1
|
Berková V, Berka M, Griga M, Kopecká R, Prokopová M, Luklová M, Horáček J, Smýkalová I, Čičmanec P, Novák J, Brzobohatý B, Černý M. Molecular Mechanisms Underlying Flax ( Linum usitatissimum L.) Tolerance to Cadmium: A Case Study of Proteome and Metabolome of Four Different Flax Genotypes. PLANTS (BASEL, SWITZERLAND) 2022; 11:2931. [PMID: 36365383 PMCID: PMC9655427 DOI: 10.3390/plants11212931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Cadmium is one of the most toxic heavy metal pollutants, and its accumulation in the soil is harmful to agriculture. Plants have a higher cadmium tolerance than animals, and some species can be used for phytoremediation. Flax (Linum usitatissimum L.) can accumulate high amounts of cadmium, but the molecular mechanism behind its tolerance is unknown. Here, we employed four genotypes representing two fiber cultivars, an oilseed breeding line, and a transgenic line overexpressing the metallothionein domain for improved cadmium tolerance. We analyzed the proteome of suspensions and the proteome and metabolome of seedling roots in response to cadmium. We identified more than 1400 differentially abundant proteins representing putative mechanisms in cadmium tolerance, including metal-binding proteins and transporters, enzymes of flavonoid, jasmonate, polyamine, glutathione metabolism, and HSP70 proteins. Our data indicated the role of the phytohormone cytokinin in the observed responses. The metabolome profiling found that pipecolinic acid could be a part of the cadmium accumulation mechanism, and the observed accumulation of putrescine, coumaric acid, cinnamic acid, and coutaric acid confirmed the role of polyamines and flavonoids in tolerance to cadmium. In conclusion, our data provide new insight into cadmium tolerance and prospective targets for improving cadmium tolerance in other plants.
Collapse
Affiliation(s)
- Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslav Griga
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Miroslava Prokopová
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jiří Horáček
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Iva Smýkalová
- Plant Biotechnology Department, Agritec Plant Research, Ltd., 78701 Šumperk, Czech Republic
| | - Petr Čičmanec
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
2
|
Fedenko VS, Landi M, Shemet SA. Metallophenolomics: A Novel Integrated Approach to Study Complexation of Plant Phenolics with Metal/Metalloid Ions. Int J Mol Sci 2022; 23:ijms231911370. [PMID: 36232672 PMCID: PMC9570091 DOI: 10.3390/ijms231911370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Plant adaptive strategies have been shaped during evolutionary development in the constant interaction with a plethora of environmental factors, including the presence of metals/metalloids in the environment. Among adaptive reactions against either the excess of trace elements or toxic doses of non-essential elements, their complexation with molecular endogenous ligands, including phenolics, has received increasing attention. Currently, the complexation of phenolics with metal(loid)s is a topic of intensive studies in different scientific fields. In spite of the numerous studies on their chelating capacity, the systemic analysis of phenolics as plant ligands has not been performed yet. Such a systematizing can be performed based on the modern approach of metallomics as an integral biometal science, which in turn has been differentiated into subgroups according to the nature of the bioligands. In this regard, the present review summarizes phenolics–metal(loid)s’ interactions using the metallomic approach. Experimental results on the chelating activity of representative compounds from different phenolic subgroups in vitro and in vivo are systematized. General properties of phenolic ligands and specific properties of anthocyanins are revealed. The novel concept of metallophenolomics is proposed, as a ligand-oriented subgroup of metallomics, which is an integrated approach to study phenolics–metal(loid)s’ complexations. The research subjects of metallophenolomics are outlined according to the methodology of metallomic studies, including mission-oriented biometal sciences (environmental sciences, food sciences and nutrition, medicine, cosmetology, coloration technologies, chemical sciences, material sciences, solar cell sciences). Metallophenolomics opens new prospects to unite multidisciplinary investigations of phenolic–metal(loid) interactions.
Collapse
Affiliation(s)
- Volodymyr S. Fedenko
- Research Institute of Biology, Oles Honchar Dnipro National University, 72 Gagarin Avenue, 49010 Dnipro, Ukraine
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80I-56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2216620
| | - Sergiy A. Shemet
- Ukrainian Association for Haemophilia and Haemostasis “Factor D”, Topola-3, 20/2/81, 49041 Dnipro, Ukraine
| |
Collapse
|
3
|
Lebrun M, Miard F, Drouet S, Tungmunnithum D, Morabito D, Hano C, Bourgerie S. Physiological and molecular responses of flax (Linum usitatissimum L.) cultivars under a multicontaminated technosol amended with biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53728-53745. [PMID: 34036493 DOI: 10.1007/s11356-021-14563-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Soil pollution is a worldwide issue and has a strong impact on ecosystems. Metal(loid)s have toxic effects on plants and affect various plant life traits. That is why metal(loid) polluted soils need to be remediated. As a remediation solution, phytoremediation, which uses plants to reduce the toxicity and risk of polluted soils, has been proposed. Moreover, flax (Linum usitatissimum L.) has been suggested as a potential phytoremediation plant, due to its antioxidant systems, which can lower the production of reactive oxygen species and can also chelate metal(loid)s. However, the high metal(loid) toxicity associated with the low fertility of the polluted soils render vegetation difficult to establish. Therefore, amendments, such as biochar, need to be applied to improve soil conditions and immobilize metal(loid)s. Here, we analyzed the growth parameters and oxidative stress biomarkers (ROS production, membrane lipid peroxidation, protein carbonylation and 8-oxoGuanine formation) of five different flax cultivars when grown on a real contaminated soil condition, and in the presence of a biochar amendment. Significant correlations were observed between plant growth, tolerance to oxidative stress, and reprogramming of phytochemical accumulation. A clear genotype-dependent response to metal(loid) stress was observed. It was demonstrated that some phenylpropanoids such as benzoic acid, caffeic acid, lariciresinol, and kaempferol played a key role in the tolerance to the metal(loid)-induced oxidative stress. According to these results, it appeared that some flax genotypes, i.e., Angora and Baikal, could be well adapted for the phytoremediation of metal(loid) polluted soils as a consequence of their adaptation to oxidative stress.
Collapse
Affiliation(s)
- Manhattan Lebrun
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France
- Università degli Studi del Molise, Dipartimento di Bioscienze e Territorio, 86090, Pesche, Italy
| | - Florie Miard
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France
| | - Samantha Drouet
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France
| | - Duangjai Tungmunnithum
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Domenico Morabito
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France
| | - Christophe Hano
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France
| | - Sylvain Bourgerie
- Université d'Orléans, LBLGC INRA USC1328, rue de Chartres 6759, 45067, Orléans Cedex 2, BP, France.
| |
Collapse
|
4
|
Aqeel T, Gurumallu SC, Bhaskar A, Hashimi SM, Javaraiah R. Secoisolariciresinol diglucoside protects against cadmium-induced oxidative stress-mediated renal toxicity in rats. J Trace Elem Med Biol 2020; 61:126552. [PMID: 32446210 DOI: 10.1016/j.jtemb.2020.126552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/22/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cadmium is a well known environmental pollutant and strong toxic heavy metal, that causes oxidative damage to various organs of the body, including the kidney. Cadmium (II) chloride (CdCl2) is a water-soluble crystalline form, which exhibits a higher affinity with chlorides at the target site. The current study examined the protective effects of Secoisolariciresinol diglucoside (SDG), a principal lignan extracted from flaxseeds against CdCl2-induced renal toxicity in rats. METHODS Twenty four healthy male Wistar rats with four groups of six animals each were used in the study. Group-1- Control was administered with saline. Group-2 -was treated with SDG; Group-3 with CdCl2 alone, and Group-4 were treated with CdCl2 plus SDG. The effect of Cd on kidney was assessed in terms of various parameters like lipid peroxidation, production of Nitric oxide (NO) and Myeloperoxidase (MPO), and kidney function markers like uric acid, urea, and creatinine. The levels of antioxidant molecules like glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were also measured, apart from histopathological studies. RESULTS The animals that received CdCl2, exhibited changes in the concentration of Cd in the kidney. The levels of kidney function markers like uric acid, urea, and creatinine were found to be abnormal in serum, and also there was a drastic decrease in the levels of glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. The treatment of SDG significantly decreased (p < 0.05) the levels of NO and MPO in the animals treated with CdCl2 plus SDG when compared to the animal group treated with CdCl2 alone. The treatment of SDG before CdCl2 injection exhibited significant changes in the activity of the antioxidant enzymes, which was evidenced by the restoration in their activities, when compared to CdCl2 alone treated group (p < 0.05), as observed in the results of histopathology. CONCLUSIONS The findings of the present investigation suggested that SDG exhibited anti-oxidant, anti-apoptotic and renoprotective properties. Thus, SDG may act as a supramolecular binding component and naturally occurring metal chelating agent for metal cations like Cd2+. Therefore, flaxseed lignan-SDG can be used as a therapeutic agent against nephrotoxicity caused by cadmium. However, detailed future studies are needed to know the underlying mechanism of action of SDG against the Cd and other heavy metals induced nephrotoxicity.
Collapse
Affiliation(s)
- Tareq Aqeel
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, 570005, Karnataka, India
| | | | - Ashwini Bhaskar
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, 570005, Karnataka, India
| | - Saeed Mujahid Hashimi
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 34212, Saudi Arabia
| | - Rajesh Javaraiah
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, 570005, Karnataka, India; Department of Biotechnology, Yuvaraja's College, University of Mysore, Mysuru, 570005, Karnataka, India.
| |
Collapse
|
5
|
Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, Auguin D, Hano C, Fuss E, Lainé E. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. PLANTA 2019; 249:1695-1714. [PMID: 30895445 DOI: 10.1007/s00425-019-03137-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols. They catalyze two successive reduction steps leading to the production of lariciresinol or secoisolariciresinol from pinoresinol. Two secoisolariciresinol enantiomers can be synthetized with different fates. Depending on the plant species, these enantiomers are either final products (e.g., in the flaxseed where it is stored after glycosylation) or are the starting point for the synthesis of a wide range of lignans, among which the aryltetralin type lignans are used to semisynthesize anticancer drugs such as Etoposide®. Thus, the regulation of the gene expression of PLRs as well as the possible specificities of these reductases for one reduction step or one enantiomer are key factors to fine-tune the lignan synthesis. Results published in the last decade have shed light on the presence of more than one PLR in each plant and revealed various modes of action. Nevertheless, there are not many results published on the PLRs and most of them were obtained in a limited range of species. Indeed, a number of them deal with wild and cultivated flax belonging to the genus Linum. Despite the occurrence of lignans in bryophytes, pteridophytes and monocots, data on PLRs in these taxa are still missing and indeed the whole diversity of PLRs is still unknown. This review summarizes the data, published mainly in the last decade, on the PLR gene expression, enzymatic activity and biological function.
Collapse
Affiliation(s)
| | | | | | - Samantha Drouet
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Laurent Gutierrez
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Ivan Mateljak
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | - Daniel Auguin
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | | | - Elisabeth Fuss
- Interfaculty Institute of Biochemistry, Hoppe-Seyler-St. 4, 72076, Tübingen, Germany
| | - Eric Lainé
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France.
- LBLGC, INRA USC 1328 Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny, 28000, Chartres, France.
| |
Collapse
|
6
|
Eco-Efficient Biosorbent Based on Leucaena leucocephala Residues for the Simultaneous Removal of Pb(II) and Cd(II) Ions from Water System: Sorption and Mechanism. Bioinorg Chem Appl 2019; 2019:2814047. [PMID: 30719034 PMCID: PMC6334343 DOI: 10.1155/2019/2814047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/14/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal ions from aqueous solutions. Batch test conditions were carried out to examine the effects of contact time, initial metal ion concentration, and adsorbent dosage on the biosorption process. The surface textures and the composition of the LLEP biosorbent was characterized using pH of point of zero charge (pHPZC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, respectively. Further analysis using ATR-FTIR after adsorption contact of biosorbent was also investigated. The highest Langmuir saturation monolayer adsorption capacity, q m, for the removal of Pb(II) by LLEPs was obtained as 25.51 and 21.55 mg/g in mono- and bimetal solutions, respectively. The pseudo-second-order model provided the best fit for the kinetic data obtained for the removal of Pb(II), Cd(II), and their mixture, and the k2 values depend on the adsorbent mass. This implied that the chemisorption process might be the mechanism of the solute ions-LLEPs interaction in this study. Furthermore, nearly 100% removal of lead and cadmium individually and 95% of their mixture was found using 0.9 g of LLEPs.
Collapse
|
7
|
Melia PM, Busquets R, Ray S, Cundy AB. Agricultural wastes from wheat, barley, flax and grape for the efficient removal of Cd from contaminated water. RSC Adv 2018; 8:40378-40386. [PMID: 35558207 PMCID: PMC9091462 DOI: 10.1039/c8ra07877g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Agricultural production results in wastes that can be re-used to improve the quality of the environment. This work has investigated for the first time the use of abundant, un-modified agricultural wastes and by-products (AWBs) from grape, wheat, barley and flax production, to reduce the concentration of Cd, a highly toxic and mobile heavy metal, in contaminated water. At concentrations of 1.1 mg Cd per L, flax and grape waste were found superior in removing Cd compared with a granular activated carbon used in water treatment, which is both more expensive and entails greater CO2 emissions in its production. At a pH representative of mine effluents, where Cd presents its greatest mobility and risk as a pollutant, grape and flax waste showed capacity for effective bulk water treatment due to rapid removal kinetics and moderate adsorption properties: reaching equilibrium within 183 and 8 min - adsorption capacities were determined as 3.99 and 3.36 mg Cd per g, respectively. The capacity to clean contaminated effluents was not correlated with the surface area of the biosorbents. Surface chemistry analysis indicated that Cd removal is associated with exchange with Ca, and chemisorption involving CdCO3, CdS and CdO groups. This work indicates that some AWBs can be directly (i.e. without pre-treatment or modification) used in bulk to remediate effluents contaminated with heavy metals, without requiring further cost or energy input, making them potentially suitable for low-cost treatment of persistent (e.g. via mine drainage) or acute (e.g. spillages) discharges in rural and other areas.
Collapse
Affiliation(s)
- Patrick M Melia
- Kingston University, Faculty of Science, Engineering and Computing Kingston Upon Thames KT1 2EE UK
- Surface Analysis Laboratory, University of Brighton, Faculty of Science and Engineering BN2 4GJ UK
| | - Rosa Busquets
- Kingston University, Faculty of Science, Engineering and Computing Kingston Upon Thames KT1 2EE UK
| | - Santanu Ray
- Surface Analysis Laboratory, University of Brighton, Faculty of Science and Engineering BN2 4GJ UK
| | - Andrew B Cundy
- Surface Analysis Laboratory, University of Brighton, Faculty of Science and Engineering BN2 4GJ UK
- University of Southampton, School of Ocean and Earth Science Southampton SO14 3ZH UK
| |
Collapse
|
8
|
Garros L, Drouet S, Corbin C, Decourtil C, Fidel T, Lebas de Lacour J, Leclerc EA, Renouard S, Tungmunnithum D, Doussot J, Abassi BH, Maunit B, Lainé É, Fliniaux O, Mesnard F, Hano C. Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax ( Linum usitatissimum L.) Seeds. Molecules 2018; 23:molecules23102636. [PMID: 30322184 PMCID: PMC6222607 DOI: 10.3390/molecules23102636] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.
Collapse
Affiliation(s)
- Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Cédric Decourtil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Thibaud Fidel
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Julie Lebas de Lacour
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Emilie A Leclerc
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Sullivan Renouard
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand.
| | - Joël Doussot
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Le CNAM, Ecole Sciences Industrielles et Technologies de l'Information (SITI), Chimie Alimentation Santé Environnement Risque (CASER), 75141 Paris Cedex 3, France.
| | - Bilal Haider Abassi
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Department of Biotechnology, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Benoit Maunit
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
- Institut de Chimie Organique et Analytique (ICOA) UMR7311, Université d'Orléans-CNRS, 45067 Orléans CEDEX 2, France.
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| | - Ophélie Fliniaux
- Biologie des Plantes et Innovation (BIOPI) EA 3900, Université de Picardie Jules Verne, 80000 Amiens, France.
| | - François Mesnard
- Biologie des Plantes et Innovation (BIOPI) EA 3900, Université de Picardie Jules Verne, 80000 Amiens, France.
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC) EA1207 INRA USC1328, Plant LIGNANS Team, Université d'Orléans, 28000 Chartres, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067 Orléans Cedex 2, France.
| |
Collapse
|
9
|
Sambrook MR, Vincent JC, Ede JA, Gass IA, Cragg PJ. Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants. RSC Adv 2017. [DOI: 10.1039/c7ra03328a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The inclusion complexation of the Chemical Warfare Agent soman (GD) by β-cyclodextrin is studied by both experimental and computational approaches.
Collapse
Affiliation(s)
| | | | | | - Ian A. Gass
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton
- UK
| | - Peter J. Cragg
- School of Pharmacy and Biomolecular Sciences
- University of Brighton
- Brighton
- UK
| |
Collapse
|
10
|
Waszkowiak K, Gliszczyńska-Świgło A, Barthet V, Skręty J. Effect of Extraction Method on the Phenolic and Cyanogenic Glucoside Profile of Flaxseed Extracts and their Antioxidant Capacity. J AM OIL CHEM SOC 2015; 92:1609-1619. [PMID: 26640278 PMCID: PMC4661209 DOI: 10.1007/s11746-015-2729-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The application of flaxseed extracts as food ingredients is a subject of interest to food technologists and nutritionists. Therefore, the influence of the extraction method on the content and composition of beneficial compounds as well as anti-nutrients is important. In the study, the effects of two solvent extraction methods, aqueous and 60 % ethanolic, on phenolic and cyanogenic glucoside profiles of flaxseed extract were determined and compared. The impact of extracted phenolic compounds on the antioxidant capacity of the extracts was also investigated. Defatted meals from brown and golden flax varieties were used as extraction material. The ethanolic extraction was more selective for phenolics (100.8-131.7 mg g-1) than the aqueous one (11.5-15.7 mg g-1). However, the contribution of particular phenolic compounds to total phenolics was much more dependent on flax variety than extraction method. A strong relationship was observed between both radical scavenging and ferric reducing activity and the content of phenolics (particularly secoisolariciresinol diglucoside). The correlation between extract chelating ability and phenolics was moderate suggesting that other flaxseed compounds are involved in this activity. The extraction method strongly affected cyanogenic glucoside content of flaxseed extracts; the aqueous extraction caused 96 % reduction in cyanogenic glucoside content (0.56-0.62 mmol g-1) when compared to the content in defatted meal (9.1-11.6 mmol g-1). On the contrary, ethanolic extraction resulted in the high cyanogenic glucoside content in the extracts (71-89 mmol g-1). The results reveals that ethanolic extraction gives extracts rich in antioxidant lignans; aqueous extracts have lower antioxidant activity than ethanolic but cyanogenic glucosides are significantly reduced.
Collapse
Affiliation(s)
- Katarzyna Waszkowiak
- />Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Anna Gliszczyńska-Świgło
- />Faculty of Commodity Science, Poznań University of Economics, al Niepodległości 10, 61-875 Poznań, Poland
| | - Veronique Barthet
- />Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, MB R3C 3G8 Canada
| | - Joanna Skręty
- />Faculty of Food Science and Nutrition, Poznań University of Life Sciences, ul Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|