1
|
Li J, Wiesinger A, Fokkert L, Bakker P, de Vries DK, Tijsen AJ, Pinto YM, Verkerk AO, Christoffels VM, Boink GJJ, Devalla HD. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell 2024; 31:1667-1684.e6. [PMID: 39260368 PMCID: PMC11546832 DOI: 10.1016/j.stem.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The "nodal" cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with in vivo-like gene expression and electrophysiological profiles. We created the so-called "assembloids" composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the "fast-slow-fast" activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of LMNA-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.
Collapse
Affiliation(s)
- Jiuru Li
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Alexandra Wiesinger
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Priscilla Bakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Dylan K de Vries
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Anke J Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
2
|
Hennis K, Piantoni C, Biel M, Fenske S, Wahl-Schott C. Pacemaker Channels and the Chronotropic Response in Health and Disease. Circ Res 2024; 134:1348-1378. [PMID: 38723033 PMCID: PMC11081487 DOI: 10.1161/circresaha.123.323250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Loss or dysregulation of the normally precise control of heart rate via the autonomic nervous system plays a critical role during the development and progression of cardiovascular disease-including ischemic heart disease, heart failure, and arrhythmias. While the clinical significance of regulating changes in heart rate, known as the chronotropic effect, is undeniable, the mechanisms controlling these changes remain not fully understood. Heart rate acceleration and deceleration are mediated by increasing or decreasing the spontaneous firing rate of pacemaker cells in the sinoatrial node. During the transition from rest to activity, sympathetic neurons stimulate these cells by activating β-adrenergic receptors and increasing intracellular cyclic adenosine monophosphate. The same signal transduction pathway is targeted by positive chronotropic drugs such as norepinephrine and dobutamine, which are used in the treatment of cardiogenic shock and severe heart failure. The cyclic adenosine monophosphate-sensitive hyperpolarization-activated current (If) in pacemaker cells is passed by hyperpolarization-activated cyclic nucleotide-gated cation channels and is critical for generating the autonomous heartbeat. In addition, this current has been suggested to play a central role in the chronotropic effect. Recent studies demonstrate that cyclic adenosine monophosphate-dependent regulation of HCN4 (hyperpolarization-activated cyclic nucleotide-gated cation channel isoform 4) acts to stabilize the heart rate, particularly during rapid rate transitions induced by the autonomic nervous system. The mechanism is based on creating a balance between firing and recently discovered nonfiring pacemaker cells in the sinoatrial node. In this way, hyperpolarization-activated cyclic nucleotide-gated cation channels may protect the heart from sinoatrial node dysfunction, secondary arrhythmia of the atria, and potentially fatal tachyarrhythmia of the ventricles. Here, we review the latest findings on sinoatrial node automaticity and discuss the physiological and pathophysiological role of HCN pacemaker channels in the chronotropic response and beyond.
Collapse
Affiliation(s)
- Konstantin Hennis
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Chiara Piantoni
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| | - Martin Biel
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Stefanie Fenske
- Department of Pharmacy, Center for Drug Research (M.B., S.F.), Ludwig-Maximilians-Universität München, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (M.B., S.F.)
| | - Christian Wahl-Schott
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center Munich, Walter Brendel Centre of Experimental Medicine, Faculty of Medicine (K.H., C.P., C.W.-S.), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
3
|
Hata Y, Ichimata S, Hirono K, Yamaguchi Y, Oku Y, Ichida F, Nishida N. Pathological and Comprehensive Genetic Investigation of Autopsy Cases of Idiopathic Bradyarrhythmia. Circ J 2022; 87:111-119. [PMID: 36070930 DOI: 10.1253/circj.cj-22-0397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Idiopathic bradyarrhythmia is considered to be due to pathological degeneration of the cardiac conduction system (CCS) during aging. There appears to have been no comprehensive genetic investigations in patients with idiopathic bradyarrhythmia. METHODS AND RESULTS Ten autopsy cases with advanced bradyarrhythmia (6 men and 4 women; age: 70-94 years, 81.5±6.9 years; 5 cases each of sinus node dysfunction [SND] and complete atrioventricular block [CAVB]) were genetically investigated by using whole-exome sequencing. Morphometric analysis of the CCS was performed with sex-, age- and comorbidity-matched control cases. As a result, severe loss of nodal cells and distal atrioventricular conduction system were found in SND and CAVB, respectively. However, the conduction tissue loss was not significant in either the atrioventricular node or the proximal bundle of His in CAVB cases. A total of 13 heterozygous potential variants were found in 3 CAVB and 2 SND cases. Of these 13 variants, 4 were missense in the known progressive cardiac conduction disease-related genes: GATA4 and RYR2. In the remaining 9 variants, 5 were loss-of-function mutation with highly possible pathogenicity. CONCLUSIONS In addition to degenerative changes of selectively vulnerable areas in the heart during advancing age, the vulnerability of the CCS, which may be associated with "rare variants of small effect," may also be a contributing factor to the degeneration of CCS, leading to "idiopathic" bradyarrhythmia.
Collapse
Affiliation(s)
- Yukiko Hata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| | - Shojiro Ichimata
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| | - Keiichi Hirono
- Department of Pediatrics, Faculty of Medicine, University of Toyama
| | - Yoshiaki Yamaguchi
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
- Department of Cardiology, Saiseikai Takaoka Hospital
| | - Yuko Oku
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| | - Fukiko Ichida
- Department of Pediatrics, International University of Health & Welfare
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama
| |
Collapse
|
4
|
Castelletti S, Zorzi A, Ballardini E, Basso C, Biffi A, Bracati F, Cavarretta E, Crotti L, Contursi M, D'Aleo A, D'Ascenzi F, Delise P, Dello Russo A, Gazale G, Mos L, Novelli V, Palamà Z, Palermi S, Palmieri V, Patrizi G, Pelliccia A, Pilichou K, Romano S, Sarto P, Schwartz PJ, Tiberi M, Zeppilli P, Corrado D, Sciarra L. Molecular genetic testing in athletes: Why and when a position statement from the Italian society of sports cardiology. Int J Cardiol 2022; 364:169-177. [PMID: 35662561 DOI: 10.1016/j.ijcard.2022.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022]
Abstract
Molecular genetic testing is an increasingly available test to support the clinical diagnosis of inherited cardiovascular diseases through identification of pathogenic gene variants and to make a preclinical genetic diagnosis among proband's family members (so-called "cascade family screening"). In athletes, the added value of molecular genetic testing is to assist in discriminating between physiological adaptive changes of the athlete's heart and inherited cardiovascular diseases, in the presence of overlapping phenotypic features such as ECG changes, imaging abnormalities or arrhythmias ("grey zone"). Additional benefits of molecular genetic testing in the athlete include the potential impact on the disease risk stratification and the implications for eligibility to competitive sports. This position statement of the Italian Society of Sports Cardiology aims to guide general sports medical physicians and sports cardiologists on clinical decision as why and when to perform a molecular genetic testing in the athlete, highlighting strengths and weaknesses for each inherited cardiovascular disease at-risk of sudden cardiac death during sport. The importance of early (preclinical) diagnosis to prevent the negative effects of exercise on phenotypic expression, disease progression and worsening of the arrhythmogenic substrate is also addressed.
Collapse
Affiliation(s)
- Silvia Castelletti
- Cardiomyopathy Center and Rehabilitation Unit, Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Ballardini
- Sports Medicine Centre, Gruppo Mantova Salus, Ospedale San Pellegrino, Mantova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessandro Biffi
- Med-Ex, Medicine and Exercise srl, Medical Partner Scuderia Ferrari, Rome, Italy
| | - Francesco Bracati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Lia Crotti
- Cardiomyopathy Center and Rehabilitation Unit, Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy; Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Maurizio Contursi
- Sports Cardiology Unit, Centro Polidiagnostico Check-up, Salerno, Italy
| | | | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Delise
- Division of Cardiology, Hospital of Peschiera del Garda, Veneto, Italy
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital "Lancisi-Umberto I- Salesi", Ancona, Italy, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Gazale
- Center of Sport Medicine and Sports Cardiology, ASL 1, Sassari, Italy
| | - Lucio Mos
- San Antonio Hospital, San Daniele del Friuli, Udine, Italy
| | | | - Zefferino Palamà
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy; Casa di Cura Villa Verde, Taranto, Italy
| | - Stefano Palermi
- Med-Ex, Medicine and Exercise srl, Medical Partner Scuderia Ferrari, Rome, Italy
| | - Vincenzo Palmieri
- Sports Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Silvio Romano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | | | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Monica Tiberi
- Department of Public Health, Azienda Sanitaria Unica Regionale Marche AV 1, Pesaro, Italy
| | - Paolo Zeppilli
- Sports Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | - Luigi Sciarra
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| |
Collapse
|
5
|
Choi S, Vivas O, Baudot M, Moreno CM. Aging Alters the Formation and Functionality of Signaling Microdomains Between L-type Calcium Channels and β2-Adrenergic Receptors in Cardiac Pacemaker Cells. Front Physiol 2022; 13:805909. [PMID: 35514336 PMCID: PMC9065441 DOI: 10.3389/fphys.2022.805909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Heart rate is accelerated to match physiological demands through the action of noradrenaline on the cardiac pacemaker. Noradrenaline is released from sympathetic terminals and activates β1-and β2-adrenergic receptors (ΑRs) located at the plasma membrane of pacemaker cells. L-type calcium channels are one of the main downstream targets potentiated by the activation of β-ARs. For this signaling to occur, L-type calcium channels need to be located in close proximity to β-ARs inside caveolae. Although it is known that aging causes a slowdown of the pacemaker rate and a reduction in the response of pacemaker cells to noradrenaline, there is a lack of in-depth mechanistic insights into these age-associated changes. Here, we show that aging affects the formation and function of adrenergic signaling microdomains inside caveolae. By evaluating the β1 and β2 components of the adrenergic regulation of the L-type calcium current, we show that aging does not alter the regulation mediated by β1-ARs but drastically impairs that mediated by β2-ARs. We studied the integrity of the signaling microdomains formed between L-type calcium channels and β-ARs by combining high-resolution microscopy and proximity ligation assays. We show that consistent with the electrophysiological data, aging decreases the physical association between β2-ARs and L-type calcium channels. Interestingly, this reduction is associated with a decrease in the association of L-type calcium channels with the scaffolding protein AKAP150. Old pacemaker cells also have a reduction in caveolae density and in the association of L-type calcium channels with caveolin-3. Together the age-dependent alterations in caveolar formation and the nano-organization of β2-ARs and L-type calcium channels result in a reduced sensitivity of the channels to β2 adrenergic modulation. Our results highlight the importance of these signaling microdomains in maintaining the chronotropic modulation of the heart and also pinpoint the direct impact that aging has on their function.
Collapse
Affiliation(s)
- Sabrina Choi
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Matthias Baudot
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Claudia M Moreno
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Hackl B, Lukacs P, Ebner J, Pesti K, Haechl N, Földi MC, Lilliu E, Schicker K, Kubista H, Stary-Weinzinger A, Hilber K, Mike A, Todt H, Koenig X. The Bradycardic Agent Ivabradine Acts as an Atypical Inhibitor of Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:809802. [PMID: 35586063 PMCID: PMC9108390 DOI: 10.3389/fphar.2022.809802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Background and purpose: Ivabradine is clinically administered to lower the heart rate, proposedly by inhibiting hyperpolarization-activated cyclic nucleotide-gated cation channels in the sinoatrial node. Recent evidence suggests that voltage-gated sodium channels (VGSC) are inhibited within the same concentration range. VGSCs are expressed within the sinoatrial node and throughout the conduction system of the heart. A block of these channels thus likely contributes to the established and newly raised clinical indications of ivabradine. We, therefore, investigated the pharmacological action of ivabradine on VGSCs in sufficient detail in order to gain a better understanding of the pro- and anti-arrhythmic effects associated with the administration of this drug. Experimental Approach: Ivabradine was tested on VGSCs in native cardiomyocytes isolated from mouse ventricles and the His-Purkinje system and on human Nav1.5 in a heterologous expression system. We investigated the mechanism of channel inhibition by determining its voltage-, frequency-, state-, and temperature-dependence, complemented by a molecular drug docking to the recent Nav1.5 cryoEM structure. Automated patch-clamp experiments were used to investigate ivabradine-mediated changes in Nav1.5 inactivation parameters and inhibition of different VGSC isoforms. Key results: Ivabradine inhibited VGSCs in a voltage- and frequency-dependent manner, but did not alter voltage-dependence of activation and fast inactivation, nor recovery from fast inactivation. Cardiac (Nav1.5), neuronal (Nav1.2), and skeletal muscle (Nav1.4) VGSC isoforms were inhibited by ivabradine within the same concentration range, as were sodium currents in native cardiomyocytes isolated from the ventricles and the His-Purkinje system. Molecular drug docking suggested an interaction of ivabradine with the classical local anesthetic binding site. Conclusion and Implications: Ivabradine acts as an atypical inhibitor of VGSCs. Inhibition of VGSCs likely contributes to the heart rate lowering effect of ivabradine, in particular at higher stimulation frequencies and depolarized membrane potentials, and to the observed slowing of intra-cardiac conduction. Inhibition of VGSCs in native cardiomyocytes and across channel isoforms may provide a potential basis for the anti-arrhythmic potential as observed upon administration of ivabradine.
Collapse
Affiliation(s)
- Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Lukacs
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Pesti
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Semmelweis University, School of Ph.D. Studies, Budapest, Hungary
| | - Nicholas Haechl
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Mátyás C Földi
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Elena Lilliu
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Klaus Schicker
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Mike
- ELKH, Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Resdal Dyssekilde J, Frederiksen TC, Christiansen MK, Hasle Sørensen R, Pedersen LN, Loof Møller P, Christensen LS, Larsen JM, Thomsen KK, Lindhardt TB, Böttcher M, Molsted S, Havndrup O, Fischer T, Møller DS, Henriksen FL, Johansen JB, Nielsen JC, Bundgaard H, Nygaard M, Jensen HK. Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause. J Am Heart Assoc 2022; 11:e025643. [PMID: 35470684 PMCID: PMC9238593 DOI: 10.1161/jaha.121.025643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background The cause of atrioventricular block (AVB) remains unknown in approximately half of young patients with the diagnosis. Although variants in several genes associated with cardiac conduction diseases have been identified, the contribution of genetic variants in younger patients with AVB is unknown. Methods and Results Using the Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry, we identified all patients younger than 50 years receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. From medical records, we identified patients with unknown cause of AVB at time of pacemaker implantation. These patients were invited to a genetic screening using a panel of 102 genes associated with inherited cardiac diseases. We identified 471 living patients with AVB of unknown cause, of whom 226 (48%) accepted participation. Median age at the time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 123 (54%) were men. We found pathogenic or likely pathogenic variants in genes associated with or possibly associated with AVB in 12 patients (5%). Most variants were found in the LMNA gene (n=5). LMNA variant carriers all had a family history of either AVB and/or sudden cardiac death. Conclusions In young patients with AVB of unknown cause, we found a possible genetic cause in 1 out of 20 participating patients. Variants in the LMNA gene were most common and associated with a family history of AVB and/or sudden cardiac death, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members.
Collapse
Affiliation(s)
| | - Tanja Charlotte Frederiksen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | | | | | | | | | | | | | | | - Tommi Bo Lindhardt
- Department of Cardiology Copenhagen University HospitalHerlev and Gentofte Hospital Hellerup Denmark
| | - Morten Böttcher
- Department of Cardiology Regional Hospital Herning Herning Denmark
| | - Stig Molsted
- Department of Clinical Research North Zealand Hospital Hillerød Denmark
| | - Ole Havndrup
- Department of Cardiology Zealand University Hospital Roskilde Denmark
| | | | | | | | | | - Jens Cosedis Nielsen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | - Henning Bundgaard
- Department of Cardiology The Heart Center Rigshospitalet Copenhagen Denmark.,Department of Clinical Medicine University of Copenhagen Denmark
| | - Mette Nygaard
- Department of Biomedicine Health Aarhus University Aarhus Denmark.,Department of Health Science and Technology Aalborg Denmark
| | - Henrik Kjærulf Jensen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| |
Collapse
|
8
|
Li N, Artiga E, Kalyanasundaram A, Hansen BJ, Webb A, Pietrzak M, Biesiadecki B, Whitson B, Mokadam NA, Janssen PML, Hummel JD, Mohler PJ, Dobrzynski H, Fedorov VV. Altered microRNA and mRNA profiles during heart failure in the human sinoatrial node. Sci Rep 2021; 11:19328. [PMID: 34588502 PMCID: PMC8481550 DOI: 10.1038/s41598-021-98580-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022] Open
Abstract
Heart failure (HF) is frequently accompanied with the sinoatrial node (SAN) dysfunction, which causes tachy-brady arrhythmias and increased mortality. MicroRNA (miR) alterations are associated with HF progression. However, the transcriptome of HF human SAN, and its role in HF-associated remodeling of ion channels, transporters, and receptors responsible for SAN automaticity and conduction impairments is unknown. We conducted comprehensive high-throughput transcriptomic analysis of pure human SAN primary pacemaker tissue and neighboring right atrial tissue from human transplanted HF hearts (n = 10) and non-failing (nHF) donor hearts (n = 9), using next-generation sequencing. Overall, 47 miRs and 832 mRNAs related to multiple signaling pathways, including cardiac diseases, tachy-brady arrhythmias and fibrosis, were significantly altered in HF SAN. Of the altered miRs, 27 are predicted to regulate mRNAs of major ion channels and neurotransmitter receptors which are involved in SAN automaticity (e.g. HCN1, HCN4, SLC8A1) and intranodal conduction (e.g. SCN5A, SCN8A) or both (e.g. KCNJ3, KCNJ5). Luciferase reporter assays were used to validate interactions of miRs with predicted mRNA targets. In conclusion, our study provides a profile of altered miRs in HF human SAN, and a novel transcriptome blueprint to identify molecular targets for SAN dysfunction and arrhythmia treatments in HF.
Collapse
Affiliation(s)
- Ning Li
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Esthela Artiga
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Brian J Hansen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Amy Webb
- Biomedical Informatics Shared Resources, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Maciej Pietrzak
- Biomedical Informatics Shared Resources, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Bryan Whitson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Nahush A Mokadam
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA
| | - John D Hummel
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, 43210-1218, USA. .,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Morotti S, Ni H, Peters CH, Rickert C, Asgari-Targhi A, Sato D, Glukhov AV, Proenza C, Grandi E. Intracellular Na + Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. Int J Mol Sci 2021; 22:5645. [PMID: 34073281 PMCID: PMC8198068 DOI: 10.3390/ijms22115645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mechanisms underlying dysfunction in the sinoatrial node (SAN), the heart's primary pacemaker, are incompletely understood. Electrical and Ca2+-handling remodeling have been implicated in SAN dysfunction associated with heart failure, aging, and diabetes. Cardiomyocyte [Na+]i is also elevated in these diseases, where it contributes to arrhythmogenesis. Here, we sought to investigate the largely unexplored role of Na+ homeostasis in SAN pacemaking and test whether [Na+]i dysregulation may contribute to SAN dysfunction. Methods: We developed a dataset-specific computational model of the murine SAN myocyte and simulated alterations in the major processes of Na+ entry (Na+/Ca2+ exchanger, NCX) and removal (Na+/K+ ATPase, NKA). Results: We found that changes in intracellular Na+ homeostatic processes dynamically regulate SAN electrophysiology. Mild reductions in NKA and NCX function increase myocyte firing rate, whereas a stronger reduction causes bursting activity and loss of automaticity. These pathologic phenotypes mimic those observed experimentally in NCX- and ankyrin-B-deficient mice due to altered feedback between the Ca2+ and membrane potential clocks underlying SAN firing. Conclusions: Our study generates new testable predictions and insight linking Na+ homeostasis to Ca2+ handling and membrane potential dynamics in SAN myocytes that may advance our understanding of SAN (dys)function.
Collapse
Affiliation(s)
- Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Christian Rickert
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
| | - Ameneh Asgari-Targhi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| | - Alexey V. Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin Madison School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.H.P.); (C.R.); (C.P.)
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA; (H.N.); (A.A.-T.); (D.S.)
| |
Collapse
|
10
|
Li N, Kalyanasundaram A, Hansen BJ, Artiga EJ, Sharma R, Abudulwahed SH, Helfrich KM, Rozenberg G, Wu PJ, Zakharkin S, Gyorke S, Janssen PM, Whitson BA, Mokadam NA, Biesiadecki BJ, Accornero F, Hummel JD, Mohler PJ, Dobrzynski H, Zhao J, Fedorov VV. Impaired neuronal sodium channels cause intranodal conduction failure and reentrant arrhythmias in human sinoatrial node. Nat Commun 2020; 11:512. [PMID: 31980605 PMCID: PMC6981137 DOI: 10.1038/s41467-019-14039-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
Mechanisms for human sinoatrial node (SAN) dysfunction are poorly understood and whether human SAN excitability requires voltage-gated sodium channels (Nav) remains controversial. Here, we report that neuronal (n)Nav blockade and selective nNav1.6 blockade during high-resolution optical mapping in explanted human hearts depress intranodal SAN conduction, which worsens during autonomic stimulation and overdrive suppression to conduction failure. Partial cardiac (c)Nav blockade further impairs automaticity and intranodal conduction, leading to beat-to-beat variability and reentry. Multiple nNav transcripts are higher in SAN vs atria; heterogeneous alterations of several isoforms, specifically nNav1.6, are associated with heart failure and chronic alcohol consumption. In silico simulations of Nav distributions suggest that INa is essential for SAN conduction, especially in fibrotic failing hearts. Our results reveal that not only cNav but nNav are also integral for preventing disease-induced failure in human SAN intranodal conduction. Disease-impaired nNav may underlie patient-specific SAN dysfunctions and should be considered to treat arrhythmias. The role of of voltage-gated sodium channels (Nav) in pacemaking and conduction of the human sinoatrial node is unclear. Here, the authors investigate existence and function of neuronal and cardiac Nav in human sinoatrial nodes, and demonstrate their alterations in explanted human diseased hearts.
Collapse
Affiliation(s)
- Ning Li
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brian J Hansen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Suhaib H Abudulwahed
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Katelynn M Helfrich
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Galina Rozenberg
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pei-Jung Wu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stanislav Zakharkin
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul Ml Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryan A Whitson
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nahush A Mokadam
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK.,Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
11
|
Abstract
With recent advances in genetic diagnostics, many inherited diseases, which can cause life-threatening arrhythmias, are being better characterized. Many of these diseases are caused by genetic disorders that affect the function of the ion channels that regulate the action potential or the function of important cardiac muscle regulatory proteins. This article summarizes the diseases that we have learned about, such as the long QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. The article examines the diagnosis, genetic screening of patients and their relatives, management, and referral to a specialist for further therapy.
Collapse
Affiliation(s)
- Jessica Kline
- Cardiovascular Disease, Summa Health System, 95 Arch Street, Suite 300, Akron, OH 44304, USA
| | - Otto Costantini
- Cardiovascular Disease Fellowship, Summa Health Heart and Vascular Institute, Summa Health System, 95 Arch Street, Suite 350, Akron, OH 44304, USA.
| |
Collapse
|
12
|
Micaglio E, Monasky MM, Ciconte G, Vicedomini G, Conti M, Mecarocci V, Giannelli L, Giordano F, Pollina A, Saviano M, Pozzi PR, Di Resta C, Benedetti S, Ferrari M, Santinelli V, Pappone C. Novel SCN5A Frameshift Mutation in Brugada Syndrome Associated With Complex Arrhythmic Phenotype. Front Genet 2019; 10:547. [PMID: 31231430 PMCID: PMC6565861 DOI: 10.3389/fgene.2019.00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 05/23/2019] [Indexed: 11/16/2022] Open
Abstract
In this case report, we characterize a novel inherited frameshift mutation c.4700_4701del (p.Phe1567Cysfs*221) in a single copy of the SCN5A gene and its association with Brugada syndrome (BrS). The proband experienced a life-threatening ventricular arrhythmia successfully treated with DC-shock and he also suffered from supraventricular tachycardia. Ajmaline test confirmed the BrS diagnosis. No other mutation nor low frequency variants in the other 23 analyzed genes were detected. The same mutation was found in the father and sister, who were both diagnosed with BrS. We hypothesize that this mutation could be responsible for BrS and potentially linked to supraventricular tachycardias. Further studies are needed to confirm this observation and to assess the clinical relevance of this mutation, in terms of risk-stratification.
Collapse
Affiliation(s)
- Emanuele Micaglio
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Manuel Conti
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Valerio Mecarocci
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Giannelli
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Federica Giordano
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Alberto Pollina
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Massimo Saviano
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Paolo R Pozzi
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Chiara Di Resta
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Benedetti
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurizio Ferrari
- Genomic Unit for the Diagnosis of Human Pathologies, Division of Genetics and Cellular Biology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
13
|
Nof E, Vysochek L, Meisel E, Burashnikov E, Antzelevitch C, Clatot J, Beinart R, Luria D, Glikson M, Oz S. Mutations in Na V1.5 Reveal Calcium-Calmodulin Regulation of Sodium Channel. Front Physiol 2019; 10:700. [PMID: 31231243 PMCID: PMC6560087 DOI: 10.3389/fphys.2019.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SCN5A gene, encoding the cardiac voltage-gated sodium channel NaV1.5, are associated with inherited cardiac arrhythmia and conduction disease. Ca2+-dependent mechanisms and the involvement of β-subunit (NaVβ) in NaV1.5 regulation are not fully understood. A patient with severe sinus-bradycardia and cardiac conduction-disease was genetically evaluated and compound heterozygosity in the SCN5A gene was found. Mutations were identified in the cytoplasmic DIII-IV linker (K1493del) and the C-terminus (A1924T) of NaV1.5, both are putative CaM-binding domains. These mutants were functionally studied in human embryonic kidney (HEK) cells and HL-1 cells using whole-cell patch clamp technique. Calmodulin (CaM) interaction and cell-surface expression of heterologously expressed NaV1.5 mutants were studied by pull-down and biotinylation assays. The mutation K1493del rendered NaV1.5 non-conductive. NaV1.5K1493del altered the gating properties of co-expressed functional NaV1.5, in a Ca2+ and NaVβ1-dependent manner. NaV1.5A1924T impaired NaVβ1-dependent gating regulation. Ca2+-dependent CaM-interaction with NaV1.5 was blunted in NaV1.5K1493del. Electrical charge substitution at position 1493 did not affect CaM-interaction and channel functionality. Arrhythmia and conduction-disease -associated mutations revealed Ca2+-dependent gating regulation of NaV1.5 channels. Our results highlight the role of NaV1.5 DIII-IV linker in the CaM-binding complex and channel function, and suggest that the Ca2+-sensing machinery of NaV1.5 involves NaVβ1.
Collapse
Affiliation(s)
- Eyal Nof
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Eshcar Meisel
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena Burashnikov
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, United States.,Lankenau Heart Institute, Wynnewood, PA, United States.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jerome Clatot
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Roy Beinart
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Luria
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Glikson
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimrit Oz
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
14
|
Baruscotti M, Bucchi A, Milanesi R, Paina M, Barbuti A, Gnecchi-Ruscone T, Bianco E, Vitali-Serdoz L, Cappato R, DiFrancesco D. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial Inappropriate Sinus Tachycardia. Eur Heart J 2019; 38:280-288. [PMID: 28182231 DOI: 10.1093/eurheartj/ehv582] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mirko Baruscotti
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Raffaella Milanesi
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Manuel Paina
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | | | - Elisabetta Bianco
- Cardiovascular Department, 'Ospedali Riuniti di Trieste', University Hospital, Trieste, Italy
| | | | | | - Dario DiFrancesco
- Department of Biosciences, The PaceLab and 'Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata', Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
15
|
Liang W, Gasparyan L, AlQarawi W, Davis DR. Disease modeling of cardiac arrhythmias using human induced pluripotent stem cells. Expert Opin Biol Ther 2019; 19:313-333. [PMID: 30682895 DOI: 10.1080/14712598.2019.1575359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Inherited arrhythmias are an uncommon, but malignant family of cardiac diseases that result from genetic abnormalities in the ion channels and/or structural proteins within cardiomyocytes. Given the inherent differences between species and the limited reproducibility of in vitro heterologous cell models, progress in understanding the mechanisms underlying these malignant diseases has always languished far behind the clinical science and need. The ability to study human induced pluripotent stem cells (iPSCs) derived cardiomyocytes promises to change this paradigm as patient cells have the potential to become testing platforms for disease phenotyping or therapeutic discovery. AREAS COVERED This review will outline methods developed to genetically reprogram adult cells into iPSCs, differentiate iPSCs into ex vivo models of adult cardiac tissue and iPSCs-based progress in exploring the mechanisms underlying pro-arrhythmic disease phenotypes. EXPERT OPINION Despite being discovered less than 15 years ago, several studies have successfully leveraged iPSCs-derived cardiomyocytes to study malignant arrhythmogenic diseases. These models promise to increase our understanding of the pathophysiology underlying these complex diseases and may identify personalized approaches to treatment.
Collapse
Affiliation(s)
- Wenbin Liang
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada.,b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada
| | - Lilit Gasparyan
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada
| | - Wael AlQarawi
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada
| | - Darryl R Davis
- a Division of Cardiology, Department of Medicine , University of Ottawa Heart Institute , Ottawa , Canada.,b Department of Cellular and Molecular Medicine , University of Ottawa , Ottawa , Canada
| |
Collapse
|
16
|
Pott A, Bock S, Berger IM, Frese K, Dahme T, Keßler M, Rinné S, Decher N, Just S, Rottbauer W. Mutation of the Na +/K +-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish. J Mol Cell Cardiol 2018; 120:42-52. [PMID: 29750993 DOI: 10.1016/j.yjmcc.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 02/01/2023]
Abstract
The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na+/K+-ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na+/K+-ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na+/K+-ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na+/K+-ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na+/K+-ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization.
Collapse
Affiliation(s)
- Alexander Pott
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Sarah Bock
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Karen Frese
- Department of Internal Medicine III, Heidelberg University Medical Center, Heidelberg, Germany
| | - Tillman Dahme
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Mirjam Keßler
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
17
|
Dieks JK, Klehs S, Müller MJ, Paul T, Krause U. Adjunctive ivabradine in combination with amiodarone: A novel therapy for pediatric congenital junctional ectopic tachycardia. Heart Rhythm 2016; 13:1297-302. [DOI: 10.1016/j.hrthm.2016.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 10/21/2022]
|
18
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
19
|
Baruscotti M, Bianco E, Bucchi A, DiFrancesco D. Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: role of the If "funny" current. J Interv Card Electrophysiol 2016; 46:19-28. [PMID: 26781742 DOI: 10.1007/s10840-015-0097-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Together with the afferent branches of the autonomic nervous system, the sinoatrial node (SAN) forms a functional unit whose function is to fire rhythmic action potentials at a rate optimal for coping with the metabolic needs of the body. Dysfunctional behavior of this complex unit may thus result in SAN rhythm disorders. Among these disorders, there is the inappropriate sinus tachycardia (IST) which occurs when an unjustified fast SAN rate is present. METHODS We here present a critical review of the role of pacemaker f/HCN channels in cardiac rhythm generation and modulation and their involvement in IST. RESULTS Recent evidence demonstrates that a familial form of IST is associated with a gain-of-function mutation in the HCN4 pacemaker channel (R524Q) which confers an increased sensitivity to the second messenger cAMP, a key mediator in sympathetic modulation. CONCLUSIONS This finding is consistent with the general view that hypersympathetic tone is one of the causes of IST and introduces the novel concept of defective funny channel-dependent tachyarrhythmias.
Collapse
Affiliation(s)
- Mirko Baruscotti
- Department of Biosciences, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, via Celoria 26, 20133, Milano, Italy.
| | - Elisabetta Bianco
- Cardiovascular Department, "Ospedali Riuniti di Trieste", University Hospital, Trieste, Italy
| | - Annalisa Bucchi
- Department of Biosciences, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, via Celoria 26, 20133, Milano, Italy
| | - Dario DiFrancesco
- Department of Biosciences, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata, University of Milano, via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
20
|
An M, Kim M. Protective effects of kaempferol against cardiac sinus node dysfunction via CaMKII deoxidization. Anat Cell Biol 2015; 48:235-43. [PMID: 26770873 PMCID: PMC4701696 DOI: 10.5115/acb.2015.48.4.235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 11/27/2022] Open
Abstract
Kaempferol exerts cardioprotective actions through incompletely understood mechanisms. This study investigated the molecular mechanisms underlying the cardioprotective effects of kaempferol in sinus node dysfunction (SND) heart. Here, we demonstrate that angiotensin II (Ang II) infusion causes SND through oxidized calmodulin kinase II (CaMKII). In contrast to this, kaempferol protects sinus node against Ang II-induced SND. Ang II evoked apoptosis with caspase-3 activation in sinus nodal cells. However, kaempferol lowered the CaMKII oxidization and the sinus nodal cell death. To block the CaMKII oxidization, gene of p47phox, a cytosolic subunit of NADPH oxidase, was deleted using Cas9 KO plasmid. In the absence of p47phox, sinus nodal cells were highly resistance to Ang II-induced apoptosis, suggesting that oxidized-CaMKII contributed to sinus nodal cell death. In Langendorff heart from Ang II infused mice, kaempferol preserved normal impulse formation at right atrium. These data suggested that kaempferol protects sinus node via inhibition of CaMKII oxidization and may be useful for preventing SND in high risk patients.
Collapse
Affiliation(s)
- Minae An
- Department of Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Minsuk Kim
- Department of Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D, Severi S. Cell-specific Dynamic Clamp analysis of the role of funny If current in cardiac pacemaking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:50-66. [PMID: 26718599 DOI: 10.1016/j.pbiomolbio.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
Abstract
We used the Dynamic Clamp technique for i) comparative validation of conflicting computational models of the hyperpolarization-activated funny current, If, and ii) quantification of the role of If in mediating autonomic modulation of heart rate. Experimental protocols based on the injection of a real-time recalculated synthetic If current in sinoatrial rabbit cells were developed. Preliminary results of experiments mimicking the autonomic modulation of If demonstrated the need for a customization procedure to compensate for cellular heterogeneity. For this reason, we used a cell-specific approach, scaling the maximal conductance of the injected current based on the cell's spontaneous firing rate. The pacemaking rate, which was significantly reduced after application of Ivabradine, was restored by the injection of synthetic current based on the Severi-DiFrancesco formulation, while the injection of synthetic current based on the Maltsev-Lakatta formulation did not produce any significant variation. A positive virtual shift of the If activation curve, mimicking the Isoprenaline effects, led to a significant increase in pacemaking rate (+17.3 ± 6.7%, p < 0.01), although of lower magnitude than that induced by real Isoprenaline (+45.0 ± 26.1%). Similarly, a negative virtual shift of the activation curve significantly lowered the pacemaking rate (-11.8 ± 1.9%, p < 0.001), as did the application of real Acetylcholine (-20.5 ± 5.1%). The Dynamic Clamp approach, applied to the If study in cardiomyocytes for the first time and rate-adapted to manage intercellular variability, indicated that: i) the quantitative description of the If current in the Severi-DiFrancesco model accurately reproduces the effects of the real current on rabbit sinoatrial cell pacemaking rate and ii) a significant portion (50-60%) of the physiological autonomic rate modulation is due to the shift of the If activation curve.
Collapse
Affiliation(s)
- E Ravagli
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - A Bucchi
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - C Bartolucci
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - M Paina
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - M Baruscotti
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - D DiFrancesco
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - S Severi
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy.
| |
Collapse
|