1
|
Kronemberger GS, Spagnuolo FD, Karam AS, Chattahy K, Storey KJ, Kelly DJ. Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues. Tissue Eng Part C Methods 2025; 31:36-48. [PMID: 39813639 DOI: 10.1089/ten.tec.2024.0309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format. MSCs displayed a higher proliferative potential when expanded in the presence of TGF-β1 or TGF-β1 and BMP-2. Next, the chondrogenic potential of these human MSCs was explored in a medium-high throughput microtissue system. After 3 weeks of culture, MSCs stimulated with BMP-2 during expansion and differentiation deposited higher levels of glycosaminoglycans (GAGs) and collagen, while staining negative for calcium deposits. The fusion capacity of the microtissues was not impacted by these different growth factor stimulation regimes. After 3 weeks of fusion, it was observed that MSCs stimulated with TGF-β1 during expansion and additionally with BMP-2 during chondrogenic differentiation deposited the highest levels of sulfated GAGs. No increase in type X collagen deposition was observed with additional growth factor stimulation. This study demonstrates the importance of carefully optimizing MSC expansion and differentiation conditions when developing modular tissue engineering strategies (e.g., cellular aggregates and microtissues) for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Francesca D Spagnuolo
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Aliaa S Karam
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kaoutar Chattahy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kyle J Storey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Mehwish N, Chen Y, Zaeem M, Wang Y, Lee BH, Deng H. Novel biohybrid spongy scaffolds for fabrication of suturable intraoral graft substitutes. Int J Biol Macromol 2022; 214:617-631. [PMID: 35753514 DOI: 10.1016/j.ijbiomac.2022.06.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Despite the fact that classic autograft is the gold standard material for periodontal plastic surgery, it has some drawbacks, including the need for a second surgical site and the scarcity of palatal donor tissue. However, only a few research works on the manufacturing of bioengineered intraoral connective tissue grafts have been conducted. In this work, porous bovine serum albumin methacryloyl/gelatin methacryloyl (BG) biohybrid scaffolds were developed for super-elasticity, shape recovery, suturability for persistent stability, sufficient scaffolding function, and convenient manipulating characteristics to fabricate an intraoral graft substitute with superb stability to resist frequent dynamic forces caused by functional movement (speaking, masticating, and swallowing). Furthermore, in a 3D cell culture assay, BG scaffolds demonstrated excellent cell adhesion and proliferation of L929 cells. In addition, the BG scaffolds were able to release Ibuprofen in a controlled manner for postoperative recovery. The use of a low-cost, optimized cryogelation technique for functional biomacromolecules offers up new possibilities to develop promising scaffolds for dental clinical settings.
Collapse
Affiliation(s)
- Nabila Mehwish
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Yuan Chen
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Muhammad Zaeem
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bae Hoon Lee
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
3
|
Elmazoglu Z, Aydın Bek Z, Saribas SG, Özoğul C, Goker B, Bitik B, Aktekin CN, Karasu Ç. S-Allylcysteine Inhibits Chondrocyte Inflammation to Reduce Human Osteoarthritis via Targeting RAGE, TLR4, JNK and Nrf2 Signaling: Comparison with Colchicine. Biochem Cell Biol 2021; 99:645-654. [PMID: 33930279 DOI: 10.1139/bcb-2021-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Discovery of new pharmacological agents is needed to control the progression of osteoarthritis (OA) characterized by progressive joint cartilage damage. Human OA chondrocyte cultures (OAC) were either applied to S-Allyl cysteine (SAC), a sulfur-containing amino acid derivative, or colchicine, an ancient anti-inflammatory therapeutic, for 24 hours. SAC or colchicine did not change viability at 1 nM-10 µM but inhibited p-JNK/pan-JNK. While SAC seems to be more effective, both agents inhibited reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), lipid-hydroperoxides (LPO), advanced lipoxidation end-products (ALEs as 4-hydroxy-2-nonenal, HNE) and advanced glycation end-products (AGEs), and increased glutathione-peroxidase (GPx) and type-II-collagen (COL2). IL-1β, IL-6 and osteopontin (OPN) were more strongly inhibited by SAC than in colchicine. In contrast, TNF-α was inhibited only by SAC, and COX2 only by colchicine. Casp-1/ICE, GM-CSF, receptor for advanced glycation end-products (RAGE) and toll-like receptors (TLR4) were inhibited by both agents, but bone morphogenetic protein 7 (BMP7) was partially inhibited by SAC while induced by colchicine. The nuclear factor erythroid 2-related factor 2 (Nrf2) was induced by SAC; in contrast it was inhibited by colchicine. Although exerting opposite effects on TNF-α, COX2, BMP7 and Nrf2, SAC and colchicine exhibit anti-osteoarthritic properties in OAC by modulating redox sensitive inflammatory signaling.
Collapse
Affiliation(s)
- Zubeyir Elmazoglu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Zehra Aydın Bek
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, Ankara, BEŞEVLER, Turkey;
| | - Sanem Gulistan Saribas
- Kirsehir Ahi Evran University, 187470, Faculty of Medicine, Department of Histology and Embryology, Kirsehir, Kırşehir, Turkey;
| | - Candan Özoğul
- University of Kyrenia, 530180, Faculty of Medicine, Department of Histology and Embryology, Girne, Girne, Cyprus;
| | - Berna Goker
- Gazi University Faculty of Medicine, 64001, Department of Rheumatology, Ankara, BEŞEVLER, Turkey;
| | - Berivan Bitik
- Ankara Training and Research Hospital, 162301, Ankara, Ankara, Turkey;
| | - Cem Nuri Aktekin
- Yildirim Beyazit University Faculty of Medicine, 442146, Department of Orthopedics and Traumatology, Ankara, Ankara, Turkey;
| | - Çimen Karasu
- Gazi University Faculty of Medicine, 64001, Medical Pharmacology, GAZI UNIVERSITY, FACULTY OF MEDICINE, DEPARTMENT OF MEDICAL PHARMACOLOGY, ANKARA, Ankara, BEŞEVLER, Turkey, 06500;
| |
Collapse
|
4
|
Balaji P, Murugadas A, Ramkumar A, Thirumurugan R, Shanmugaapriya S, Akbarsha MA. Characterization of Hen's Egg White To Use It as a Novel Platform To Culture Three-Dimensional Multicellular Tumor Spheroids. ACS OMEGA 2020; 5:19760-19770. [PMID: 32803071 PMCID: PMC7424746 DOI: 10.1021/acsomega.0c02508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
We are standardizing protocols to develop egg white (EW) as a cost-effective platform for culture of three-dimensional (3-D) multicellular tumor spheroids for application in understanding tumor microenvironments and drug screening. In this article, we describe several physical and physiological characteristics of EW to use it as 3-D cell culture platform. Field emission scanning electron microscopy revealed the presence of different microstructures. Hydrodynamic size distribution data indicated nano- and micron-sized particles. Rheological measurements revealed the viscosity and viscoelastic behavior appropriate for maintaining cell viability and supporting 3-D cell growth under high-sheer conditions. It was found that thereis no autofluorescence, a requirement for imparting transparency and for microscopic observations of the spheroids. The EW facilitated the development of 3-D tumor spheroids, with an emphasis of difference in cell proliferation and intercellular cytoskeletal organization between two-dimensional and 3-D spheroid cultures. Put together, EW proves to be a cost-affordable and simple platform for 3-D culture of tumor spheroids.
Collapse
Affiliation(s)
- Perumalsamy Balaji
- Department of Biomedical
Science, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Anbazhagan Murugadas
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arunachalam Ramkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Ramasamy Thirumurugan
- Department of Animal Science, Bharathidasan University, Tiruchirapalli 620024, India
- National
Centre for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Mohammad Abdulkader Akbarsha
- National
College (Autonomous), Tiruchirappalli 620001, India
- Mahatma Gandhi-Doerenkamp
Centre for Alternatives, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
5
|
Lee W, Choi JH, Lee S, Song JE, Khang G. Fabrication and Characterization of Silk Fibroin Microfiber-Incorporated Bone Marrow Stem Cell Spheroids to Promote Cell-Cell Interaction and Osteogenesis. ACS OMEGA 2020; 5:18021-18027. [PMID: 32743175 PMCID: PMC7391361 DOI: 10.1021/acsomega.0c01415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
In this study, silk fibroin microfiber (mSF) was applied to assist spheroid assemblies of rBMSCs (rabbit bone marrow stem cells) (S/B). Alkaline hydrolysis was induced with different times and conditions to manufacture the various sizes of mSF. The mSF was incorporated in the rBMSC with different amounts to optimize proper content for spheroid assembly. The formation of the S/B was confirmed under optical microscopy and SEM. Proliferation and viability were characterized by CCK-8 and live/dead staining. Osteogenesis was analyzed with ALP (alkaline phosphatase) activity studies and real-time polymerase chain reaction. The S/B was successfully produced and displayed uniformly distributed cells and mSF with the presence of a gap in the structure. Proliferation and viability of the S/B significantly increased when compared to rBMSC spheroids (B), which is potentially due to the enhanced transportation of oxygen and nutrients to the cells located in the core region. Additionally, ALP activity and osteogenic markers were significantly upregulated in the optimized S/B under osteogenic media conditions. Overall, a hybrid-spheroid system with a simple 3D cell culture platform provides a potential approach for engineering therapeutic stem cells.
Collapse
|
6
|
Nii T, Kuwahara T, Makino K, Tabata Y. A Co-Culture System of Three-Dimensional Tumor-Associated Macrophages and Three-Dimensional Cancer-Associated Fibroblasts Combined with Biomolecule Release for Cancer Cell Migration. Tissue Eng Part A 2020; 26:1272-1282. [PMID: 32434426 DOI: 10.1089/ten.tea.2020.0095] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The objective of this study is to design a cancer invasion model by making use of cancer-associated fibroblasts (CAF) or tumor-associated macrophages (TAM) and gelatin hydrogel microspheres (GM) for the sustained release of drugs. The GM containing adenosine (A) (GM-A) were prepared and cultured with TAM to obtain three-dimensional (3D) TAM aggregates incorporating GM-A (3D TAM-GM-A). The GM-A incorporation enabled TAM to enhance the secretion level of vascular endothelial growth factor. When co-cultured with HepG2 liver cancer cells in an invasion assay, the 3D TAM-GM-A promoted the invasion rate of cancer cells. In addition, the E-cadherin expression level decreased to a significantly greater extent compared with that co-cultured with TAM aggregates incorporating GM, whereas the significantly higher expression of N-cadherin and Vimentin was observed. This indicates that the epithelial-mesenchymal transition event was induced. The GM containing transforming growth factor-β1 (TGF-β1) were prepared to incorporate into 3D CAF (3D CAF-GM-TGF-β1). Following a co-culture of mixed 3D CAF-GM-TGF-β1 and 3D TAM-GM-A and every HepG2, MCF-7 breast cancer cell, or WA-hT lung cancer cell, the invasion rate of every cancer cell enhanced depending on the mixing ratio of 3D TAM-GM-A and 3D CAF-GM-TGF-β1. The amount of matrix metalloproteinase-2 (MMP-2) secreted also enhanced, and the enhancement was well corresponded with that of cancer cell invasion rate. The higher MMP secretion assists the breakdown of basement membrane, leading to the higher rate of cancer cell invasion. This model is a promising 3D culture system to evaluate the invasion ability of various cancer cells in vitro. Impact statement This study proposes a cell culture system to enhance the tumor-associated macrophage function based on the combination of three-dimensional (3D) cell aggregates and gelatin hydrogel microspheres (GM) for adenosine delivery. An additional combination of 3D cancer-associated fibroblasts incorporating GM containing transforming growth factor-β1 allowed cancer cells to enhance their invasion rate. This co-culture system is promising to evaluate the ability of cancer cell invasion for anticancer drug screening.
Collapse
Affiliation(s)
- Teruki Nii
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Toshie Kuwahara
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.,Center for Drug Delivery Research, Tokyo University of Science, Noda, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Nii T, Makino K, Tabata Y. Influence of shaking culture on the biological functions of cell aggregates incorporating gelatin hydrogel microspheres. J Biosci Bioeng 2019; 128:606-612. [DOI: 10.1016/j.jbiosc.2019.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
|
8
|
Baek J, Lotz MK, D'Lima DD. Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears. Tissue Eng Part A 2019; 25:1577-1590. [PMID: 30950316 DOI: 10.1089/ten.tea.2018.0319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Electrospinning is an attractive method of fabricating nanofibers that replicate the ultrastructure of the human meniscus. However, it is challenging to approximate the mechanical properties of meniscal tissue while maintaining the biocompatibility of collagen fibers. Our objective was to determine if functionalizing polylactic acid (PLA) nanofibers with collagen would enhance their biocompatibility. We therefore used coaxial electrospinning to generate core-shell nanofibers with a core of PLA for mechanical strength and a shell of collagen to enhance cell attachment and matrix synthesis. We characterized the nanostructure of the engineered scaffolds and measured the hydrophilic and mechanical properties. We assessed the performance of human meniscal cells seeded on coaxial electrospun scaffolds to produce meniscal tissue by gene expression and histology. Finally, we investigated whether these cell-seeded scaffolds could repair surgical tears created ex vivo in avascular meniscal explants. Histology, immunohistochemistry, and mechanical testing of ex vivo repair provided evidence of neotissue that was significantly better integrated with the native tissue than with the acellular coaxial electrospun scaffolds. Human meniscal cell-seeded coaxial electrospun scaffolds may have potential in enhancing repair of avascular meniscus tears. Impact Statement The success of any tissue-engineered meniscus graft relies on its ability to mimic native three-dimensional microstructure, support cell growth, produce tissue-specific matrix, and enhance graft integration into the repair site. Polylactic acid scaffolds possess the desired mechanical properties, whereas collagen scaffolds induce better cell attachment and enhanced tissue regeneration. We therefore fabricated nanofibrous scaffolds that combined the properties of two biomaterials. These novel coaxial scaffolds more closely emulated the structure, mechanical properties, and biochemical composition of native meniscal tissue. Our findings of meniscogenic tissue generation and integration in meniscus defects have the potential to be translated to clinical use.
Collapse
Affiliation(s)
- Jihye Baek
- Shiley Center for Orthopedic Research and Education, Scripps Clinic, La Jolla, California.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Martin K Lotz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research and Education, Scripps Clinic, La Jolla, California.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
9
|
Zhang D, Wang Y. Functional Protein-Based Bioinspired Nanomaterials: From Coupled Proteins, Synthetic Approaches, Nanostructures to Applications. Int J Mol Sci 2019; 20:E3054. [PMID: 31234528 PMCID: PMC6627797 DOI: 10.3390/ijms20123054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Protein-based bioinspired nanomaterials (PBNs) combines the advantage of the size, shape, and surface chemistry of nanomaterials, the morphology and functions of natural materials, and the physical and chemical properties of various proteins. Recently, there are many exciting developments on biomimetic nanomaterials using proteins for different applications including, tissue engineering, drug delivery, diagnosis and therapy, smart materials and structures, and water collection and separation. Protein-based biomaterials with high biocompatibility and biodegradability could be modified to obtain the healing effects of natural organisms after injury by mimicking the extracellular matrix. For cancer and other diseases that are difficult to cure now, new therapeutic methods involving different kinds of biomaterials are studied. The nanomaterials with surface modification, which can achieve high drug loading, can be used as drug carriers to enhance target and trigger deliveries. For environment protection and the sustainability of the world, protein-based nanomaterials are also applied for water treatment. A wide range of contaminants from natural water source, such as organic dyes, oil substances, and multiple heavy ions, could be absorbed by protein-based nanomaterials. This review summarizes the formation and application of functional PBNs, and the details of their nanostructures, the proteins involved, and the synthetic approaches are addressed.
Collapse
Affiliation(s)
- Dong Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon 999077, Hong Kong.
| | - Yi Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Hum, Kowloon 999077, Hong Kong.
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057, China.
| |
Collapse
|
10
|
Tajima S, Tabata Y. Preparation of cell aggregates incorporating gelatin hydrogel microspheres containing bone morphogenic protein-2 with different degradabilities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:775-792. [DOI: 10.1080/09205063.2017.1358547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Tajima S, Tabata Y. Preparation of EpH4 and 3T3L1 cells aggregates incorporating gelatin hydrogel microspheres for a cell condition improvement. Regen Ther 2017; 6:90-99. [PMID: 30271843 PMCID: PMC6134911 DOI: 10.1016/j.reth.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
The objective of this study is to prepare three dimensional (3D) of mouse mammary epithelial EpH4 and mouse preadipocyte 3T3L1 cells in the presence of gelatin hydrogel microspheres (GM) and evaluate the effect of GM presence on the survival and functions of cells in the 3D cell aggregates. Gelatin was dehydrothermally crosslinked at 140 °C for 48 h in a water-in-oil emulsion state to obtain the GM with average diameters of 50 and 200 μm, followed by treatment with fibronectin (FN). EpH4 and/or 3T3L1 cells were cultured with or without the FN-treated GM in round U-bottom wells of 96-multiwell culture plates which had been coated with poly (vinyl alcohol) (PVA) to allow the cells to form their aggregates. On the other hand, EpH4 cells were precultured with the FN-treated GM, and then continued to culture with 3T3L1 cells in the same condition described above. The EpH4 cells attached onto the GM in the cell number dependent manner, irrespective of their size. When 3T3L1 cells were incubated with the original and GM-preincubated EpH4 cells in the presence of both the FN-treated GM, the number of alive cells in the aggregates was significantly high compared with that for the absence of FN-treated GM. In addition, higher β-casein expression level of EpH4 cells in EpH4/3T3L1 cells aggregates in the presence of FN-treated GM was observed than that of cells in the absence of FN-treated GM. Laminin secretion was also promoted for the cells aggregates cultured with FN-treated GM. It is concluded that the presence of FN-treated GM in the EpH4/3T3L1 cells aggregates gave a better condition to cells, resulting in an enhanced generation of β-casein from EpH4 cells in the aggregates.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Life and Frontier Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
12
|
Kakabadze A, Mardaleishvili K, Loladze G, Karalashvili L, Chutkerashvili G, Chakhunashvili D, Kakabadze Z. Reconstruction of mandibular defects with autogenous bone and decellularized bovine bone grafts with freeze-dried bone marrow stem cell paracrine factors. Oncol Lett 2017; 13:1811-1818. [PMID: 28454328 PMCID: PMC5403483 DOI: 10.3892/ol.2017.5647] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022] Open
Abstract
The gold standard following segmental mandibulectomy is vascularized autologous bone graft in the form of the fibula flap. However, in bone reconstruction the use of autogenous bone does not always guarantee a successful outcome. The aim of the present investigation was to develop a novel biologically active bone (BAB) graft, and to use it for the reconstruction of large size defects of the mandible bone following tumor resection. In the first part of the present study, biologically active bone graft was developed by using human freeze-dried bone marrow stem cells (BMSCs) paracrine factors and three-dimensional bone scaffold derived from cancellous bovine bone following decellularization. In the second part of the research, one male and three female patients with primary tumors of the mandible underwent hemimandibulectomy. The mandibular bone defects following tumor resection were reconstructed with autogenous rib grafts in three patients and BAB graft was used in one patient. The graft-host interfaces were covered with decellularized human amnion/chorion membrane graft. All patients were followed-up every five months following the reconstruction of the mandible, with no complications observed. Preliminary clinical investigations demonstrated that a BAB graft containing freeze-dried BMSC paracrine factors may be used for the reconstruction of large mandibular bone defects following tumor resection.
Collapse
Affiliation(s)
- Ann Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0177 Tbilisi, Georgia.,Department of Molecular and Translational Medicine, Institute of Medical Research, Ilia State University, 0177 Tbilisi, Georgia
| | - Konstantine Mardaleishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0177 Tbilisi, Georgia.,Department of Surgery, Cancer Research Center, 0177 Tbilisi, Georgia
| | - George Loladze
- Department of Surgery, Cancer Research Center, 0177 Tbilisi, Georgia
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0177 Tbilisi, Georgia.,Department of Molecular and Translational Medicine, Institute of Medical Research, Ilia State University, 0177 Tbilisi, Georgia
| | - Gocha Chutkerashvili
- Department of Molecular and Translational Medicine, Institute of Medical Research, Ilia State University, 0177 Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0177 Tbilisi, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0177 Tbilisi, Georgia
| |
Collapse
|
13
|
Konishi S, Shimomura S, Tajima S, Tabata Y. Implementation of soft microfingers for a hMSC aggregate manipulation system. MICROSYSTEMS & NANOENGINEERING 2016; 2:15048. [PMID: 31057812 PMCID: PMC6444732 DOI: 10.1038/micronano.2015.48] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 05/26/2023]
Abstract
This paper describes a pneumatic balloon actuator (PBA) composed of polydimethylsiloxane (PDMS) for cellular aggregate manipulation. We evaluated the ability of the microdevice to manipulate a tiny and sensitive cellular aggregate without causing serious damage. We used human mesenchymal stem cells (hMSCs) for the cellular aggregate. We describe the design, fabrication, characterization and operation of the soft microfingers to pinch and release a spherical hMSC aggregate (φ200 μm), and we employed a PBA to serve as an artificial muscle to drive the microfingers. A design of the microfingers in terms of dimensions, generated force and contact conditions was accomplished. The designed dimensions of a single finger were 560 μm×900 μm. In summary, we demonstrate the utility of the surface modification of a fingertip for pinching and releasing a cellular aggregate and describe a manipulation system that was constructed to drive and control the microfingers. The implemented manipulation system, which is composed of microfingers and a positioning mechanism, was tested and verified in a series of operations.
Collapse
Affiliation(s)
- Satoshi Konishi
- Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Noji-higash, Kusatsu, Shiga 525-8577, Japan
- Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higash, Kusatsu, Shiga 525-8577, Japan
| | - Shuhei Shimomura
- Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higash, Kusatsu, Shiga 525-8577, Japan
| | - Shuhei Tajima
- Institute for Frontier Medical Sciences, Kyoto University, Yoshida-shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Kyoto University, Yoshida-shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Shojaee M, Navaee F, Jalili–Firoozinezhad S, Faturechi R, Majidi M, Bonakdar S. Fabrication and characterization of ovalbumin films for wound dressing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:158-64. [DOI: 10.1016/j.msec.2014.11.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/14/2014] [Accepted: 11/28/2014] [Indexed: 02/03/2023]
|
15
|
Lee JK, Responte DJ, Cissell DD, Hu JC, Nolta JA, Athanasiou KA. Clinical translation of stem cells: insight for cartilage therapies. Crit Rev Biotechnol 2013; 34:89-100. [PMID: 24083452 DOI: 10.3109/07388551.2013.823596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The limited regenerative capacity of articular cartilage and deficiencies of current treatments have motivated the investigation of new repair technologies. In vitro cartilage generation using primary cell sources is limited by cell availability and expansion potential. Pluripotent stem cells possess the capacity for chondrocytic differentiation and extended expansion, providing a potential future solution to cell-based cartilage regeneration. However, despite successes in producing cartilage using adult and embryonic stem cells, the translation of these technologies to the clinic has been severely limited. This review discusses recent advances in stem cell-based cartilage tissue engineering and the major current limitations to clinical translation of these products. Concerns regarding appropriate animal models and studies, stem cell manufacturing, and relevant regulatory processes and guidelines will be addressed. Understanding the significant hurdles limiting the clinical use of stem cell-based cartilage may guide future developments in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jennifer K Lee
- Department of Biomedical Engineering, University of California , Davis, CA , USA
| | | | | | | | | | | |
Collapse
|
16
|
Kwon H, Sun L, Cairns DM, Rainbow RS, Preda RC, Kaplan DL, Zeng L. The influence of scaffold material on chondrocytes under inflammatory conditions. Acta Biomater 2013; 9:6563-75. [PMID: 23333441 PMCID: PMC3713500 DOI: 10.1016/j.actbio.2013.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Cartilage tissue engineering aims to repair damaged cartilage tissue in arthritic joints. As arthritic joints have significantly higher levels of pro-inflammatory cytokines (such as IL-1β and TNFα that cause cartilage destruction, it is critical to engineer stable cartilage in an inflammatory environment. Biomaterial scaffolds constitute an important component of the microenvironment for chondrocytes in engineered cartilage. However, it remains unclear how the scaffold material influences the response of chondrocytes seeded in these scaffolds under inflammatory stimuli. Here we have compared the responses of articular chondrocytes seeded within three different polymeric scaffolding materials (silk, collagen and polylactic acid (PLA)) to IL-1β and TNFα. These scaffolds have different physical characteristics and yielded significant differences in the expression of genes associated with cartilage matrix production and degradation, cell adhesion and cell death. The silk and collagen scaffolds released pro-inflammatory cytokines faster and had higher uptake water abilities than PLA scaffolds. Correspondingly, chondrocytes cultured in silk and collagen scaffolds maintained higher levels of cartilage matrix than those in PLA, suggesting that these biophysical properties of scaffolds may regulate gene expression and the response to inflammatory stimuli in chondrocytes. Based on this study we conclude that selecting the proper scaffold material will aid in the engineering of more stable cartilage tissues for cartilage repair, and that silk and collagen are better scaffolds in terms of supporting the stability of three-dimensional cartilage under inflammatory conditions.
Collapse
Affiliation(s)
- Heenam Kwon
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
| | - Lin Sun
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Dana M. Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
| | - Roshni S. Rainbow
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
| | - Rucsanda Carmen Preda
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Li Zeng
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine. 136 Harrison Avenue, Boston, MA 02111
- Department of Orthopaedic Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
| |
Collapse
|
17
|
Lv S, Bu T, Kayser J, Bausch A, Li H. Towards constructing extracellular matrix-mimetic hydrogels: an elastic hydrogel constructed from tandem modular proteins containing tenascin FnIII domains. Acta Biomater 2013; 9:6481-91. [PMID: 23295403 DOI: 10.1016/j.actbio.2013.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/28/2012] [Accepted: 01/01/2013] [Indexed: 01/26/2023]
Abstract
Protein-based hydrogels have been developed for various biomedical applications where they provide artificial extracellular microenvironments that mimic the physical and biochemical characteristics of natural extracellular matrices (ECMs). In natural ECMs, a large number of proteins are tandem modular proteins consisting of many individually folded functional domains that confer structural and biological functionalities. Such tandem modular proteins are promising building blocks for constructing ECM-mimetic biomaterials. However, their use for such purposes has not been explored extensively. Tenascin-C (TNC) is an ECM tandem modular protein and plays an important role in mechanotransduction by regulating important cell-matrix interactions. The third FnIII domain of TNC (TNfn3) contains an RGD sequence and is known to bind integrins. Here we use the TNfn3 domain and resilin sequence-based tandem modular protein FRF4RF4R (F represents the TNfn3 domain and R represents the resilin sequence, respectively) as a building block to construct protein-based ECM-mimetic hydrogels. The tandem modular protein-based building block FRF4RF4R closely mimics the architecture of the naturally occurring tandem modular ECM protein TNC and incorporates intact RGD-containing FnIII domains. Our results demonstrate that tandem modular proteins containing TNfn3 can be readily photochemically crosslinked into elastic hydrogels, whose Young's modulus can be tuned by the concentration of the tandem modular protein solution. In vitro studies demonstrate that none of the photochemical crosslinking reaction components are cytotoxic at the level tested, and the hydrogel supports the spread of human lung fibroblast cells. Our results demonstrate that FRF4RF4R-based hydrogel is a novel ECM-mimetic hydrogel.
Collapse
Affiliation(s)
- Shanshan Lv
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
18
|
Chen K, Ng KS, Ravi S, Goh JCH, Toh SL. In vitro generation of whole osteochondral constructs using rabbit bone marrow stromal cells, employing a two-chambered co-culture well design. J Tissue Eng Regen Med 2013; 10:294-304. [PMID: 23495238 DOI: 10.1002/term.1716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/18/2012] [Accepted: 01/05/2013] [Indexed: 12/22/2022]
Abstract
The regeneration of whole osteochondral constructs with a physiological structure has been a significant issue, both clinically and academically. In this study, we present a method using rabbit bone marrow stromal cells (BMSCs) cultured on a silk-RADA peptide scaffold in a specially designed two-chambered co-culture well for the generation of multilayered osteochondral constructs in vitro. This specially designed two-chambered well can simultaneously provide osteogenic and chondrogenic stimulation to cells located in different regions of the scaffold. We demonstrated that this co-culture approach could successfully provide specific chemical stimulation to BMSCs located on different layers within a single scaffold, resulting in the formation of multilayered osteochondral constructs containing cartilage-like and subchondral bone-like tissue, as well as the intermediate osteochondral interface. The cells in the intermediate region were found to be hypertrophic chondrocytes, embedded in a calcified extracellular matrix containing glycosaminoglycans and collagen types I, II and X. In conclusion, this study provides a single-step approach that highlights the feasibility of rabbit BMSCs as a single-cell source for multilayered osteochondral construct generation in vitro.
Collapse
Affiliation(s)
- Kelei Chen
- Department of Bioengineering, National University of Singapore
| | - Kian Siang Ng
- Department of Bioengineering, National University of Singapore
| | - Sujata Ravi
- Department of Bioengineering, National University of Singapore
| | - James C H Goh
- Department of Bioengineering, National University of Singapore.,Department of Orthopaedic Surgery, National University of Singapore
| | - Siew Lok Toh
- Department of Bioengineering, National University of Singapore.,Department of Mechanical Engineering, National University of Singapore
| |
Collapse
|
19
|
Yonenaga K, Nishizawa S, Fujihara Y, Asawa Y, Kanazawa S, Nagata S, Takato T, Hoshi K. Application of floating cells for improved harvest in human chondrocyte culture. Biomed Res 2012; 33:281-9. [PMID: 23124248 DOI: 10.2220/biomedres.33.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell culture medium, which must be discarded during medium change, may contain many cells that do not attach to culture plates. In the present study, we focused on these floating cells and attempted to determine their usefulness for cartilage regeneration. We counted the number of floating cells discarded during medium change and compared the proliferation and differentiation between floating cells and their adherent counterparts. Chondrocyte monolayer culture at a density of 5 × 103 cells/cm(2) produced viable floating cells at a rate of 2.7-3.2 × 10(3) cells/cm(2) per primary culture. When only the floating cells from one dish were harvested and replated in another dish, the number of cells was 2.8 × 10(4) cells/cm(2) (approximately half confluency) on culture day 7. The number of cells was half of that obtained by culturing only adherent cells (5 × 10(4) cells/cm(2)). The floating and adherent cells showed similar proliferation and differentiation properties. The recovery of floating cells from the culture medium could provide an approximately 1.5-fold increase in cell number over conventional monolayer culture. Thus, the collection of floating cells may be regarded as a simple, easy, and reliable method to increase the cell harvest for chondrocytes.
Collapse
Affiliation(s)
- Kazumichi Yonenaga
- Department of 1 Cartilage & Bone Regeneration (Fujisoft), The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Danišovič L, Varga I, Polák S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 2012; 44:69-73. [PMID: 22185680 DOI: 10.1016/j.tice.2011.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/18/2011] [Accepted: 11/21/2011] [Indexed: 02/08/2023]
Abstract
The main purpose of the article is to review recent knowledge about growth factors and their effect on the chondrogenic differentiation of mesenchymal stem cells under in vitro conditions. Damaged or lost articular cartilage leads to progressive debilitation, which have major impact on the life quality of the affected individuals of both sexes in all age groups. Mature hyaline cartilage has a very low self-repair potential due to intrinsic properties - lack of innervation and vascular supply. Another limiting factor is low mitotic potential of chondrocytes. Small defects are healed by migration of chondrocytes, while large ones are healed by formation of inferior fibrocartilage. However, in many cases osteoarthritis develops. Recently, cellular therapy combining mesenchymal stem cells and proper differentiation factors seems to be promising tool for hyaline cartilage defects healing.
Collapse
Affiliation(s)
- L Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| | | | | |
Collapse
|
21
|
Tajima S, Tabata Y. Preparation and functional evaluation of cell aggregates incorporating gelatin microspheres with different degradabilities. J Tissue Eng Regen Med 2012; 7:801-11. [PMID: 22438136 DOI: 10.1002/term.1469] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/26/2011] [Accepted: 01/05/2012] [Indexed: 11/05/2022]
Abstract
The objective of this study was to investigate the viability and biological functions of cells in their aggregates incorporating gelatin microspheres with different degradabilities. After being prepared by a water-in-oil emulsion procedure, the gelatin microspheres were dehydrothermally crosslinked at 140°C for various time periods. In vitro degradation tests showed that the gelatin microspheres were slowly degraded slowly with an increase in the crosslinking time. When MC3T3-E1 cells were cultured with the gelatin hydrogel microspheres in the round U-bottom wells of 96-well microplates which had been coated with poly(vinyl alcohol), cell aggregates with homogeneously distributed gelatin microspheres were formed. A large amount of slowly degraded gelatin microspheres remained in the cell aggregates for long time periods, while a higher proliferation of MC3T3-E1 cells was observed. When evaluated as a measure of aerobic glycolysis, the ratio of l-lactic acid production:glucose consumption of MC3T3-E1 cells was lower for MC3T3-E1 cells in the cell aggregates incorporating slowly degraded gelatin microspheres than for aggregates incorporating rapidly degraded ones. The alkaline phosphatase activity and calcium content of MC3T3-E1 cells were higher for cell aggregates incorporating slowly degraded gelatin microspheres. It is possible that the incorporation of gelatin hydrogel microspheres with slow degradability enabled the permeation of oxygen and nutrients into the cell aggregates for longer time periods, resulting in better culture conditions for the survival, proliferation and differentiation of the cells.
Collapse
Affiliation(s)
- Shuhei Tajima
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Japan
| | | |
Collapse
|
22
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
23
|
Hayashi K, Tabata Y. Preparation of stem cell aggregates with gelatin microspheres to enhance biological functions. Acta Biomater 2011; 7:2797-803. [PMID: 21549223 DOI: 10.1016/j.actbio.2011.04.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 04/13/2011] [Indexed: 01/08/2023]
Abstract
The objective of this study is to improve the viability and osteogenic differentiation of cultured rat bone marrow-derived mesenchymal stem cells (MSC) by the use of gelatin hydrogel microspheres. Gelatin was dehydrothermally crosslinked at 140° C for 48 h in a water in oil emulsion state. When cultured with the gelatin hydrogel microspheres in round, U-bottomed wells of 96-well plates coated with poly(vinyl alcohol) MSC formed aggregates homogeneously incorporating the microspheres. The viability of the cell aggregates was significantly higher compared with that of aggregates formed without microspheres. MSC proliferation in the aggregates depended on the number and diameter of the incorporated microspheres. Higher MSC proliferation was observed for aggregates incorporating a greater number of larger gelatin microspheres. When evaluated as a measure of aerobic glycolysis the ratio of l-lactic acid production/glucose consumption in MSC was significantly lower for MSC cultured with gelatin microspheres than those without microspheres. MSC production of alkaline phosphatase (ALP) and sulfated glycosaminaglycan (sGAG) was examined to evaluate their potential osteogenic and chondrogenic differentiation. The amount of ALP produced was significantly higher for MSC aggregates cultured with gelatin microspheres than that of MSC cultured without microspheres. On the other hand, the amount of sGAG produced was significantly lower for MSC aggregates containing microspheres. It is concluded that the incorporation of gelatin hydrogel microspheres prevents the aggregated MSC suffering from a lack of oxygen, resulting in enhanced MSC aggregation and cell proliferation and osteogenic differentiation.
Collapse
|
24
|
Tiyaboonchai W, Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Sobhon P. Preparation and characterization of blended Bombyx mori silk fibroin scaffolds. FIBERS AND POLYMERS 2011; 12:324-333. [DOI: 10.1007/s12221-011-0324-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
|
25
|
Lindquist JN, Cheresh DA, Snyder EY. Derivation of vasculature from embryonic stem cells. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2010; Chapter 1:Unit 1F.9. [PMID: 20200855 DOI: 10.1002/9780470151808.sc01f09s12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The formation of the multicellular vascular system is critical to the growth, development, and viability of an organism, and many embryonic lethal mouse knockouts are due to vascular defects. Unfortunately, the complex nature, and many cell types involved in vasculogenesis and angiogenesis has stymied in vitro models of vascular formation. This unit describes a system that allows human embryonic stem cells to differentiate and spontaneously form vascular networks via both vasculogenesis and angiogenesis in the context of the three germ layers.
Collapse
|
26
|
Kopesky PW, Vanderploeg EJ, Sandy JS, Kurz B, Grodzinsky AJ. Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells. Tissue Eng Part A 2010; 16:465-77. [PMID: 19705959 PMCID: PMC2862611 DOI: 10.1089/ten.tea.2009.0158] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 08/24/2009] [Indexed: 11/13/2022] Open
Abstract
Our objective was to test the hypothesis that self-assembling peptide hydrogel scaffolds provide cues that enhance the chondrogenic differentiation of bone marrow stromal cells (BMSCs). BMSCs were encapsulated within two unique peptide hydrogel sequences, and chondrogenesis was compared with that in agarose hydrogels. BMSCs in all three hydrogels underwent transforming growth factor-beta1-mediated chondrogenesis as demonstrated by comparable gene expression and biosynthesis of extracellular matrix molecules. Expression of an osteogenic marker was unchanged, and an adipogenic marker was suppressed by transforming growth factor-beta1 in all hydrogels. Cell proliferation occurred only in the peptide hydrogels, not in agarose, resulting in higher glycosaminoglycan content and more spatially uniform proteoglycan and collagen type II deposition. The G1-positive aggrecan produced in peptide hydrogels was predominantly the full-length species, whereas that in agarose was predominantly the aggrecanase product G1-NITEGE. Unique cell morphologies were observed for BMSCs in each peptide hydrogel sequence, with extensive cell-cell contact present for both, whereas BMSCs in agarose remained rounded over 21 days in culture. Differences in cell morphology within the two peptide scaffolds may be related to sequence-specific cell adhesion. Taken together, this study demonstrates that self-assembling peptide hydrogels enhance chondrogenesis compared with agarose as shown by extracellular matrix production, DNA content, and aggrecan molecular structure.
Collapse
Affiliation(s)
- Paul W. Kopesky
- Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | | | - John S. Sandy
- Department of Biochemistry, Rush University Medical Center, Chicago, Illinois
| | | | | |
Collapse
|