1
|
Huang H. Exploration of the relationships between immune cells, metabolic mediators, and atrial fibrillation: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41348. [PMID: 40101056 PMCID: PMC11922402 DOI: 10.1097/md.0000000000041348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025] Open
Abstract
Studies have shown a close correlation among immune cells, plasma metabolites, and atrial fibrillation (AF). However, it is not clear if this association is related, which we used Mendelian randomization (MR) to investigate. We analyzed the association between immune cells, plasma metabolites, and AF by using summarized data from genome-wide association studies. Among them, we explored the associations between immune cells and AF by using bidirectional MR analysis. Combined with mediation analysis and multivariable MR, we further identified potential mediating plasmic metabolites. Results shows that causal relationships between 8 immune cell phenotypes and AF were identified with all 8 exhibiting reverse causality. Furthermore, 22 plasma metabolites have a causal relationship with AF. In addition, 2 immune cell phenotypes including CD25 on IgD + CD38dim and CX3CR1 on CD14 + CD16-monocyte, which were found to have causal relationships with 4 plasma metabolites, including 4-acetamidobutanoate levels, Octadecanedioylcarnitine (C18-DC) levels, Linolenate [alpha or gamma; (18:3n3 or 6)] levels, and N-acetyl-aspartyl-glutamate levels, which might be mediators. Ultimately, only 4-acetamidobutanoate levels, CD25 on IgD + CD38dim, and AF did appear to function as mediators (P-value = .030 < .05). In conclusion, immune cells and plasma metabolites are causally associated with AF. We have identified that 4-acetamidobutanoate levels appear to mediate the pathway linking CD25 on IgD + CD38dim to AF. This finding provides a new perspective for the early prevention and diagnosis of preatrial AF.
Collapse
Affiliation(s)
- Hongliang Huang
- Affiliated Hospital of Jinggangshan University, Ji’an, Jiangxi, China
| |
Collapse
|
2
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
3
|
Xing Y, Yan L, Li X, Xu Z, Wu X, Gao H, Chen Y, Ma X, Liu J, Zhang J. The relationship between atrial fibrillation and NLRP3 inflammasome: a gut microbiota perspective. Front Immunol 2023; 14:1273524. [PMID: 38077349 PMCID: PMC10703043 DOI: 10.3389/fimmu.2023.1273524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Atrial fibrillation (AF) is a common clinical arrhythmia whose pathogenesis has not been fully elucidated, and the inflammatory response plays an important role in the development of AF. The inflammasome is an important component of innate immunity and is involved in a variety of pathophysiologic processes. The NLRP3 inflammasome is by far the best studied and validated inflammasome that recognizes multiple pathogens through pattern recognition receptors of innate immunity and mediates inflammatory responses through activation of Caspase-1. Several studies have shown that NLRP3 inflammasome activation contributes to the onset and development of AF. Ecological dysregulation of the gut microbiota has been associated with the development of AF, and some evidence suggests that gut microbiota components, functional byproducts, or metabolites may induce or exacerbate the development of AF by directly or indirectly modulating the NLRP3 inflammasome. In this review, we report on the interconnection of NLRP3 inflammasomes and gut microbiota and whether this association is related to the onset and persistence of AF. We discuss the potential value of pharmacological and dietary induction in the management of AF in the context of the association between the NLRP3 inflammasome and gut microbiota. It is hoped that this review will lead to new therapeutic targets for the future management of AF.
Collapse
Affiliation(s)
- Yaxuan Xing
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longmei Yan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhijie Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianyu Wu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Huirong Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yiduo Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojuan Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiangang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingchun Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zuo K, Fang C, Gao Y, Fu Y, Wang H, Li J, Zhong J, Yang X, Xu L. Suppression of the gut microbiota-bile acid-FGF19 axis in patients with atrial fibrillation. Cell Prolif 2023; 56:e13488. [PMID: 37186335 PMCID: PMC10623955 DOI: 10.1111/cpr.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to investigate the role of the gut microbiota (GM)-bile acid (BA)-fibroblast growth factor (FGF) 19 axis in patients with atrial fibrillation (AF). Gut bacterial metabolisms of BAs were determined in an AF metagenomic dataset. The composition of faecal BAs pools was characterized by targeted metabolomics in an independent AF cross-sectional cohort. Circulating levels of FGF19 were measured by ELISA. In vitro cell experiments were conducted to validate the regulatory role of FGF19 in atrial cardiomyocytes stimulated with palmitic acid. First, metagenomic profiling revealed that gut microbial biotransformation from primary to secondary BAs was dysregulated in AF patients. Second, the proportion of secondary BAs decreased in the faeces of patients with AF. Also, eight BAs were identified as AF-associated BAs, including seven AF-enriched BAs (ursodeoxycholic acid, chenodeoxycholic acid, etc.), and AF-decreased dehydrolithocholic acid. Third, reduced levels of circulating FGF19 were observed in patients with AF. Subsequently, FGF19 was found to protect against palmitic acid-induced lipid accumulation and dysregulated signalling in atrial cardiomyocytes, including attenuated phosphorylation of YAP and Ca2+ /calmodulin-dependent protein kinases II and secretion of interleukin-1β, mediated via peroxisome proliferator-activated receptor α. Our data found decreased levels of secondary BAs and circulating FGF19, resulting in the impaired protective function of FGF19 against lipid accumulation in atrial cardiomyocytes.
Collapse
Affiliation(s)
- Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Chen Fang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yuanfeng Gao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yuan Fu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Hongjiang Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jiuchang Zhong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Li Xu
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Mao M, Zhai C, Qian G. Gut microbiome relationship with arrhythmias and conduction blocks: A two-sample Mendelian randomization study. J Electrocardiol 2023; 80:155-161. [PMID: 37422943 DOI: 10.1016/j.jelectrocard.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
INTRODUCTION Past research based on observations has suggested that the gut microbiome (GM) could play a role in developing arrhythmias and conduction blocks. Nonetheless, the nature of this association remains uncertain due to the potential for reverse causation and confounding factors in observational research. The aim of this investigation is to elucidate the causal relationship between GM and the development of arrhythmias as well as conduction blocks. METHODS This study collected summary statistics regarding GM, arrhythmias, and conduction blocks. Two-sample Mendelian randomization (MR) analysis was carried out employing various methods, with inverse variance weighted being the primary approach, followed by weighted median, simple mode, MR-Egger, and MR-PRESSO. Moreover, the MR findings were corroborated through multiple sensitivity analyses. RESULTS Among them, for atrial fibrillation and flutter (AF), phylum_Actinobacteria and genus_RuminococcaceaeUCG004 demonstrated a negative correlation, while order_Pasteurellales, family_Pasteurellaceae, and genus_Turicibacter were associated with an increased risk. In the case of paroxysmal tachycardia (PT), genus_Holdemania and genus_Roseburia were found to reduce risk. For atrioventricular block (AVB), order_Bifidobacteriales, family_Bifidobacteriaceae, and genus_Alistipes exhibited a negative correlation, whereas genus_CandidatusSoleaferrea showed a positive correlation. Concerning the left bundle-branch block (LBBB), family_Peptococcaceae appeared to decrease the risk, while genus_Flavonifractor was linked to an increased risk. Lastly, no causative GM was identified in the right bundle-branch block (RBBB) context. CONCLUSION We have uncovered potential causal links between some GM, arrhythmias, and conduction blocks. This insight may aid in designing microbiome-based interventions for these conditions and their risk factors in future trials. Additionally, it could facilitate the discovery of novel biomarkers for targeted prevention strategies.
Collapse
Affiliation(s)
- MengHui Mao
- Bengbu Medical College, 2600 Donghai Ave, Longzihu, Bengbu, Anhui, China; First Hospital of Jiaxing, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, China
| | - ChangLin Zhai
- First Hospital of Jiaxing, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, China
| | - Gang Qian
- Bengbu Medical College, 2600 Donghai Ave, Longzihu, Bengbu, Anhui, China; First Hospital of Jiaxing, No. 1882, Zhonghuan South Road, Nanhu District, Jiaxing City, Zhejiang Province, China.
| |
Collapse
|
6
|
Fan H, Liu X, Ren Z, Fei X, Luo J, Yang X, Xue Y, Zhang F, Liang B. Gut microbiota and cardiac arrhythmia. Front Cell Infect Microbiol 2023; 13:1147687. [PMID: 37180433 PMCID: PMC10167053 DOI: 10.3389/fcimb.2023.1147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
One of the most prevalent cardiac diseases is cardiac arrhythmia, however the underlying causes are not entirely understood. There is a lot of proof that gut microbiota (GM) and its metabolites have a significant impact on cardiovascular health. In recent decades, intricate impacts of GM on cardiac arrythmia have been identified as prospective approaches for its prevention, development, treatment, and prognosis. In this review, we discuss about how GM and its metabolites might impact cardiac arrhythmia through a variety of mechanisms. We proposed to explore the relationship between the metabolites produced by GM dysbiosis including short-chain fatty acids(SCFA), Indoxyl sulfate(IS), trimethylamine N-oxide(TMAO), lipopolysaccharides(LPS), phenylacetylglutamine(PAGln), bile acids(BA), and the currently recognized mechanisms of cardiac arrhythmias including structural remodeling, electrophysiological remodeling, abnormal nervous system regulation and other disease associated with cardiac arrythmia, detailing the processes involving immune regulation, inflammation, and different types of programmed cell death etc., which presents a key aspect of the microbial-host cross-talk. In addition, how GM and its metabolites differ and change in atrial arrhythmias and ventricular arrhythmias populations compared with healthy people are also summarized. Then we introduced potential therapeutic strategies including probiotics and prebiotics, fecal microbiota transplantation (FMT) and immunomodulator etc. In conclusion, the GM has a significant impact on cardiac arrhythmia through a variety of mechanisms, offering a wide range of possible treatment options. The discovery of therapeutic interventions that reduce the risk of cardiac arrhythmia by altering GM and metabolites is a real challenge that lies ahead.
Collapse
Affiliation(s)
- Hongxuan Fan
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuchang Liu
- Department of Urology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyu Ren
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoning Fei
- Clinical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Luo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyu Yang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaya Xue
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fenfang Zhang
- Department of Cardiology, Yangquan First People’s Hospital, Yangquan, Shanxi, China
| | - Bin Liang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Al-Kaisey AM, Figgett W, Hawson J, Mackay F, Joseph SA, Kalman JM. Gut Microbiota and Atrial Fibrillation: Pathogenesis, Mechanisms and Therapies. Arrhythm Electrophysiol Rev 2023; 12:e14. [PMID: 37427301 PMCID: PMC10326663 DOI: 10.15420/aer.2022.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/23/2023] [Indexed: 07/11/2023] Open
Abstract
Over the past decade there has been an interest in understanding the role of gut microbiota in the pathogenesis of AF. A number of studies have linked the gut microbiota to the occurrence of traditional AF risk factors such as hypertension and obesity. However, it remains unclear whether gut dysbiosis has a direct effect on arrhythmogenesis in AF. This article describes the current understanding of the effect of gut dysbiosis and associated metabolites on AF. In addition, current therapeutic strategies and future directions are discussed.
Collapse
Affiliation(s)
- Ahmed M Al-Kaisey
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - William Figgett
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Joshua Hawson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fabienne Mackay
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Stephen A Joseph
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Cardiology, Western Health, Melbourne, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
8
|
Gawałko M, Agbaedeng TA, Saljic A, Müller DN, Wilck N, Schnabel R, Penders J, Rienstra M, van Gelder I, Jespersen T, Schotten U, Crijns HJGM, Kalman JM, Sanders P, Nattel S, Dobrev D, Linz D. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res 2022; 118:2415-2427. [PMID: 34550344 PMCID: PMC9400433 DOI: 10.1093/cvr/cvab292] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Recent preclinical and observational cohort studies have implicated imbalances in gut microbiota composition as a contributor to atrial fibrillation (AF). The gut microbiota is a complex and dynamic ecosystem containing trillions of microorganisms, which produces bioactive metabolites influencing host health and disease development. In addition to host-specific determinants, lifestyle-related factors such as diet and drugs are important determinants of the gut microbiota composition. In this review, we discuss the evidence suggesting a potential bidirectional association between AF and gut microbiota, identifying gut microbiota-derived metabolites as possible regulators of the AF substrate. We summarize the effect of gut microbiota on the development and progression of AF risk factors, including heart failure, hypertension, obesity, and coronary artery disease. We also discuss the potential anti-arrhythmic effects of pharmacological and diet-induced modifications of gut microbiota composition, which may modulate and prevent the progression to AF. Finally, we highlight important gaps in knowledge and areas requiring future investigation. Although data supporting a direct relationship between gut microbiota and AF are very limited at the present time, emerging preclinical and clinical research dealing with mechanistic interactions between gut microbiota and AF is important as it may lead to new insights into AF pathophysiology and the discovery of novel therapeutic targets for AF.
Collapse
Affiliation(s)
- Monika Gawałko
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
- Institute of Pharmacology, West German Heart and Vascular Centre, University Duisburg-Essen, Duisburg, Germany
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Agbaedeng
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Arnela Saljic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dominik N Müller
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Max Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Max Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Medizinische Klinik mit Schwerpunkt Nephrologie und Internistische Intensivmedizin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Renate Schnabel
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - John Penders
- Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel Rienstra
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Isabelle van Gelder
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| | - Stanley Nattel
- Department of Pharmacology, Medicine and Research Centre, Montréal Heart Institute, University de Montréal, McGill University, Montréal, QC, Canada
- IHU LIRYC and Fondation Bordeaux Université, Bordeaux, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Centre, University Duisburg-Essen, Duisburg, Germany
- Department of Pharmacology, Medicine and Research Centre, Montréal Heart Institute, University de Montréal, McGill University, Montréal, QC, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Lu D, Zou X, Zhang H. The Relationship Between Atrial Fibrillation and Intestinal Flora With Its Metabolites. Front Cardiovasc Med 2022; 9:948755. [PMID: 35845042 PMCID: PMC9283774 DOI: 10.3389/fcvm.2022.948755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF) is characterized by high morbidity and disability rate. The incidence of AF has rapidly increased due to increased aging population, causing a serious burden on society and patients. Therefore, it is necessary to determine the prevention and treatment of AF. Several studies have assessed the occurrence, development mechanism, and intervention measures of AF. The human gut has several non-pathogenic microorganisms forming the gut flora. The human gut microbiota plays a crucial role in the construction and operation of the metabolic system and immune system. Emerging clinical studies and basic experiments have confirmed that intestinal flora and its metabolites have a role in some metabolic disorders and chronic inflammatory diseases. Moreover, the gut microbiota has a role in cardiovascular diseases, such as hypertension and heart failure. However, the relationship between AF and gut microbiota is unclear. This review summarizes the relevant literature on the relationship between AF and intestinal flora with its metabolites, including Trimethylamine N-Oxide, short-chain fatty acids, lipopolysaccharide and bile acids. Therefore, this review may enhance further development of related research.
Collapse
Affiliation(s)
- Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
- *Correspondence: Dasheng Lu
| | - Xinyue Zou
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
- Hongxiang Zhang
| |
Collapse
|
10
|
Papadopoulos PD, Tsigalou C, Valsamaki PN, Konstantinidis TG, Voidarou C, Bezirtzoglou E. The Emerging Role of the Gut Microbiome in Cardiovascular Disease: Current Knowledge and Perspectives. Biomedicines 2022; 10:biomedicines10050948. [PMID: 35625685 PMCID: PMC9139035 DOI: 10.3390/biomedicines10050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The collection of normally non-pathogenic microorganisms that mainly inhabit our gut lumen shapes our health in many ways. Structural and functional perturbations in the gut microbial pool, known as “dysbiosis”, have been proven to play a vital role in the pathophysiology of several diseases, including cardiovascular disease (CVD). Although therapeutic regimes are available to treat this group of diseases, they have long been the main cause of mortality and morbidity worldwide. While age, sex, genetics, diet, tobacco use, and alcohol consumption are major contributors (World Health Organization, 2018), they cannot explain all of the consequences of CVD. In addition to the abovementioned traditional risk factors, the constant search for novel preventative and curative tools has shed light on the involvement of gut bacteria and their metabolites in the pathogenesis of CVD. In this narrative review, we will discuss the established interconnections between the gut microbiota and CVD, as well as the plausible therapeutic perspectives.
Collapse
Affiliation(s)
- Panagiotis D. Papadopoulos
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
| | - Christina Tsigalou
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Pipitsa N. Valsamaki
- Nuclear Medicine Department, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | | | | | - Eugenia Bezirtzoglou
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
11
|
Exosomes from Bone Marrow Mesenchymal Stem Cells with Overexpressed Nrf2 Inhibit Cardiac Fibrosis in Rats with Atrial Fibrillation. Cardiovasc Ther 2022; 2022:2687807. [PMID: 35360547 PMCID: PMC8941574 DOI: 10.1155/2022/2687807] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022] Open
Abstract
Background Even though nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling has been associated with the pathogenesis of multiple heart conditions, data on roles of Nrf2 within atrial fibrillation (AF) still remain scant. The present investigation had the aim of analyzing Nrf2-overexpressing role/s upon bone mesenchymal stem cell- (BMSC-) derived exosomes in rats with AF. Methods Exosomes were collected from control or Nrf2 lentivirus-transduced BMSCs and then injected into rats with AF through the tail vein. AF duration was observed using electrocardiography. Immunohistochemical staining was then employed for assessing Nrf2, HO-1, α-SMA, collagen I, or TGF-β1 expression profiles within atrial myocardium tissues. Conversely, Masson staining was utilized to evaluate atrial fibrosis whereas apoptosis within myocardia was evaluated through TUNEL assays. In addition, TNF-α, IL-1β, IL-4, or IL-10 serum expression was assessed through ELISA. Results Results of the current study showed significant downregulation of Nrf2/HO-1 within AF rat myocardia. It was found that injection of the control or Lv-Nrf2 exosomes significantly alleviated and lowered AF timespans together with reducing cardiomyocyte apoptosis. Moreover, injection of Lv-Nrf2 exosomes essentially lowered AF-driven atrial fibrosis and also inhibited inflammatory responses in the rats with AF. Conclusion Delivery of BMSC-derived exosomes using overexpressed Nrf2 inhibited AF-induced arrhythmias, myocardial fibrosis, apoptosis, and inflammation via Nrf2/HO-1 pathway triggering.
Collapse
|
12
|
Clinical Nomogram to Predict Major Adverse Cardiac Events in Acute Myocardial Infarction Patients within 1 Year of Percutaneous Coronary Intervention. Cardiovasc Ther 2022; 2021:3758320. [PMID: 34987604 PMCID: PMC8687843 DOI: 10.1155/2021/3758320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to summarize the clinical characteristics and risk factors of major adverse cardiovascular events (MACEs) in patients who had had acute myocardial infarction (AMI) within 1 year of percutaneous coronary intervention (PCI). A total of 421 AMI patients who were treated with PCI and experienced MACEs within 1 year of their admission were included in this retrospective study. In addition, patients were matched for age, sex, and presentation with 561 patients after AMI who had not had MACEs. The clinical characteristics and risk factors for MACEs within 1 year in AMI patients were investigated, to develop a nomogram for MACEs based on univariate and multivariate analyses. The C statistic was used to assess the discriminative performance of the nomogram. In addition, calibration curve and decision curve analyses were conducted to validate the calibration performance and utility, respectively, of the nomogram. After univariate and multivariate analyses, a nomogram was constructed based on age (odds ratio (OR): 1.030; 95% confidence interval (CI): 1.014–1.047), diabetes mellitus (OR: 1.667; 95% CI: 1.151–2.415), low-density lipoprotein cholesterol (OR: 1.332; 95% CI: 1.134–1.565), uric acid (OR: 1.003; 95% CI: 1.001–1.005), lipoprotein (a) (OR: 1.003; 95% CI: 1.002–1.003), left ventricular ejection fraction (OR: 0.929; 95% CI: 0.905–0.954), Syntax score (OR: 1.075; 95% CI: 1.053–1.097), and hypersensitive troponin T (OR: 1.002; 95% CI: 1.002–1.003). The C statistic was 0.814. The calibration curve showed good concordance of the nomogram, while decision curve analysis demonstrated satisfactory positive net benefits. We developed a convenient, practical, and effective prediction model for predicting MACEs in AMI patients within 1 year of PCI. To ensure generalizability, this model requires external validation.
Collapse
|
13
|
Linz D, Gawałko M, Sanders P, Penders J, Li N, Nattel S, Dobrev D. Does gut microbiota affect atrial rhythm? Causalities and speculations. Eur Heart J 2021; 42:3521-3525. [PMID: 34338744 DOI: 10.1093/eurheartj/ehab467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/11/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary intake has been shown to change the composition of gut microbiota and some changes in microbiota (dysbiosis) have been linked to diabetes, hypertension, and obesity, which are established risk factors for atrial fibrillation (AF). In addition, intestinal dysbiosis generates microbiota-derived bioactive metabolites that might exert proarrhythmic actions. Although emerging preclinical investigations and clinical observational cohort studies suggest a possible role of gut dysbiosis in AF promotion, the exact mechanisms through which dysbiosis contributes to AF remain unclear. This Viewpoint article briefly reviews evidence suggesting that abnormalities in the intestinal microbiota play an important and little-recognized role in the pathophysiology of AF and that an improved understanding of this role may open up new possibilities in the management of AF.
Collapse
Affiliation(s)
- Dominik Linz
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital and University of Adelaide, 1 Port Road, SA 5000 Adelaide, Australia
- Department of Cardiology, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Monika Gawałko
- Department of Cardiology, Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-197 Warsaw, Poland
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, Essen 45147,Germany
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, Royal Adelaide Hospital and University of Adelaide, 1 Port Road, SA 5000 Adelaide, Australia
| | - John Penders
- Department of Medical Microbiology, Care and Public Health Research Institute (Caphri) and School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Stanley Nattel
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, Essen 45147,Germany
- Montréal Heart Institute and University de Montréal, Medicine and Research Center and Department of Pharmacology McGill University, 3655 Promenade Sir William Osler, Montreal QC, H3G 1Y6, Canada
- IHU LIRYC and Fondation Bordeaux Université Bordeaux, , Avenue du Haut Lévêque, 33600 Pessac, Bordeaux, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstraße 55, Essen 45147,Germany
- Montréal Heart Institute and University de Montréal, Medicine and Research Center and Department of Pharmacology McGill University, 3655 Promenade Sir William Osler, Montreal QC, H3G 1Y6, Canada
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
14
|
Abstract
Atrial fibrillation has been identified to be associated with disordered gut microbiota. Notably, atrial fibrillation is a progressive disease and could be categorized as paroxysmal and persistent based on the duration of the episodes. The persistent atrial fibrillation patients are accompanied by higher risk of stroke and lower success rate of rhythm control. However, the microbial signatures of different categories of atrial fibrillation patients remain unknown. We sought to determine whether disordered gut microbiota occurs in the self-terminating PAF or intestinal flora develops dynamically during atrial fibrillation progression. We found that different types of atrial fibrillation show a limited degree of gut microbiota shift. Gut microbiota dysbiosis has already occurred in mild stages of atrial fibrillation, which might act as an early modulator of disease, and therefore may be regarded as a potential target to postpone atrial fibrillation progression. Dysbiotic gut microbiota (GM) and disordered metabolic patterns are known to be involved in the clinical expression of atrial fibrillation (AF). However, little evidence has been reported in characterizing the specific changes in fecal microbiota in paroxysmal AF (PAF) and persistent AF (psAF). To provide a comprehensive understanding of GM dysbiosis in AF types, we assessed the GM signatures of 30 PAF patients, 20 psAF patients, and 50 non-AF controls based on metagenomic and metabolomic analyses. Compared with control subjects, similar changes of GM were identified in PAF and psAF patients, with elevated microbial diversity and similar alteration in the microbiota composition. PAF and psAF patients shared the majority of differential taxa compared with non-AF controls. Moreover, the similarity was also illuminated in microbial function and associated metabolic alterations. Additionally, minor disparity was observed in PAF compared with psAF. Several distinctive taxa between PAF and psAF were correlated with certain metabolites and atrial diameter, which might play a role in the pathogenesis of atrial remodeling. Our findings characterized the presence of many common features in GM shared by PAF and psAF, which occurred at the self-terminating PAF. Preventative and therapeutic measures targeting GM for early intervention to postpone the progression of AF are highly warranted. IMPORTANCE Atrial fibrillation has been identified to be associated with disordered gut microbiota. Notably, atrial fibrillation is a progressive disease and could be categorized as paroxysmal and persistent based on the duration of the episodes. The persistent atrial fibrillation patients are accompanied by higher risk of stroke and lower success rate of rhythm control. However, the microbial signatures of different categories of atrial fibrillation patients remain unknown. We sought to determine whether disordered gut microbiota occurs in the self-terminating PAF or intestinal flora develops dynamically during atrial fibrillation progression. We found that different types of atrial fibrillation show a limited degree of gut microbiota shift. Gut microbiota dysbiosis has already occurred in mild stages of atrial fibrillation, which might act as an early modulator of disease, and therefore may be regarded as a potential target to postpone atrial fibrillation progression.
Collapse
|