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
| | - Daniel Coca
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, U.K.
| |
Collapse
|
6
|
Givon LE, Lazar AA. Neurokernel: An Open Source Platform for Emulating the Fruit Fly Brain. PLoS One 2016; 11:e0146581. [PMID: 26751378 PMCID: PMC4709234 DOI: 10.1371/journal.pone.0146581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 11/23/2022] Open
Abstract
We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units. We demonstrate the power of Neurokernel's model integration by combining independently developed models of the retina and lamina neuropils in the fly's visual system and by demonstrating their neuroinformation processing capability. We also illustrate Neurokernel's ability to take advantage of direct GPU-to-GPU data transfers with benchmarks that demonstrate scaling of Neurokernel's communication performance both over the number of interface ports exposed by an emulation's constituent modules and the total number of modules comprised by an emulation.
Collapse
Affiliation(s)
- Lev E. Givon
- Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Aurel A. Lazar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
7
|
Florescu D, Coca D. Nonlinear system identification of receptive fields from spiking neuron data. BMC Neurosci 2015. [PMCID: PMC4697543 DOI: 10.1186/1471-2202-16-s1-p46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Lazar AA, Ukani NH, Zhou Y. Functional identification of complex cells from spike times and the decoding of visual stimuli. BMC Neurosci 2015. [PMCID: PMC4699150 DOI: 10.1186/1471-2202-16-s1-p300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Lazar AA, Slutskiy YB. Channel identification machines for multidimensional receptive fields. Front Comput Neurosci 2014; 8:117. [PMID: 25309413 PMCID: PMC4176398 DOI: 10.3389/fncom.2014.00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/31/2014] [Indexed: 12/04/2022] Open
Abstract
We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural circuits incorporating spatiotemporal and spectrotemporal receptive fields.
Collapse
Affiliation(s)
- Aurel A Lazar
- Bionet Group, Department of Electrical Engineering, Columbia University in the City of New York New York, NY, USA
| | - Yevgeniy B Slutskiy
- Bionet Group, Department of Electrical Engineering, Columbia University in the City of New York New York, NY, USA
| |
Collapse
|
10
|
Lazar AA, Zhou Y. Volterra dendritic stimulus processors and biophysical spike generators with intrinsic noise sources. Front Comput Neurosci 2014; 8:95. [PMID: 25225477 PMCID: PMC4150400 DOI: 10.3389/fncom.2014.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/23/2014] [Indexed: 11/13/2022] Open
Abstract
We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation. Biophysical point neuron models, such as the Hodgkin-Huxley neuron, are used to model the spike generator. We address the question of how intrinsic noise sources affect the precision in encoding and decoding of sensory stimuli and the functional identification of its sensory circuits. We investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the DSPs, and (ii) in the ion channels of the BSGs. Noise in dendritic stimulus processing arises from a combined effect of variability in synaptic transmission and dendritic interactions. Channel noise arises in the BSGs due to the fluctuation of the number of the active ion channels. Using a stochastic differential equations formalism we show that encoding with a neuron model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can be treated as generalized sampling with noisy measurements. For single-input multi-output neural circuit models with feedforward, feedback and cross-feedback DSPs cascaded with BSGs we theoretically analyze the effect of noise sources on stimulus decoding. Building on a key duality property, the effect of noise parameters on the precision of the functional identification of the complete neural circuit with DSP/BSG neuron models is given. We demonstrate through extensive simulations the effects of noise on encoding stimuli with circuits that include neuron models that are akin to those commonly seen in sensory systems, e.g., complex cells in V1.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia University New York, NY, USA
| | - Yiyin Zhou
- Department of Electrical Engineering, Columbia University New York, NY, USA
| |
Collapse
|