1
|
Quality by design (QbD) assisted Fabrication & evaluation of Simvastatin loaded Nano-Enabled thermogel for melanoma therapy. Int J Pharm 2022; 628:122270. [DOI: 10.1016/j.ijpharm.2022.122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
2
|
Effect of carboxylic acid and cyanoacrylic acid as anchoring groups on Coumarin 6 dye for dye-sensitized solar cells: DFT and TD-DFT study. Struct Chem 2022. [DOI: 10.1007/s11224-022-01957-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractStarting with Coumarin-6 dye, two novel D-π-A organic dyes C6X and C6N have been designed by attaching carboxylic acid and cyanoacrylic acid groups as anchoring groups to Coumarn-6 dye, respectively, to understand their potential use in dye-sensitized solar cells (DSSCs). The electronic structure and photophysical and photovoltaic properties of the novel designed dyes were studied using density functional theory DFT and time-dependent density functional theory TD-DFT with the Becke3-Parameter-Lee–Yang–Parr (B3LYP) functional and the 6-31G (d, p) basis set. Optimized structure and electronic properties (highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital (ELUMO), and energy difference (Eg) between HOMO and LUMO) were calculated showing that C6N has the smallest band gap with the larger absorption region. Density of states (DOS), molecular electrostatic potential (MEP), natural bond orbital (NBO) analysis, non-linear optical (NLO) properties, UV–vis spectra, as well as some crucial parameters affecting the photovoltaic performance of DSSCs, such as light-harvesting efficiency (LHE), electron injection driving force (ΔGinject), dye regeneration driving force(ΔGreg), and the excited state life time(τe), were calculated to study the effect of the anchoring group on the DSSC performance. Additionally, the adsorption of C6X and C6N dyes on the TiO2 anatase (101) surface and the mechanism of electron injection were also investigated using a dye–(TiO2)9 cluster model using TD-B3LYP calculation. The calculated adsorption energies of the dyes suggest a strong adsorption of dyes to a TiO2 surface. The results show that C6N may be theoretically a good candidate as sensitizer of DSSC application.
Collapse
|
3
|
Fluorescently Labeled PLGA Nanoparticles for Visualization In Vitro and In Vivo: The Importance of Dye Properties. Pharmaceutics 2021; 13:pharmaceutics13081145. [PMID: 34452106 PMCID: PMC8399891 DOI: 10.3390/pharmaceutics13081145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Fluorescently labeled nanoparticles are widely used for evaluating their distribution in the biological environment. However, dye leakage can lead to misinterpretations of the nanoparticles' biodistribution. To better understand the interactions of dyes and nanoparticles and their biological environment, we explored PLGA nanoparticles labeled with four widely used dyes encapsulated (coumarin 6, rhodamine 123, DiI) or bound covalently to the polymer (Cy5.5.). The DiI label was stable in both aqueous and lipophilic environments, whereas the quick release of coumarin 6 was observed in model media containing albumin (42%) or liposomes (62%), which could be explained by the different affinity of these dyes to the polymer and lipophilic structures and which we also confirmed by computational modeling (log PDPPC/PLGA: DiI-2.3, Cou6-0.7). The importance of these factors was demonstrated by in vivo neuroimaging (ICON) of the rat retina using double-labeled Cy5.5/Cou6-nanoparticles: encapsulated Cou6 quickly leaked into the tissue, whereas the stably bound Cy.5.5 label remained associated with the vessels. This observation is a good example of the possible misinterpretation of imaging results because the coumarin 6 distribution creates the impression that nanoparticles effectively crossed the blood-retina barrier, whereas in fact no signal from the core material was found beyond the blood vessels.
Collapse
|
4
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
5
|
Chen KL, Liu HT, Yu JH, Tung YH, Chou YS, Yang CC, Wang JS, Shen JL, Chiu KC. Characterization of coumarin-6 polycrystalline films growth from vacuum deposition at various substrate temperatures. Sci Rep 2018; 8:16740. [PMID: 30425267 PMCID: PMC6233150 DOI: 10.1038/s41598-018-34813-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/26/2018] [Indexed: 12/02/2022] Open
Abstract
Coumarin-6 polycrystalline films were fabricated from vacuum deposition at various substrate temperatures Tsub from 106 to 178 °C with a fixed source temperature of 185 °C. Because of its slenderer and more asymmetric structure, the adhered coumarin-6 molecule on top of the growing interface encounters a larger steric energetic barrier of 0.92 eV as estimated from the Arrhenius plot of growth rate versus 1/Tsub. From top-view SEM pictures, the as-deposited coumarin-6 thin films exhibit a twisted pattern and a kinematic roughness for Tsub < 150 °C; while clear facets emerge for Tsub ≥ 150 °C due to the increase of surface diffusion energy of the adhered molecules. From XRD analysis, besides the confirmation of the triclinic structure two anomalous peaks observed at 2θ ~ 9.007° and 7.260° are explained due to the co-existence of N- and S-coumarin-6-isomers within the crystalline grains. Furthermore, for coumarin-6 polycrystalline films deposited at Tsub = 150 °C with high crystallinity of the constituent grains, the bandgap determined from optical transmission is around 2.392 eV; and from photoluminescence spectra, the fitted four emission components are assigned to the Frenkel and charge transfer excitons recombination with participation of molecular vibrational states.
Collapse
Affiliation(s)
- Ko-Lun Chen
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Hui-Ting Liu
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Jang-Hung Yu
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Yung-Hsiang Tung
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Yun-Syuan Chou
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Chun-Chuen Yang
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Jyh-Shyang Wang
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Ji-Lin Shen
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan
| | - Kuan-Cheng Chiu
- Department of Physics and Center for Nanotechnology, Chung Yuan Christian University, Chungli District, Taoyuan City, 32023, Taiwan.
| |
Collapse
|
6
|
DiScenza DJ, Smith MA, Intravaia LE, Levine M. Efficient Detection of Phthalate Esters in Human Saliva via Fluorescence Spectroscopy. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1471086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dana J. DiScenza
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Melissa A. Smith
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
7
|
Nilewski LG, Singh M, Baskin DS, Tour JM, Sharpe MA. Transfer of Dyes and Drugs into Cells Using EGFR-Targeted Nanosyringes. ACS Chem Neurosci 2018; 9:107-117. [PMID: 28753296 DOI: 10.1021/acschemneuro.7b00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selective targeting of drug loaded nanovectors to specific epitopes highly expressed on the surface of cancer cells is a goal for nanotechnologists. We have modified our previously described PEGylated-hydrophilic carbon clusters (PEG-HCCs) so that the epidermal growth factor receptor (EGFR) binding peptide, GE11, is attached using click chemistry at the end of each PEG. The resulting nanosyringe, PepEGFR-PEG-HCC, can be loaded with a wide range of hydrophobic drugs and dyes. We show that, both in vitro and in vivo, this payload can be delivered to cancer cells expressing EGFR. We can observe the activation of EGFR and track the normal physiological internalization and recycling/signaling pathways of this tyrosine kinase following binding of PepEGFR-PEG-HCC. We also demonstrate the competitive binding of the nanosyringe to EGFR with its normal activator, EGF, as well as observing the colocalization of the nanosyringe with clathrin, the coated pit integral protein. The internalization of the drug/dye loaded nanosyringe can be inhibited by using anti-EGFR antibodies, the drug erlotinib, or Pitstop-1, the clathrin coated pit formation specific inhibitor. To further demonstrate the specificity of the drug loaded nanovectors, we demonstrated that, in both flank and intracranial xenograft mouse models, dye delivery is highly specific to tumors and no other tissues. Finally, using nanosyringes loaded with esterase sensitive fluorescein diacetate, we demonstrated that the drug payloads can be in vivo delivered to the cytosol of cancer cells within the mouse brain.
Collapse
Affiliation(s)
| | - Melissa Singh
- Fannin Innovation Studio, 3900
Essex Lane, Suite 575, Houston, Texas 77027, United States
| | - David S. Baskin
- Kenneth
R. Peak Brain and Pituitary Tumor Center, Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas 77030, United States
| | | | - Martyn A. Sharpe
- Kenneth
R. Peak Brain and Pituitary Tumor Center, Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
8
|
Pricope G, Ursu EL, Sardaru M, Cojocaru C, Clima L, Marangoci N, Danac R, Mangalagiu II, Simionescu BC, Pinteala M, Rotaru A. Novel cyclodextrin-based pH-sensitive supramolecular host–guest assembly for staining acidic cellular organelles. Polym Chem 2018. [DOI: 10.1039/c7py01668a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel supramolecular approach for the preparation of new non-toxic systems for staining cellular organelles is described.
Collapse
|
9
|
Thipperudrappa J, Raghavendra UP, Basanagouda M. Photophysical characteristics of biologically active 4-aryloxymethyl coumarins 4PTMBC and 1IPMBC. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1475-1483. [PMID: 25459709 DOI: 10.1016/j.saa.2014.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/21/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
The absorption and fluorescence characteristics of biologically active coumarin derivatives 4-p-tolyloxymethyl-benzo[h]coumarin (4PTMBC) and 1-(4-iodo phenoxymethyl)-benzo[f]coumarin (1IPMBC) are studied at room temperature in a series of organic solvents and 1,4-dioxane - acetonitrile solvent mixture. The effect of pure solvents on the spectral properties are analyzed using Lippert-Mataga polarity function, Reichardt's microscopic solvent polarity parameter, Kamlet's and Catalan's multiple linear regression approaches. Both general solute - solvent interactions and hydrogen bonding interactions are operative in these systems. However, the contribution of hydrogen bonding interactions is less compared to general solute-solvent interactions. The solvatochromic correlations are used to estimate excited state dipole moment using experimentally determined ground state dipole moment. The bathochromic shift of the emission spectra and the increase in excited state dipole moment indicate the intramolecular charge transfer (ICT) character in the emitting singlet state. The solvation studies in 1,4-dioxane - acetonitrile solvent mixture suggest that these dyes are preferentially solvated by 1,4-dioxane.
Collapse
Affiliation(s)
- J Thipperudrappa
- Department of Physics, B.N.M. Institute of Technology, Bangalore 560 070, India.
| | - U P Raghavendra
- Department of Physics, Bangalore Institute of Technology, Bangalore 560 004, India
| | - Mahantesha Basanagouda
- P.G. Department of Studies in Chemistry, K.L.E. Society's P.C. Jabin Science College, Hubli 580 031, India
| |
Collapse
|
10
|
Cigáň M, Filo J, Stankovičová H, Gáplovský A, Putala M. Spectral properties of binaphthalene-coumarins interconnected through hydrazone linkage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 89:276-283. [PMID: 22286056 DOI: 10.1016/j.saa.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
Photophysical properties of new coumarin-3-carbaldehyde (dihydrodinaphtho[2,1-c:1',2'-e]azepin-N-yl)imines bearing dimethylamino and methoxy groups at position 7 of coumarin were investigated. Dimethylamino derivative exhibits different solvent polarity dependence of fluorescent characteristics for nonpolar, medium polar and highly polar solvents. This effect can be rationalized by diverse charge distribution in the singlet excited state due to its different stabilization by solvation in the solvents of particular group. While 2-fold higher values of Stokes shift were observed for methoxy derivative, its quantum yield of fluorescence is much lower due to high nonradiative decay rate constant of the excited state.
Collapse
Affiliation(s)
- Marek Cigáň
- Institute of Chemistry, Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, SK-84215 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|