1
|
Nath R, Zaheen A, Rajkhowa S, Kar R. Polyphenolic metacyclophane as a radical scavenger for therapeutic activation: a computational study. Free Radic Res 2024; 58:476-492. [PMID: 39158168 DOI: 10.1080/10715762.2024.2394121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Modeling antioxidants for improved human health is a prime area of research. Inclusion complexes exhibit antioxidant activity. Supramolecular scaffolds like calixtyrosol are anticipated to have considerable antioxidant and therapeutic activity. In this study, we have designed 30 polyphenolic metacyclophanes and investigated their antioxidant properties. Exceptional O─H bond dissociation energy of 44 kcal/mol is reported for a metacyclophane with acyl urea linkage. This may be explained through a cooperative effect of localization of spin density distribution and an intramolecular hydrogen bonding of the corresponding radical. Further, the pharmacokinetics and toxicity analysis screened eight drug-like candidates. The interaction of the eight screened molecules with the Lysozyme transport protein and SOD protein has been studied using the molecular docking approach. Lastly, the MD simulations are performed to analyze the conformational changes of the transport protein after complexation with the proposed molecules. Comprehensive analyses including density functional studies of physiological parameters, favorable pharmacokinetics, toxicity, molecular docking, and MD simulations affirmed polyphenolic metacyclophane XXI as a radical scavenging and drug-like candidate.
Collapse
Affiliation(s)
- Raktim Nath
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, India
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, India
| | - Rahul Kar
- Department of Chemistry, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
2
|
Shin Y, Hu Y, Park S, Jung S. Novel succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin hydrogels for pH-responsive delivery of hydrophobic drugs. Carbohydr Polym 2023; 305:120568. [PMID: 36737206 DOI: 10.1016/j.carbpol.2023.120568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
β-Cyclodextrin cross-linked succinoglycan dialdehyde hydrogels was prepared for hydrophobic drug delivery. Succinoglycan dialdehyde (SGDA) was synthesized from sodium periodate oxidation of succinoglycan isolated from Sinorhizobium meliloti Rm1021. Aminoethylcarbamoyl-β-cyclodextrin (ACD) was crosslinked with SGDA to form a succinoglycan dialdehyde/aminoethylcarbamoyl-β-cyclodextrin (SGDA/ACD) hydrogels. The SGDA/ACD hydrogels exhibited a 65.7 % improvement in storage modulus (G') and a 5.7-fold higher compressive strain than the SGDA/poly(ethylene glycol) diamine (PEG) hydrogels as controls. A hardly soluble drug, baicalein was used for the drug loading and release properties of SGDA/ACD hydrogels. Baicalein was released about 98 % within 48 h at pH 7.4, but not completely released even after 48 h at pH 2.0. In addition, at pH 7.4, only about 56 % of the baicalein loaded on the SGDA/PEG hydrogels was released within 48 h, while about 98 % of the baicalein loaded on the SGDA/ACD hydrogels was released within 48 h. It indicates that ACD significantly improved the solubilization efficacy of the baicalein. In vitro testing of cell viability using HEK-293 cells also showed that the SGDA/ACD hydrogels were suitable for the cells. In conclusion, SGDA/ACD hydrogels significantly enhance the utilization of baicalein and provide potential applications in drug delivery systems for hardly soluble drugs.
Collapse
Affiliation(s)
- Younghyun Shin
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Yiluo Hu
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea; Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
3
|
Li H, Zhao Q, Wang L, Wang P, Zhao B. Cannabidiol/hydroxypropyl-β-cyclodextrin inclusion complex: structure analysis, release behavior, permeability, and bioactivity under in vitro digestion. NEW J CHEM 2022. [DOI: 10.1039/d1nj05998j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inclusion complex of CBD greatly improved its release performance and bioactivity.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingsheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peidong Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Zhu FD, Zhang ZH, Chi SM, Chen SL, Wang YF, Zhu HY, Lei Z, Zhao Y. Experimental and molecular docking investigation of the inclusion complexes between 20(S)-protopanaxatriol and four modified β-cyclodextrins. Carbohydr Res 2021; 500:108256. [PMID: 33561714 DOI: 10.1016/j.carres.2021.108256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
20(S)-Protopanaxatriol (PPT) is a type of ginsenoside isolated from panax notoginseng or ginseng, which is an essential ingredient in functional food, healthcare products and traditional medicine. However, the research and development of PPT are restricted due to its poor solubility. To circumvent the associated problems, a novel bridged-bis [6-(2,2'-(ethylenedioxy) bis (ethylamine))-6-deoxy-β-CD] (H4) was successfully synthesized. The four inclusion complexes of the mono-[6-(1,4-butanediamine)-6-deoxy-β-CD] (H1), mono-[6-(2,2'-(ethylenedioxy) bis (ethylamine)-6-deoxy-β-CD] (H2) and their corresponding bridged bis(β-CD)s (H3, H4) with PPT were prepared and studied by UV, 1H NMR, 2D ROESY, FT-IR, XRD and SEM technology. The UV-spectrometric titration showed that H1-4 and PPT formed 1:1 inclusion complexes and the binding constants were 297.61, 322.25, 937.88 and 1742 M-1, respectively. It was further revealed that the size/shape-matching relationship, hydrophobic interactions and hydrogen bond interactions play the crucial role in determining the stability of H1-4/PPT inclusion complexes. The solubility of PPT was evidently enhanced by193, 265, 453 and 593 times after the formation of inclusion complexes with H1-4, respectively. Furthermore, molecular docking was used to verify the inclusion mode of H4/PPT inclusion complex and also to investigate the stability of H4/PPT in water phase. The molecular simulation results agreed well with the experimental results. This research provides an effective way to obtain novel PPT-based functional food and healthcare products.
Collapse
Affiliation(s)
- Fang-Dao Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Zhao-Hua Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Shao-Ming Chi
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Si-Ling Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Yu-Fei Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China
| | - Hong-You Zhu
- Guangdong Goodscend Pharmaceutical Technology Co., Ltd, Shantou, 515098, PR China
| | - Ze Lei
- Guangdong Goodscend Pharmaceutical Technology Co., Ltd, Shantou, 515098, PR China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China.
| |
Collapse
|
5
|
Lee JS, Song IH, Shinde PB, Nimse SB. Macrocycles and Supramolecules as Antioxidants: Excellent Scaffolds for Development of Potential Therapeutic Agents. Antioxidants (Basel) 2020; 9:E859. [PMID: 32937775 PMCID: PMC7555118 DOI: 10.3390/antiox9090859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023] Open
Abstract
Oxidative stress due to the high levels of reactive oxygen species (ROS) that damage biomolecules (lipids, proteins, DNA) results in acute inflammation. However, without proper intervention, acute inflammation progresses to chronic inflammation and then to several chronic diseases, including cancer, myocardial infarction, cardiovascular diseases, chronic inflammation, atherosclerosis, and more. There has been extensive research on the antioxidants of natural origin. However, there are myriad possibilities for the development of synthetic antioxidants for pharmacological applications. There is an increasing interest in the identification of novel synthetic antioxidants for the modulation of biochemical processes related to ROS. In this regard, derivatives of supramolecules, such as calix[n]arene, resorcinarene, calixtyrosol, calixpyrrole, cucurbit[n]uril, porphyrin etc. are gaining attention for their abilities to scavenge the free radicals. Supramolecular chemistry offers excellent scaffolds for the development of novel antioxidants that can be used to modulate free radical reactions and to improve the disorders related to oxidative stress. This review focuses on the interdisciplinary approach for the design and development of novel synthetic antioxidants based on supramolecular scaffolds, with potentially protective effects against oxidative stress.
Collapse
Affiliation(s)
- Jung-Seop Lee
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Korea; (J.-S.L.); (I.-h.S.)
| | - In-ho Song
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Korea; (J.-S.L.); (I.-h.S.)
| | - Pramod B. Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India;
| | - Satish Balasaheb Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Korea; (J.-S.L.); (I.-h.S.)
| |
Collapse
|
6
|
Yue L, Li J, Jin W, Zhao M, Xie P, Chi S, Lei Z, Zhu H, Zhao Y. Host–guest interaction between 20(S)-protopanaxatriol and three polyamine-modified β-cyclodextrins: preparation, characterization, inclusion modes, and solubilization. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-00992-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Preparation, characterization and solubilization evaluation of two novel host-guest complexes based on two different functional groups of modified β-cyclodextrins and 20(S)-protopanaxatriol. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
JIN W, LI FY, HUANG YR, YANG HW, CHI SM, ZHU HY, LEI Z, ZHAO Y. Preparation and Properties Study of Inclusion Complex of Triptonide with 2,6-Dimethyl-β-cyclodextrin. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Preparation, characterization and cytotoxic evaluation of inclusion complexes between celastrol with polyamine-modified β-cyclodextrins. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00933-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|